
Grail: an Interactive Parser for Categorial
Grammars

Richard Moot

1 Introduction

Since early work by Lambek [Lambek 58], lin-
guists and logicians have been trying to specify
grammars as logical theories (see e.g. [Morrill 94]
or [Moortgat 97] for a good overview). An ad-
vantage of this approach over more traditional ap-
proaches to linguistics is that we can prove our
grammars have abstract well-behavedness proper-
ties like soundness, completeness and consistency.

Grail is a tool which allows you to specify such
logical theories and functions as a parser for the re-
sulting grammar.

I will first give a brief introduction to categorial
grammar and then show how proof search for this
logic is implemented in Grail. The parser is divided
in two parts: we use proof nets to indicate, roughly,
the functor-argument structure and term rewriting
to implement the structural constraints imposed by
the language we are describing. On both levels,
parsing is fully interactive. When there are mul-
tiple ways of continuing the computation, the user
can select which one to try first. Benefits of this are
that the user can guide the computation to a point
in which he is interested, which is useful when de-
bugging a grammar and sidesteps the computational
complexity of the parser when it operates fully au-
tomated.

Grail is currently used at the University of U-
trecht as a research tool and as courseware for intro-
ductory to advanced level courses in computational
linguistics. It is implemented in a combination of
SICStus Prolog and Tcl/Tk.

2 Categorial Grammar

Before we start with a description of the parser it-
self, it is useful to give at least a short introduction

to modern, multimodal categorial grammars as used
in [Moortgat 97].

Definition 1 Over a finite set of atomic formulas
�

and for all modes � out of some fixed set, we define
the set of formulas as follows

������� �	� ��
��� � ������
Intuitively, a formula of the form �
���� (resp.����� �) looks to the right (resp. left) for a formula

of type
�

to yield a formula of type � . The full
logic supported by Grail contains three additional
connectives, � � , � � and ���� . For the purpose of the
current discussion, however, we will limit our dis-
cussion to formulas as defined above.

It is important to note that we use a multimodal
system and that a formula �
���� may have different
behaviour than, for example, a formula �
���� . In
example 3 we will see how different structural rules
can apply depending on which mode we use.

As the linguistic structures we will talk about are
trees, we need to give some definition as to what
kinds of trees we allow our linguistic expressions to
have.

Definition 2 Over a countably infinite set of
structural variables we define the set of structure
trees as follows

! �"�#� � !%$ � !
We will write

!'& �
to indicate that the struc-

ture
!

is of type
�

. A lexicon assigns some initial
structural variables to formulas.

Example 1 The following is a minimal lexicon

zaphod
&)(+*

marvin
&)(+*

snores
&)(+* � ��,

likes
&.-�(+* � ��,0/
 � (+*

anything
&1- ,
 � (+* / � ��,

1

Noun phrases, like ‘zaphod’ and ‘marvin’ are as-
signed an atomic formula

(+*
. An intransitive verb,

like ‘snores’, is something which yields a sentence
,

when it finds such an
(+*

to its left, whereas the tran-
sitive verb ‘likes’ yields an intransitive verb when it
finds an

(+*
to its right. The quantifier ‘anything’ is

not a simple
(+*

but gets, in the tradition of Mon-
tague semantics, a higher order formula: it yields
an

,
whenever it finds to its left an

,
missing an

(+*
.

The natural deduction rules tell us how to com-
bine these lexical assignments to form larger ex-
pressions in accordance with the meaning of the
connectives. Each connective has an elimination
and an introduction rule.

� & �
�� � � & �
� $ ��� & �

�
����

� �
	 & ��� 	
....� $ � �
	 & �� � �
�� �

�
���� 	

� & � � & ��� � �� $ � � & �
� �����

� � 	 & ��� 	
....� 	 $ � � & �� & � � � �

� ����� 	

The elimination rule for
�

tells us, that when-
ever we have some structure

�
of type

� ��� � and a
structure

�
of type

�
the combination of these two

structures
� $ � �

is of type � .
The introduction rule tells us we can cancel a sin-

gle assumption p of type
�

, provided that this as-
sumption is on the right branch of the current struc-
ture tree. We put square brackets around the for-
mula and the structural variable p to indicate it has
been canceled. A natural deduction proof in our
system is a tree consisting of applications of the
rules above, where all non-canceled leaves are el-
ements of the lexicon.

Example 2 We can show ‘zaphod snores’ is a well-
formed sentence according to our grammar by the
following derivation

zaphod
& (+*

snores
& (+* � ��,

zaphod
$ �

snores
& , � ����

In addition to the logical rules, which are as-
sumed to be linguistic universals, we can have a
number of structural rules, which can vary from

language to language. As their name suggests,
structural rules operate on structure trees only and
are of the following general form

� � ��� & �� � ��� & �
�
S � �

where the notation
� � ���

signifies a structure tree
�

with a distinguished subtree occurrence
�

. We re-
strict

�
and

�
to be structure trees with variables�������������� 	

(which range over structure trees) as
leaves, with the condition that each variable in the
conversion is mentioned exactly once in

�
and ex-

actly once in
�

. In other words, copying and dele-
tion of structure is not allowed.

Example 3 Typical examples of valid structural
rules are the following

� � - � � $ � ��� / $ � ����� & �� � � � $ � - ��� $ � ��� / � & �
�
Ass1

�
� � � � $ � - ��� $ � ��� / � & �� � - � � $ � ��� / $ � ����� & �

�
Ass2

�
� � ��� $ � � � � & �� � ��� $ ��� � � & �

�
Com

�

which tell us that mode is associative and mode !
is commutative.

Example 4 As an illustration, suppose we have a
lexicon as given in example 1. Then we can, with
the help of the structural rule

�
Ass2

�
as defined

above, give the derivation of ‘zaphod likes any-
thing’ as shown in figure 1 on the following page.

3 Proof Nets

As you will have noted, the natural deduction cal-
culus has two components: a logical and a struc-
tural. For reasons of efficiency, Grail uses a differ-
ent but equivalent calculus, where this division is
even more clear. The logical component is based
on proof nets, which are proof-theoretic innova-
tions developed for linear logic (see for example
[Girard 87] or [Danos 90]), whereas the structural
component is a term rewrite system we will discuss
in the next section.

Before we introduce proof nets, we need an aux-
iliary notion of polarity. The polarity of a formula

2

zaphod
& (+* likes

& -�(+* � ��,�/
 � (+* �
p
� & (+* � �

likes
$ �

p
� & (+* ��� , �
����

zaphod
$ � -

likes
$ �

p
� / & , � ����

-
zaphod

$ �
likes

/ $ �
p
� & , � � ,�,�� �

zaphod
$ �

likes
& ,
 � (+* �
���� �

anything
& - ,
 � (+* / � ��,

-
zaphod

$ �
likes

/ $ �
anything

& , � �����

Figure 1: Derivation of ‘zaphod likes anything’

is either positive or negative, which we will indicate
here by a superscript. The intuition is that negative
formulas are outputs and that positive formulas are
inputs. Formulas from the lexicon start out as nega-
tive, whereas the polarity of the goal formula starts
out as positive. We decompose formulas according
their polarity as follows

�

�
��

�

�
�� �

�� �

�
�

�
���
�� �

�

�� � � �

�

�
��

�� � � �
Example 5 We would decompose the lexical entry
for ‘anything’ given in example 1 as follows indi-
cating that it produces an

(+*
as output and an

,
as

both input and output.

�,
� (+* � ,

�- ,
� (+* / �� ,

�(+* � ,

You will have noticed we distinguish between
solid and dotted links. The solid links correspond
to ‘mirrored’ versions of the elimination rules from
natural deduction, the dotted links to the introduc-
tion rules. We can see the dotted links as some sort

of ‘switches’ which we can be set to either the left
or the right. In order to produce a proof net we need
to connect all atomic formulas is such a way that
we satisfy all input/output requirements and that for
each switching the resulting graph is acyclic and
connected.

Example 6 Below, we show the decompositions of
a negative

- ,
 � (+* / � ��,
formula and a positive

(+*
formula together with a complete linking of all
atomic formulas. The resulting structure is not a
proof net, however, because we can set the single
switch to the right, as shown, after which we will
have produced a graph which is both cyclic and dis-
connected.

�,
 � (+* � ,

�- ,
� (+* / �� ,

�(+* � ,

�(+*

�
�,
 � (+* � ,

�- ,
� (+* / ��� ,

�(+* � ,

�(+*

Returning to the derivation of example 4, when
Grail returns from the lexicon it will display the for-
mula decomposition trees as follows

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

3

with positive atomic formulas drawn in white and
negative atomic formulas drawn in black.

Now we need to connect all positive and neg-
ative formula occurrences in such a way that no
switching produces either a cyclic or a disconnected
graph. We can let the parser handle this automati-
cally or we can manually guide the computation by
selecting which formula we want to link first. In
this case we select the rightmost

(+*
formula, indi-

cated with a black box, and Grail shows us which
formulas we can link it to by drawing a white box
around them.

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

Using our educated guess that the
(+*

we have
selected is the one ‘likes’ expects to its right instead
of to its left, we link it as follows

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

Grail keeps track of the other possible choice for
us, so we don’t have to worry about making a wrong
choice. Next we select the

,
, as shown below, and

we again have two choices for linking, of which we
choose the rightmost one.

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

Now when we set the switch to the right, we will
have a cyclic subgraph, so continuing past this point
could never produce a proof net. In this case, we
are forced to backtrack to the last choice we made
where the rightmost negative

,
is no longer avail-

able, so we take the only remaining option.

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

Finally, we connect the last two
(+*

and
,

formu-
las, which can be done in only one way, and check
that the resulting structure is acyclic and connected
for both switchings.

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

4

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

After connecting all atomic formulas, we know
that all input/output requirements are satisfied and
proceed to the next stage of the computation, where
we check if all structural constraints can also be
met. Should this fail, we return here to try for pos-
sible other linkings.

4 Structure

The proof nets discussed in the previous section
only take care of the input/output requirements of
formulas. As we saw, there are also structural re-
quirements which a valid derivation must satisfy.
How strict these requirements are depends on the
available structural rules.

In Grail, these constraints are checked by a sim-
ple term rewrite system as used in [Moortgat 97].
Each connective has its own rewrite rule, which is
fixed, and the user can specify any number of struc-
tural rules, which correspond directly to a like num-
ber of rewrite rules.

Given a proof net, we can compute the structural
information from it in the following way, where the
arrows indicate the flow of information in the graph

�

�
��

�

�
���
�

�� $ ��� � �
�� � �

�� � �
� �

�

�

�� �

�
�

�
���
�

�

p
� � �� � �

��
�
p
� �
�� �

�

�� �

�

�� � � �
�

�� � � �� $ ��� � �

�� � � � � �

�

�

�

�
��

�� �� �
�

�� � �
�

p
� �

�

p
��� � � ����� �

�

For the solid links, information travels exactly as
we would expect given that they are just mirrored
elimination rules; when we have a structure

�
as-

signed to
����� � and a structure

�
assigned to

�
, we

assign
� $ �
�

to � . For the dotted links, however,
we want to demand the variable p occurs on the
right (resp. left) branch of the tree

�
, as the corre-

sponding introduction rules do. We implement this
by assigning

�
�
p to the �
�� � formula, indicating

that there we still have an unsatisfied constraint on�
.

Example 7 The structure computed by Grail for
the example proof net of the previous section is the
following, with the constructor

��
drawn in dark

grey to indicate this constraint still has to be satis-
fied

zaphod

likes E

a

a E

/ a anything

a

The rewrite rules for the different connectives are
called their residuation rule. For the constructors

 �
and

� �
, the following rules apply

5

��

� $ �

��

�

[Res
�
]

�

� �

�$ �

 �

�

[Res

]

�

The structural rules correspond directly to rewrite
rules, for example the structural rules from exam-
ple 3 correspond to rewrite rules of the following
form

� �

�$ �

$ �

�

[Ass1]

��

� $ �

$ �

��

� $ �

$ �

�

[Ass2]

� �

�$ �

$ �

� �

$ �
�

[Com] � �

$ �

Grail allows you to click on each node of the tree
to get a menu with all possible applications of a
rewrite rule rooted at that node. You can select a
promising rule from one of the menus, while Grail
keeps track of any unvisited alternatives to your
choice. When you get stuck you can either undo
one of your previous choices or let the parser check
if you missed a solution somewhere.

Example 8 Given the structure of example 7, we
can only apply the

�
Ass2

�
conversion and obtain the

following tree

zaphod likes

a E

a E

/ a anything

a

Now we are in the right position to apply the�
Res

 �
conversion, after which we have a valid

structure. We could also choose to apply
�
Ass1

�
at

this point, after which we have seen the complete
search space.

zaphod likes

a anything

a

After we have applied the appropriate rewrite
rules, Grail can convert the proof net to a more
human-readable natural deduction proof like the
one shown in figure 1.

For a typical grammar designed in Grail, there
are a lot more choices to make when using the
rewrite rules and the search space can involve sev-
eral thousands of structures. User interaction can
considerably improve the performance by allowing
the user to perform the intended structural conver-
sions himself. When designing a grammar, it is of-
ten enlightening to see Grail (ab)use your carefully
chosen structural rules in unintended ways, show-
ing surprising, linguistically incorrect predictions
of your grammar, or to see it fail to satisfy a critical
constraint, pointing to a missing or not sufficiently
general structural rule.

6

Example 9 The structure computed for example 7
showed us we needed the [Ass2] structural rule.

There is also a second proof net for ‘zaphod likes
anything’, namely the following

np
zaphod

npnpnpnpnp s

\a npnpnpnpnp

/ a

likes

np sssss

/ a s

\a

anything

sssss

for which Grail computes the following structure

E

likes zaphod

a

a E

/ a anything

a

Should we want to be able to meet all structural
constraints here, we would need the [Com] struc-
tural conversion for mode . However, by adding
this rule our grammar fragment would make the
incorrect prediction that word order in English is
completely free, so rejecting this structure is justi-
fied.

5 Conclusions

Though we have skimmed over a lot of the de-
tails, we hope to have given an impression of the
basic operation of the Grail parser and of how it
implements the underlying logical framework. It
has been our experience that interactive parsing is
a great improvement over fully automated parsing
which helps both in the teaching categorial gram-
mars and in the designing and debugging of gram-
mar fragments.

References

[Danos 90] Danos, V., La Logique Linéaire Ap-
pliquée à l’étude de Divers Processus de Nor-
malisation. Thèse de Doctorat, Université de
Paris VII, 1990.

[Gabbay 96] Gabbay, D., Labeled Deductive Sys-
tems I. Clarendon Press, Oxford, 1996.

[Girard 87] Girard, J.Y., Linear Logic. Theoretical
Computer Science 50, 1987, pp. 1-102.

[Girard e.a. 95] Girard, J.Y., Y. Lafont and L. Reg-
nier (eds.), Advances in Linear Logic, Lon-
don Mathematical Society Lecture Notes, Cam-
bridge University Press, 1995.

[Lambek 58] Lambek, J., The Mathematics of Sen-
tence Structure. American Mathematical Month-
ly 65, 1958, pp. 154-170.

[Moortgat 97] Moortgat, M., Categorial Type Log-
ics. Chapter 2 of Benthem, J. van, and A. ter
Meulen (eds.) Handbook of Logic and Lan-
guage. Elsevier, 1997.

[Morrill 94] Morrill, G., Type Logical Grammar.
Categorial Logic of Signs, Kluwer, Dordrecht,
1994.

[Roorda 91] Roorda, D., Resource Logics: A Proof
Theoretical Study. PhD Thesis, University of
Amsterdam, 1991.

A Obtaining Grail

Grail and its source code are available under
the GNU General Public License by anony-
mous ftp from ftp.let.uu.nl in directory
/pub/users/moot/. See the README file for
the latest details.

To run Grail it is necessary to have SICStus Pro-
log version 3.5 or later, together with the Tcl/Tk li-
braries, installed on your computer. In addition you
will need LATEX

���
for the natural deduction output.

7

