
Reinforcement Learning
Part I –Definitions

Nicolas P. Rougier
INRIA Bordeaux Sud-Ouest

Institute of Neurodegenerative Diseases

3rd Latin America Summer School in Computational Neuroscience
13-31 January 2014, Valparaiso, Chile

Learning

Supervised learning
→ Correct answer is given by the supervisor
Ex: 1+2→ 4 : No ! Right answer was 3
Ex: 1+3→ 4 : Yes ! Right answer is 4

Unsupervised learning
→ Nothing is said at all
Ex: 1+2→ potatoes : If you say so
Ex: 1+3→

√
table : No really, I don’t care

Reinforcement learning
→ Correctness of answer is given by the environment
Ex: 1+2→ 4 : No ! (-1)
Ex: 1+2→ 3 : Yes ! (+1)

Learning
Supervised, unsupervised or reinforcement?

Generalization Discrimination Clustering

Memorization Control

Reinforcement Learning
A tentative definition

“Of several responses made to the same situation, those which are accompanied or
closely followed by satisfaction to the animal will, other things being equal, be more
firmly connected with the situation, so that, when it recurs, they will be more likely to
recur; those which are accompanied or closely followed by discomfort to the animal
will, other things being equal, have their connections with that situation weakened,
so that, when it recurs, they will be less likely to occur. The greater the satisfaction or
discomfort, the greater the strengthening or weakening of the bond”

Edward L. Thorndike, Animal Intelligence, 1911

Reinforcement Learning is learning what to do – how to map situations to actions –
so as to maximize a numerical reward signal. The learner is not told which actions to
take, as in most forms of machine learning, but instead must discover which actions
yield the most reward by trying them.

R.S.Sutton & A.G.Barto, Reinforcement Learning, 1998

Markov Decision Process (MDP)
Definition

A Markov Decision Process (MDP) is a tuple (S, A, T, R)where:
• S is a finite a set of states
• A is a finite a set of actions
• T : S× A× S→ [0, 1] is the transition function
T(s, a, s′) is the probability that action a in state swill lead to state s′

• R : S× A× S→ R is the reward function
R(s, a, s′) is the immediate reward received a�er transition to s′ from s.

A Markov Decision Process (MDP) is the description of a problem.
It is not a policy !

Markov Decision Process (MDP)
Example

Let’s consider three states S0, S1, S2 and two possible actions a0, a1 and the
following transition and reward functions:

a0 transition matrix: T(∗, a0, ∗)

S0 S1 S2
S0 0.50 0.00 0.50
S1 0.70 0.10 0.20
S2 0.40 0.00 0.60

a0 reward matrix: R(∗, a0, ∗)

S0 S1 S2
S0 0 0 0
S1 5 0 0
S2 0 0 0

a1 transition matrix: T(∗, a1, ∗)

S0 S1 S2
S0 0.00 0.00 1.00
S1 0.00 0.95 0.05
S2 0.30 0.30 0.40

a1 reward matrix: R(∗, a1, ∗)

S0 S1 S2
S0 0 0 0
S1 0 0 0
S2 −1 0 0

Markov Decision Process (MDP)
Simple example from the toy world

a0

 S0

 0.5

 S2

 0.5

a1 1.0

a0

 R=+5

 0.7

 S1

0.1

 0.2

a1

 0.95
 0.05

a0 0.4

 0.6

a1

 R=-1

 0.3
 0.3

 0.4

What is the best strategy ?

Markov Decision Process (MDP)
Simple example from the toy world

a0

 S0

 0.5

 S2

 0.5

a1 1.0

a0

 R=+5

 0.7

 S1

0.1

 0.2

a1

 0.95
 0.05

a0 0.4

 0.6

a1

 R=-1

 0.3
 0.3

 0.4

What is the best strategy ? → (S0, a1), (S1, a0), (S2, a1) (easy enough !)

Markov Decision Process (MDP)
Complex example from the real world

What is the best strategy ?

Markov Decision Process (MDP)
Complex example from the real world

What is the best strategy ? Not that obvious, we need somemethods.

Policy
Stochastic vs. Deterministic

A policy π specifies the action π(s) to choose when in state s.

Deterministic policy
π : S→ A

Stochastic policy
π : S× A→ [0, 1]

• The core problem of MDP is to find a policy π that maximize reward
• For any MDP, there exists an optimal deterministic policy π∗

Note: Once a Markov decision process is combined with a deterministic policy, this
fixes the action for each state and the resulting combination is a Markov chain.

Value functions

How good is a state in terms of futures rewards ?
For a given policy π, we can valuate a state (using a scalar) such that this
value expresses the sequences of future rewards. We thus need to define
how to aggregate future rewards into a single value.

S0 S1 S2 S3
a0 a1 a2 a3

r0 r1 r2 r3

...

From state S0 and following the shown sequence of actions, we can expect
to receive reward r0, then reward r1, etc. What is this the overall expected
reward (or value) Vπ(S0) ?

Value functions

Total reward
Sum of all future rewards over a finite horizon.

S0 S1 S2 S3
a0 a1 a2 a3

r0 r1 r2 r3

...

Vπ(S0) = r0 + r1 + ...+ rn =
i=n∑
i=0

ri

Value functions

Average reward
Mean of future rewards over a finite window.

S0 S1 S2 S3
a0 a1 a2 a3

r0 r1 r2 r3

...

Vπ(S0) =
r0 + r1 + r2

3

Value functions

Discounted reward
Future rewards are worth less than the current reward.

S0 S1 S2 S3
a0 a1 a2 a3

r0 r1 r2 r3

...

Vπ(S0) = r0 + γr1 + γ2r2 + ...+ γnrn + ... =
+∞∑
i=0

γ iri

γ ∈ [0, 1] is the discount factor:
• γ = 0means only immediate reward is important
• γ = 1means all rewards are equally important

From now on, we’ll use the discounted reward.

State-Value function
(a.k.a. Value function)

The state-value function Vπ : S→ R represents for any state the expected
future reward for policy π. It is a vector with one value per state.

S13 S43 S53

S14 S34 S44 S54

S11 S31 S51

S12 S22 S32 S42 S52

S15 S25 S35 S45 S55

State Value Reward
S11 Vπ11 0
S12 Vπ12 0
S22 Vπ22 0
S13 Vπ13 0
...
S55 Vπ55 1

State-Value function
(a.k.a. Value function)

The state-value function Vπ : S→ R represents for any state the expected
future reward for policy π. It is a vector with one value per state.

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.66

0.48 0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

0.00 0.00 0.81

0.00 0.00 0.00 0.90

0.00 0.00 0.66

0.00 0.00 0.00 0.00 0.73

0.00 0.00 0.00 0.00 1.00

Action-Value function
(a.k.a. Q-function)

The action-value function Qπ : S× A→ R represents the expected future
reward a�er taking the action a and then following policy π. It is a matrix
with one value per state and action.

S13 S43 S53

S14 S34 S44 S54

S11 S31 S51

S12 S22 S32 S42 S52

S15 S25 S35 S45 S55

← → ↑ ↓
S11 Q←11 Q→11 Q↑11 Q↓11
...

S54 Q←54 Q→54 Q↑54 Q↓54
S45 Q←45 Q→45 Q↑45 Q↓45
S55 Q←55 Q→55 Q↑55 Q↓55

Action-Value function
(a.k.a. Q-function)

The action-value function Qπ : S× A→ R represents the expected future
reward a�er taking the action a and then following policy π. It is a matrix
with one value per state and action.

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.66

0.48 0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

← → ↑ ↓
S11 0.43 0.43 0.43 0.48
...
S54 0.81 0.90 0.81 1.00
S45 0.81 1.00 0.81 0.90
S55 0.90 1.00 0.90 1.00

Value functions
Formal definition using discounted reward

State-Value function for policy π

Vπ(s) = Eπ{Rt|st = s} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s

}

Action-Value function for policy π

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s, at = a

}

Bellman Equation

Bellman equation

Vπ(s) =
∑
a

π(s, a)
∑
s′
Pass′ [Ra

ss′ + γVπ(s′)]

with

Pass′ = Pr {st+1 = s′|st = s, at = a}
Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s′}

Optimality

Optimal policy
For finite MDPs, there exists an optimal policy π∗ such that
∀π,∀s ∈ S, Vπ∗(s) ≥ Vπ(s)

Optimal state-value function
The optimal state-value function is defined as: V∗(s) = max

π
Vπ(s)

Optimal action-value function
The optimal action-value function is defined as: Q∗(s, a) = max

π
Qπ(s, a)

Bellman Optimality equation

Bellman optimality equation for V∗

V∗(s) = max
a

E {rt+1 + γV∗(st+1)|st =, at = a}

= max
a

∑
s′
Pass′ [Ra

ss′ + γV∗(s′)]

Bellman optimality equation for Q∗

Q∗(s) = E
{
rt+1 + γmax

a′
Q∗(st+1, a′)|st =, at = a

}
=
∑
s′
Pass′

[
Ra
ss′ + γmax

a′
Q∗(s′, a′)

]

Exercise 1: Recycling Robot
(from Sutton & Barto, 1998)

Amobile robot has the job of collecting empty soda cans in an o�ice environment. It
has sensors for detecting cans, and an arm and gripper that can pick them up and
place them in an onboard bin; it runs on a rechargeable battery. The robot’s control
system has components for interpreting sensory information, for navigating, and for
controlling the arm and gripper. High-level decisions about how to search for cans
are made by a reinforcement learning agent based on the current charge level of the
battery. This agent has to decide whether the robot should

1. actively search for a can for a certain period of time

2. remain stationary and wait for someone to bring it a can

3. head back to its home base to recharge its battery

This decision has to be made either periodically or whenever certain events occur,
such as finding an empty can. The agent therefore has three actions, and its state is
determined by the state of the battery. The rewards might be zero most of the time,
but then become positive when the robot secures an empty can, or large and
negative if the battery runs all the way down.

Exercise 1: Recycling Robot
(from Sutton & Barto, 1998)

• Identify states and actions
• Write the transition table
• Draw the corresponding MDP
• Find the best policy

Exercise 2: Path finding
(Value iteration)

Consider the following maze. We want to find the shortest path going from
the entrance (top-le�) to the exit (bottom-right).

1 Find a path by hand

2 How to formalize the problem ?
(actions/states/rewards)

3 How to automatize the finding ?

4 Write a program that find a path

