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The biological neuron

A typical neuron consists of a cell 
body, dendrites, and an axon.  

A neuron is an electrically excitable 
cell that processes and transmits 
information through electrical and 
chemical signals. 



Neural circuits

Neurons never function in isolation; 
they are organized into ensembles 
or circuits that process specific 
kinds of information. 

Afferent neurons, efferent neurons 
and interneurons are the basic 
constituents of all neural circuits.



Brain, body & behavior

The human brain is made of  
≈ 86 billions neurons 

Each neuron is connected to 
≈10,000 other neurons (average) 

1mm3 of cortex contains ≈1 billion 
connections



To model the brain

 
To emulate → new algorithms 
(e.g. deep learning) 

To heal → new therapies 
(e.g. deep brain stimulation) 
 
To understand→ new knowledge 
(e.g. visual attention) 



What kind of models?

 
Connectionist models for 
performances & learning 

Biophysical models for simulation 
& prediction 

Cognitive models for the 
emulation of behavior



How to build models?

Basic material 
  • Anatomy and physiology  
  • Experiments & recordings 
  • Pathologies & lesions


Working hypotheses 
  • Extreme simplifications 
  • Parallel & distributed computing  
  • Dynamic systems & learning  
 
Validation 
  • Predictions 
  • Explanations



Single neuron



Disclaimer

Reminder : Essentially, all models 
are wrong but some are useful. 

(George E.P. Box, 1987) 

Artificial neuron are over-simplified 
models of the biological reality, but 
some of them can give a fair 
account of actual behavior. 



The frog sciatic nerve

From frogs to integrate-and-fire 
Nicolas Brunel · Mark C. W. van Rossum  
Biological Cybernetics (2007) 

“Lapicque used a more exotic one, namely, a 
ballistic rheotome. This is a gun-like contrap- 
tion that first shoots a bullet through a first 
wire, making the contact, and a bit later the 
same bullet cuts a second wire in its path, 
breaking the contact.” 



The formal neuron

The McCulloch-Pitts model (1943) 
is an extremely simple artificial 
neuron. The inputs could be either 
a zero or a one as well as the 
output.



The squid giant axon

In 1952, Alan Lloyd Hodgkin and 
Andrew Huxley described the 
ionic mechanisms underlying the 
initiation and propagation of action 
potentials in the squid giant axon.



Anatomy of a spike

An action potential (spike) is a 
short-lasting event in which the 
electrical membrane potential of a 
cell rapidly rises and falls, following 
a consistent trajectory. 



Voltage clamp

Based on a series of breakthrough 
voltage-clamp experiments, 
Hodgkin & Huxley developed a 
detailed mathematical model of 
the voltage-dependent and time- 
dependent properties of the Na+ 
and K+ conductances. 



The Hodgkin & Huxley model (1952)

The empirical work lead to the development of a coupled set of differential 
equations describing the ionic basis of the action potential. 

The ionic current is subdivided into three distinct components, a sodium current 
INa, a potassium current IK, and a small leakage current IL (chloride ions).  

Based on the experiments, they were able to accurately estimate all parameters. 

  



The Hodgkin & Huxley model (1952)



The Hodgkin & Huxley model (1952)

The Nobel prize was awarded to both men a decade later in 1963. 
The field of computational neuroscience was launched.  
More than 60 years later, the Hodgkin-Huxley model is still a reference. 

A.L HodgkinJ.C. Eccles A. Huxley



Reduced models are simpler

The behavior of high-dimensional nonlinear differential equations is difficult to 
visualize and even more difficult to analyze. 

The four-dimensional model of Hodgkin-Huxley can be reduced to two dimensions 
under the assumption that the m-dynamics is fast as compared to u, h, and n, and 
that the latter two evolve on the same time scale. 

FitzHugh–Nagumo (1961) Morris Lescar (1981)



Formal neuron



Reduced models are still too complex…

Even if conductance-based models are the simplest possible biophysical 
representation of an excitable cell and can be reduced to simpler model, they 
remain difficult to analyse (and simulate) due to their intrinsic complexity. 

For this reason, simple threshold-based models have been developed and are 
highly popular for studying neural coding, memory, and network dynamics.  



Leaky Integrate & Fire

In the leaky integrate and fire (LIF) model, spike occurs when the membrane 
potential crosses a given threshold, and is instantaneously reset to a given reset 
value. But no bursting mode (B), no adaptation (C), no inhibitory rebound (D) 

τ du(t)/dt = -[u(t) - urest] + R.I(t) 
if u(t) > ϑ then limδ→0,δ>0 u(t+δ)= ur



Izhikevich model

In 2003, E. Izhikevich introduced a 
model that reproduces spiking and 
bursting behavior of known types 
of cortical neurons. The model 
combines the biologically 
plausibility of Hodgkin-Huxley-type 
dynamics and the computational 
efficiency of integrate-and-fire 
neurons. 

dv/dt = 0.04v2 + 5v + 10 - u + I 
du/dt = a (bv - u)  
if v=30mV then v=c, u=u + d



It depends on what you’re trying to achieve… 

Which model for what purpose ?



Circuits



The biological synapse

Excitatory synapses excite 
(depolarize) the postsynaptic cell 
via excitatory post-synaptic 
potential (EPSP) 

Inhibitory synapses inhibit 
(hyperpolarize) the postsynaptic 
cell via inhibitory post-synaptic 
potential (IPSP)



Neural circuits



Instantaneous connections in a small network

Instantaneous excitatory connections 
synchronization

Instantaneous inhibitory connections 
no synchronization



Delayed connections in a small network

Delayed excitatory connections 
 no synchronization

Delayed inhibitory connections 
synchronization



Random population

Simulation (by A.Garenne)  of 
100,000 Izhikevich neurons. 
sparsely and randomly connected 
(patchy connections) 

→ No input but spontaneous 
activity because of noise 

→ Spontaneous bursts of activity 
(centrifugal propagating wave) 



Structured population

Max Planck Florida Institute 
scientists create first realistic 3D 
reconstruction of all nerve cell 
bodies in a cortical column in 
the whisker system of rats. The 
colour indicates the cell type of the 
nerve cell.



Neural Coding



What information is conveyed by spikes ?



Temporal coding

• Rank order (Thorpe & Gautrais, 1991)  
→ most of the information about a new 
stimulus is conveyed during the first 20 or 
50 milliseconds after the onset of the 
neuronal response  



Temporal coding

• Rank order (Thorpe & Gautrais, 1991)  
→ most of the information about a new 
stimulus is conveyed during the first 20 or 
50 milliseconds after the onset of the 
neuronal response  

• Synchrony (Wang & Terman, 1995) 
→ synchrony between a pair or many 
neurons could signify special events and 
convey information which is not contained 
in the firing rate of the neurons 

• Etc… 



Rate coding

But spike trains are not reliable… 

• Average over time 
→ the spike count in an interval of 
duration T 

• Average over population 
→ the spike count during in a population 
of size N in an interval of duration dt 

• Average over runs 
→ the spike count for N runs in an interval 
of duration dt



Rate models

To model a rate model, no need to 
first model a spiking neuron and 
then compute the rate code.  

Better use a direct model instead.  
τdV/dt = -V + Isyn +Iext  

But not enough time today…



Population



Between cells and tissue

The number of neurons and 
synapses in even a small piece of 
cortex is immense. Because of this 
a popular modelling approach 
(Wilson & Cowan, 1973) has been 
to take a continuum limit and study 
neural networks in which space is 
continuous and macroscopic state 
variables are mean firing rates. 



Neural fields

We consider a small piece of cortex to be a continuum (Ω). The membrane 
potential u(x,t) at any point x is a function of other the input current and the lateral 
interaction. 

The w(x,y) function is generally a difference of Gaussian (a Mexican hat). 
 

⌧

@u(x, t)

@t

= �u(x, t) +

Z

⌦
w(x, y)f(u(y, t))dy + I(x, t) + h



Visual attention

“Everyone knows what attention is. 
It is the possession by the mind, in 
clear and vivid form, of one out of 
what seem several simultaneously 
possible objects or trains of 
thought.” (W. James, 1905)



Visual attention 
(Vitay & Rougier, 2008)

Several studies suggest that the 
population of active neurons in 
the superior colliculus encodes 
the location of a visual target to 
foveate, pursue or attend to.



A clockwork orange

Using the output of the focus map 
we can control a robot.

Saliency

Input

Focus

Competition

Camera



Plasticity & learning



Plasticity

Synaptic plasticity is the ability of 
synapses to strengthen or weaken 
over time, in response to increases 
or decreases in their activity 

Structural plasticity is the 
reorganisation of synaptic 
connections through sprouting or 
pruning. 

Intrinsic plasticity is the persistent 
modification of a neuron’s intrinsic 
electrical properties by neuronal or 
synaptic activity



Hebb’s Postulate: fire together, wire together

When an axon of cell A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic change 
takes place in one or both cells such that A's efficiency, as one of the cells 
firing B, is increased (Hebb, 1949). 

Problem is that weights are not  
bounded and cannot decrease. 
Usually, uniform forgetting or an  
anti-Hebbian rule is added to  
cope with this problem.



Some plasticity rules

Spike-timing dependent plasticity  is 
a temporally asymmetric form of 
Hebbian learning induced by tight 
temporal correlations between the 
spikes of pre- and postsynaptic 
neurons. 

 
The BCM (Bienenstock, Cooper, 
and Munro) is characterized by a 
rule expressing synaptic change as  
a Hebb-like product of the 
presynaptic activity and a nonlinear 
function ϕ(y) of the postsynatic  
activity, y. 



Learning

• The cerebellum is specialized for 
supervised learning, which is guided 
by the error signal encoded in the 
climbing fiber input from the inferior 
olive learning 

• The basal ganglia are specialized for 
reinforcement learning, which is 
guided by the reward signal encoded 
in the dopaminergic input from the 
substantia nigra 

• The cerebral cortex is specialized for 
unsupervised learning, which is 
guided by the statistical properties of 
the input signal itself, but may also 
be regulated by the ascending 
neuromodulatory inputs



Plasticity in the somatosensory cortex 
(Florence, 2002)



A model of area 3b 
(Detorakis & Rougier, 2013)

Using a neural field, we’ve 
modelled the primary sensory 
cortex (3b) in the primate using 
unsupervised learning. 
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Decision making 
(Topalidou et al, 2016)
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Numerical simulations



Clock-driven vs event-driven simulation

There are two families of algorithms 
for the simulation of neural networks: 

• synchronous or clock-driven 
algorithms, in which all neurons are 
updated simultaneously at every 
tick of a clock 

• asynchronous or event-driven 
algorithms, in which neurons are 
updated only when they receive or 
emit a spike



NEURON 
www.neuron.yale.edu/neuron

NEURON is a simulation 
environment for modelling 
individual neurons and networks of 
neurons. It provides tools for 
conveniently building, managing, 
and using models in a way that is 
numerically sound and 
computationally efficient. 

http://www.neuron.yale.edu/neuron


NEST simulator 
www.nest-simulator.org

NEST is a simulator for spiking 
neural network models that 
focuses on the dynamics, size and 
structure of neural systems rather 
than on the exact morphology of 
individual neurons. 

http://www.nest-simulator.org


Brian simulator 
briansimulator.org

Brian is a simulator for spiking 
neural networks available on 
almost all platforms. The 
motivation for this project is that a 
simulator should not only save the 
time of processors, but also the 
time of scientists. 

http://briansimulator.org


Reproducible Science

Over the years, the Python language 
has become the preferred language 
for computational neuroscience. 

PyNN is an interface that make 
possible to write a simulation script 
once, using the Python programming 
language, and run it without 
modification on any supported 
simulator. 

rescience.github.io

http://rescience.github.io
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