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Abstract

We investigate the formation and maintenance of ordered topographic maps in the primary somatosensory cortex as well
as the reorganization of representations after sensory deprivation or cortical lesion. We consider both the critical period
(postnatal) where representations are shaped and the post-critical period where representations are maintained and
possibly reorganized. We hypothesize that feed-forward thalamocortical connections are an adequate site of plasticity while
cortico-cortical connections are believed to drive a competitive mechanism that is critical for learning. We model a small
skin patch located on the distal phalangeal surface of a digit as a set of 256 Merkel ending complexes (MEC) that feed a
computational model of the primary somatosensory cortex (area 3b). This model is a two-dimensional neural field where
spatially localized solutions (a.k.a. bumps) drive cortical plasticity through a Hebbian-like learning rule. Simulations explain
the initial formation of ordered representations following repetitive and random stimulations of the skin patch. Skin lesions
as well as cortical lesions are also studied and results confirm the possibility to reorganize representations using the same
learning rule and depending on the type of the lesion. For severe lesions, the model suggests that cortico-cortical
connections may play an important role in complete recovery.
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Introduction

Early observations of Leyton and Sherrington [1] (as reported

by Lemon in [2]) on the adult anthropoid apes demonstrated the

ability of the motor cortex to recover from extensive cortical

lesions. The authors hypothesized consequently the existence of a

neural substrate and/or a mechanism for such extensive recovery.

However, about forty years later, Hubel and Wiesel published a

very influential paper [3] that promoted the idea of fixed cortical

representations following the post-natal developmental period.

This hypothesis has prevailed for a long time until the studies of

Merzenich, Kaas et al. [4–6] provided experimental evidence for

somatosensory cortex reorganization following a peripheral nerve

injury or amputation in the adult monkey. Several neurophysio-

logical studies [7–9] have since confirmed this latter hypothesis

and the cortex is now considered as a dynamic structure that is

able to reorganize its representations during the whole life-time

and not only during the critical period. It has been confirmed for the

case of lesion (e.g. strokes) [9,10], ablation [11,12] (e.g. tumors

surgery), body injury (e.g. accident) or severe degeneracy’s of

thalamocortical and cortico-spinal projections [13,14]. Even

environmental factors may deeply impact cortical representations

as it has been demonstrated by Daniel et al. in [15]. However, the

nature of the underlying mechanisms supporting such cortical

plasticity is still largely unknown even if some hypotheses have

emerged. In this regard, Feldman and Brecht [16] published an

extensive review of synaptic mechanisms that could be responsible

for plasticity in the neocortex at both the synaptic physiological level

(long-term potentiation (LTP), long-term depression (LTD), spike

timing dependent plasticity (STDP), homeostasis, meta-plasticity,

GABAergic cells and circuits) and the structural level (thalamocor-

tical and horizontal cross-columnar axons). Hickmott and

Merzenich [17] proposed a similar study about the properties of

local circuit underlying cortical reorganization and identified two

general classes of mechanisms, one involves a rapid change in the

efficiency of existing synapses while the other entails a delayed phase

promoting the sprouting of new connections. This latter study is in fact

quite consistent with the former two-levels analysis. It is to be

noted that some of these mechanisms were already hypothesized to

be involved in cortical plasticity. For example, neuronal axon

sprouting was also reported by Florence et al. [18] as a potential

candidate, LTP and LTD in [19–22], formation of new synapses

[4,23] and inhibitory and excitatory mechanisms in [24,25]. Some

other candidates have been identified as well as the role of the inter

hemispheric modulation of somatosensory receptive fields [26].

Today, no definitive hypothesis has emerged and most probably

the answer is a combination of different mechanisms at different

time scale proportionally to the considered period of development

(prenatal/postnatal critical period/adult period).

One difficulty in identifying such a mechanism is that one must

give account on both the initial formation of ordered topographic

maps (as it has been observed in primary sensory areas V1, A1 and

S1 for example), the maintenance of such maps during the whole

lifetime, the reorganization following a trauma or an injury and
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the possible refinement according to experience (e.g. expanding

representations in order to increase accuracy). Since the anatom-

ical organization of the cortex follows a regular and hierarchical

structure [27,28] whose elementary circuit is the minicolumn (even

if they may display considerable differences [29]), this latter

structure or the macrocolumn (which gathers from 60 to 80

minicolumns [30]) may both represent natural candidates to be

investigated further. More precisely, we know that each cortical

layer receives input from four distinct sources, one from extra-

cortical areas and three from intra-cortical areas. First, excitatory

neurons of a single layer receive input from other neurons of the

same layer. Second, excitatory neurons of the input layer, L4,

receive recurrent feedback input from L2/3. Thus a positive

recurrent loop emerges which seems to account for gain

modulation for active selection and re-combination of the

relatively small afferent signals [31]. Third is the background

noise of the cortical circuit that has been proposed to contributes

to the modulation of the gain of the circuit by enhancing the

responsiveness of cortical pyramidal neurons, [32,33]. Last, but

not least, excitatory neurons of L4 receive direct input from the

thalamus and if they account approximately for only 15% of the

synapses, Bruno and Sakmann [34] demonstrated in vivo they may

nonetheless drive the cortex without the need for intra-cortical

amplification and revealed the thalamocortical pathway as a

highly efficient one. In addition, thalamic neurons develop direct

mono-synaptic connections onto L4 cortical excitatory neurons

independently of the morphological characteristics of these

neurons. Furthermore, Khazipov et al. [35] described the

ontological development of the cortex and the respective

contribution of different mechanisms. The maturation of the

brain is divided in two major periods, pre- and postnatal. At the

beginning of the prenatal period, genetic information leads to the

early formation of the neural networks followed by a spontaneous

electrical activity period that leads to the formation of the

columnar organization [36,37]. This process continues after birth

and stops when the critical period starts. Then, cortical circuits are

driven mainly by experience and synaptic plasticity (e.g. Hebbian

learning) takes place. After the critical period comes to an end the

adult brain can still learn and cortical circuits are able to

reorganize themselves and refine their receptive fields.

At this point, we think that computational neuroscience may

play a key role by providing computational models that can be

used to test this or that functional hypothesis. It has been already

the case with the self-organizing maps as proposed by T. Kohonen

[38,39] in the late eighties that helped to promote the idea of a

competition among units leading to the formation of ordered

representations (although without the possibility of re-organizing

them). At the same time, G. Edelman was proposing to the

community his theory of neural group selection [40] and more

specifically, he was proposing a computational model of plasticity

in the organization of the cortical maps [41] where neuronal groups

serve as the basic unit for map organization. However, this model did not

emphasize the importance of the thalamocortical pathway as we

explained earlier and we think we might need to reconsider its role

in the formation of and maintenance of the sensory representa-

tions.

We propose in this article to investigate (computationally) the

formation of topographic maps in the somatosensory cortex as well

as the reorganization of representations after sensory deprivation

or cortical lesion. We consider both the critical period (postnatal)

where representations are shaped and the post-critical period

where representations are maintained and possibly reorganized.

We hypothesize that feed-forward thalamocortical connections are

an adequate site of plasticity to give account for both the formation

and the maintenance of topographic representations and partly for

the reorganization of representations following a sensory or

cortical lesion. We therefore focus on the organization and

reorganization of the somatosensory cortex (area 3b) innervated by

the mechanoreceptors of the hand. A model of skin and its

associated mechanoreceptors (Merkel ending complexes) is first

introduced and the cortical model, based on the dynamic neural

field theory, is presented together with its dynamics that allow to

drive learning through a Hebbian-like learning rule. Results

concerning the initial formation and maintenance of ordered

representation are analyzed as well as results concerning the

reorganization of representations following a cortical or skin

lesion. In light of these experiments, we discuss the critical role of

feed-forward thalamocortical connections in the reorganization

process as well as the potential role of lateral connections.

Methods

Skin Model
We modeled the Merkel ending complexes (MEC) that are

dedicated to sustained touch sensation and pressure, neglecting

other modalities (e.g. temperature, pain). Following data provided

by Pare et al. in [42], we considered a small skin patch located on

the distal phalangeal surface of a digit (see figure 1) that accounts

roughly for half of the digit surface in area 3b, rest of the surface

being shared among proximal and middle surface of the same digit

[43]. The skin patch is approximately of size 1 mm2, using a

receptor density of 250/mm2 [44]. It has been modeled as a planar

surface ½{1,1�|½{1,1� (arbitrary units) and we considered 256
MEC’s that are arranged in a regular grid over the whole surface

with a location jitter of 5%. This results in a quasi-uniform

distribution consistent with actual distribution of MEC as reported

in [42] and illustrated in figure 1C. Each receptor is fully described

by its Cartesian coordinates, namely (Rxi
,Ryi

), where

i[f1, . . . ,256g. We assume that when a stimulus is applied at a

given location (x,y) of the skin patch, the mechanic property of the

skin extends the pressure level to nearby locations [45] such that

the response s of any receptor (Rx, Ry) is given by:

s(Rx,Ry)~exp {
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s
((Rx{x)2z(Ry{y)2)

r !
ð1Þ

In primates, this somatosensory information flows through several

relays, which lie in the spinal cord and the thalamus, before

reaching the cortex. More precisely, dorsal root ganglion (DRG)

receives information from skin and transmits it to the dorsal

column nuclei (DCN). DCN, in turn, transmits information from

DRG to the ventral posterior lateral (VPL) nucleus of the

thalamus, crossing the midline at the medulla via the medial

lemniscus [46]. These relay stations play a key role in stimuli

contrast sharpening but we decided to ignore them since we

considered that the experimental setup provides enough control

over the stimulus and ensures proper sharpness. Hence, the output

of all receptors are directly fed to the cortical model (see figure 2).

Skin lesions were made by silencing receptors over a specific

area of the skin surface. Instead of transmitting proper values,

disabled receptors transmit a null value which more likely

corresponds to sensory deprivation. There are three types of

lesions (namely type I, II & III) as illustrated in figure 2 These

three types correspond to three distinct topological situations. The

first type leads to a skin patch that is topologically equivalent to the

intact one. The second type introduces a separation of the intact

A Neural Field Model of the Somatosensory Cortex
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skin patch into two distinct areas and because a stimulus cannot

span the two patches at once, these two skin patches are indeed

independent. The third type introduces a hole in the topology of

the skin and is the most challenging to recover from.

Cortical Model
A small volume of the primary somatosensory cortex (SI) was

modeled using the neural field theory [47–50] which considers a

given cortical volume V to be a spatial continuum where macro-

state variables (such as the mean firing rate) of a population at

position x is given by an equation of type:

Figure 1. Skin modeling. A A palmar schematic of the hand ((https://commons.wikimedia.org/wiki/File:Hand_left.svg) Hand drawing by Cy21
available on commons.wikimedia.org under a Creative Commons Attribution-Share Alike 3.0 Unported https://creativecommons.org/licenses/by-sa/3.
0/deed.enlicense.) B Location and relative size of the modeled skin patch. C Magnification of skin patch indicating the topology of receptors.
doi:10.1371/journal.pone.0040257.g001

Figure 2. A model of the somatosensory cortex. The skin patch is modeled as a set of 256 mechanic receptors (white discs in the figure) with a
quasi-uniform distribution that feed the cortical patch. Blue circles represent an example of a stimulus applied on the skin patch and the blue square
represents the stimulation area. The cortical patch is modeled using a neural field with a spatial discretization of size 32632 elements using global
lateral excitation and inhibition. Red circles represent a (schematic) typical cortical response after learning. The three squares under each patch
represent the different cases of lesion that have been studied where the gray part represents the lesioned area.
doi:10.1371/journal.pone.0040257.g002
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1

t

Lu(x,t)

Lt
~{u(x,t)z

ð
V

w(x,y)f (u(y,t{
Dx{yD

v
))dyzi(x,t)

where u(x,t) represents the activity (e.g. the membrane potential)

at position x and time t, i(x,t) represents the synaptic input, w is a

weight function measuring the strength of connection between

positions x and y, f is the firing rate function of a single neuron, v
is the velocity of an action potential and t is the temporal decay.

Given the small size of cortical volume, we neglected velocity

effects (v~z?, see [5] for a study) and we considered the field to

be homogeneous and isotropic, leading to the following simplified

equation:

1

t

Lu(x,t)

Lt
~{u(x,t)za

ð
V

wl(Dx{yD)f (u(y,t))dyzi(x,t)

� �
ð2Þ

where a is a scaling factor and wl is the weight function of lateral

connections. Moreover, we use a simple rectification for the firing

function f since it is the simplest function that can provide stability

for a such field [52,53]:

f (x)~
x, if x§0

0, if xv0

�
ð3Þ

We also considered the input to be a measure of the difference of a

given stimulus s(t) (that correspond to the n~256 outputs of the

skin receptors) with a set of feed-forward weights wf (x) such that

for any position x, we have:

i(x,t)~ 1{
Ds(t){wf (x)D

n

� �
G(x; mc,sc) ð4Þ

where G(x; mc,sc) is a corrective Gaussian function. It is corrective

in the sense of toric connections since our model does not enforce

any toric topology (it is not implemented on a torus). We therefore

multiplied i(x,t) by a fixed-shape Gaussian function in order to

correct any kind of boundary conditions side-effect. Throughout

simulations the variance of the corrective Gaussian function was

sc~2:1, and the mean, mc~0. Finally, the lateral connection

weight, wl , reflects the usual pattern of short-range excitation (we)

and long-range inhibition (wi):

wl(x)~we(x){wi(x)~Keexp {
x2

2s2
e

� �
{Kiexp {

x2

2s2
i

� �
ð5Þ

with Ke, Ki being the amplitudes, se, si being the variances of the

excitatory and inhibitory Gaussian functions respectively, such

that generally we consider si&se.

Cortical lesions were made by silencing units over a specific area

of the cortical surface such that dead unit’s activity was always

zero. Like for skin lesions, we considered three types of lesions

(namely type I, II & III) with same topological properties (see

figure 2).

Neural Population Dynamics
In his seminal work on neural fields [47], Amari studied the

equilibrium solutions, stability and formation of dynamic patterns

providing the conditions for such behaviors in the one-dimensional

case. Since then, a lot of work has been done in the direction of

extending the initial theory to other conditions [48], higher

dimensions [49,54] and different behaviors (see the review by

Coombes [50]). In the present work, we are mainly interested in

the two-dimensional case since we aim at modeling a cortical

sheet. More specifically, we are interested in spatially localized

solutions (a.k.a. bumps) that may drive the cortical plasticity and

we would like the activity of the field to reflect to some extent a

measure of the input, e.g. a measure of the distance between the

feed-forward weights of the most activated units (i.e. units from the

bump) and the current stimulation. Using a specific set of

parameters P~fKe,Ki,se,si,ag given in table 1, the field can

achieve the following property: for any uniform input

i(x,t)~v, v[½0,1�, the maximum activity of the field is v. The one-

dimensional case is illustrated in the figure 3. Furthermore the

same property holds true in the two dimensional case using the

same set of parameters, P.

Plasticity Rule
A learning rule for the classical self-organizing map algorithm

[38] has been proposed by Rougier and Boniface [55], where the

original time-dependent (learning rate and neighborhood) learning

function has been replaced by a time-invariant learning rule.

Instead, a dynamic neighborhood function has been introduced

that depends explicitly on the distance of the winner to the

presented stimulus. On the one hand, if the distance of the

winning unit is very close to the presented input, the dynamic

neighborhood is rendered very strong but narrow, weakening the

learning of other units. On the other hand, when the winning unit

is very far from the presented input, the dynamic neighborhood

exhibits a very broad but weak pattern, promoting weak learning

of every unit in the network. This algorithm has been experimen-

tally proved to be able to achieve self-organization in a similar way

as of a regular self-organizing map. Using this idea of a dynamic

neighborhood but in the context of neural fields (no notion of a

winning unit), we can use the aforementioned match property to

achieve such behavior.

As explained in the introduction, our main hypothesis is that

cortical plasticity can be achieved at the level of thalamocortical

connections, corresponding to the feed-forward weights in our

model. This implies that the network does not need to learn the

lateral weights. Therefore, we trained the field using a modified

Oja learning rule [56] with the following equation:

Lwf (x, t)

Lt
~ c s { wf (x)

� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pre-synaptic term

| Le(x)|ffl{zffl}
post-synaptic term

ð6Þ

where c is the learning rate and Le(x) is the total excitation

received at the point x which is given by the two dimensional

spatial convolution between the excitatory part of the lateral

weight function and the field activity. More precisely, we have:

Le(x)~

ðT

0

ð
V

f (u(y,t))we(Dx{yD)dydt ð7Þ

where we is the excitatory part of the lateral weight function as it is

given by equation (5). The idea is to explicitly modulate learning

according to the sum of excitation received at a point x while the

inhibition only serves during the competition stage. At this stage, it

is important to note that we unified the inhibitory and excitatory

neural population into a single population and used positive/

A Neural Field Model of the Somatosensory Cortex

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e40257



negative weights to reflect excitatory/inhibitory action of a neuron

onto another. It would be perfectly equivalent to use a dual

population but using a single population makes computation

faster. In this context, Le reflects the contribution of excitatory

neurons. The learning rule is composed of a pre-synaptic term and

a post-synaptic term. The pre-synaptic term reflects the explicit

comparison between the stimulus pattern and the pattern of the

feed-forward thalamocortical synapse that enter the neuron. This

allows to gracefully enforce both Hebbian (LTP) and anti-Hebbian

(LTD) learning, controlling the growth of the synapse. The post-

synaptic term modulates the pre-synaptic term according to the

total sum of excitation (instead of the post-synaptic activity as it

would be in the original Oja rule). As illustrated in figure 4, the

activation at a specific site and the amount of excitation received at

the same site are highly correlated but are nonetheless different:

the extent of excitation goes beyond the extent of activation. From

a more mathematical point of view, we can also note that Le

appears to be smooth (C?) while u is not (C0). We have started the

formal analysis of that property since we think that this makes a

critical difference for the self-organization procedure. This signal

provides the model with the necessary information on neighbor-

hood topology. Furthermore, the support of u (x such that u(x,t) is

not null) is constant and independent of the input (this is a

property of the neural fields) and it may thus not provide enough

information for proper self-organization (we numerically tested a

learning rule using u instead of Le without success). From a

biological point of view, this means that a neuron whose

membrane potential is below firing threshold may nonetheless

learns if it has received enough excitation.

At early stage of the training, because of the randomness of the

feed-forward weights, any stimulus can cause a weak response of

the model at a random place within the field (see figure 5A). As the

learning process is ongoing and the feed-forward weights converge

according to equation (6), the response of the model becomes

stronger and occupies a specific spatial location (see figure 5B).

Simulation Details
The set of stimuli that is used during training is initially

generated by equation (4) over a subset ½{0:75,0:75�2 of the skin

patch ½{1:0,1:0�2. Stimuli locations are set on a regular grid (see

figure 4) in order to ensure proper coverage of the patch. During

training, a stimulus is uniformly drawn from within this training

set. Unless stated otherwise, the same stimuli set is used for all

simulations. The neural field has been discretized into 32|32
spatial elements and the integration of equation (2) is performed

using the forward Euler’s method (time step dt is given in table 1).

Feed-forward weights wf are randomly initialized in the range

½0,1�. During all simulations we used 10000 epochs. In each epoch,

the stimulus is presented to the model and the field is integrated

over a fixed time window while the learning rule is applied to the

feed-forward weights. Spatial convolution in equations (2) and (7)

is calculated using a fast Fourier transform (FFT) in order to

accelerate this operation. Then the activity of the field is reset to

zero. This represents the removal of pressure from the skin patch

(we could wait for the field to go back to the steady state but it is

numerically faster to reset it). The feed-forward weights average

evolution Ei of a neuron i was measured by using the following

equation:

�EEi~DE½wi
fnew
�{E½wi

fold
�D ð8Þ

where E½:� represents the expected value (i.e. the mean value of the

array) and D:D represents the absolute value. Lesions of type I, II

and III (skin or cortex) have been implemented using three masks

displayed in figure 2. For skin lesion, input was nullified at lesion

sites before being transmitted to the neural field while for cortical

lesions, lesioned units were nullified at each time step.

Table 1. Model parameters.

Ke Ki se si mc sc s dt a t c

3.65 2.40 0.1 1.0 0.0 2.1 0.15 0.2 0.1 1.0 0.05

Ke and Ki are amplitude of the excitatory and inhibitory weight functions. se and si are the variances of excitatory and inhibitory weight functions. The mean and the
variance of the corrective Gaussian function are given by m and sc , respectively. The variance of stimulus is given by s and the mean is variable, although we explain in
the text how we compute it. dt is Euler’s method time step. a is a constant and t is the time constant of equation (2). c is the learning rate of learning rule given by
equation (6).
doi:10.1371/journal.pone.0040257.t001

Figure 3. Three solutions of the same one-dimensional neural field. Field response (red curve) for three different uniform inputs (blue curve).
In each case, the maximum activity of the field matches the input. The spatial discretization of the field is 100 units. A Response to input 0:25. B
Response to input 0:50. C Response to input 0:75.
doi:10.1371/journal.pone.0040257.g003
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The receptive field of each neuron has been computed from a

set of n|n (n~64 in this work) regularly distributed stimulus ri

over the subset ½{0:75,0:75�2 that have been presented sequen-

tially to the model. Each individual neuron activity has been

recorded and aggregated into a (n,n) matrix of activities. The size

of the receptive field has been identified with the normalized sum

of non null values while the center has been computed as the

center of mass C of the receptive field given by the following

equation:

C~

Pn2

i~0

V iri

Pn2

i~0

V i

ð9Þ

where ri denotes the respective position of stimuli used to compute

RF and V i is the activity at position ri. Using self-organization

information from the intact model, we translated those
centers into the skin reference such that topographical informa-

tion corresponds, this eases the lecture of the figure without

changing the results.

Simulations were performed on a HP Z800 Workstation. The

source code of all simulations is written in Python (Numpy, Scipy

and Matplotlib) and it is available on-line at http://www.loria.fr/

,rougier/coding/software/DNF-SOM.tgz. During a simulation

of 10000 training epochs (sweeps), simulation program consumes

,190 MB of physical memory and requires ,13 minutes of CPU

time until reaching final epoch.

Results

For the sake of simplicity we have split figures into 6 panels,

starting from the evolution of a RF of the neuron (25,15) (except

the cortical lesion of type II where we used the neuron (15,25))
from the epoch number 0 and reaching epoch 10000 through

epochs 50, 1500 and 3500. Then we illustrate the preferred

location of the neurons by computing the center of mass according

to equation (9) and the size of each RF of each neuron in order to

depict discs on the skin grid which indicate the preferred location

and the size of each RF. In the third panel we illustrate the

response of the model to 100 different stimuli, which cover

uniformly the ½{0:75,0:75�2 area (see figure 4). In the case of skin

lesions the stimuli are larger than the lesion and therefore trigger

the neighboring receptors (a single stimulus spans a large portion

Figure 4. Locations of training and validation stimuli on the skin patch. A Training is performed on a set of 16616 stimuli that are uniformly
distributed over the ½{0:75,0:75�2 area (skin patch normalized area is ½{1:0,1:0�2) such that any stimulus is entirely located on the skin patch (see
example stimulus on upper left corner). B Validation (as reported in C panels in result figures) is performed on a set of 10610 stimuli that are

uniformly distributed over the ½{0:75,0:75�2 area.
doi:10.1371/journal.pone.0040257.g004

Figure 5. Response of the model and lateral excitation. The response of the model and the amount of lateral excitation at a specific site
(center of activity). Plots represent the response profile corresponding to the dashed lines. A Before learning. B After learning.
doi:10.1371/journal.pone.0040257.g005
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of the skin). These stimuli are presented to the model and

simultaneously the activity of the field is recorded. In the fourth

panel, we point out the evolution of the feed-forward weights of

the aforementioned neuron and in the two last panels we use two

histograms of the size of RFs of the whole neural field. This overall

organization allows us to illustrate consistently important alter-

ations that take place during cortical and skin lesions. The

histograms were made using 100 bins. Likewise, we measured the

mean and the standard deviation (SD) of the size of RFs before

and after cortical lesions and sensory deprivations.

Emergence of Ordered Topographic Maps
During the early stage of the learning process, the response of

the field to a stimulus is not null even though feed-forward weights

have been set to random values. It displays instead a localized but

weak activity as illustrated in figure 5 A. This is due to neural field

properties that guarantee such behavior depending on the amount

of lateral excitation and inhibition.

This weak activity bump is highly correlated with the presence

of lateral excitation at the location of the former. This allows most

active units to learn the presented stimulus proportionally to their

lateral excitation (see equation (6)). Once the field has been

trained, the response to any stimulus is stronger (see figure 5B) as

well as the amount of lateral excitation. This results in an

increased learning rate for a stimulus that is already known to the

model and thus, it does not change drastically the feed-forward

weights anymore. This is a key point of the model since we’ll see in

next subsection how this active learning rule may help to recover

from lesions.

The evolution over time of the RF of the neuron (number

(25,15)) is illustrated in figure 6A. Initially, the neuron is mostly

silent, but after 1500, 3500 and 10000 presented stimuli, one can

see the development of the RF that is finally precisely tuned to a

specific set of stimulus location. This evolution occurs in two

phases. In the first phase, the RF is extended and covers a large

part of the skin, then in a second phase, as the training process

goes on, the RF shrinks and covers only a small part of the skin.

Each neuron now responds preferentially to a specific skin

region. Moreover, figure 6C shows the response of the model (after

training) to 10610 different stimuli. It is quite clear that a

topographic map has emerged. Each block in this figure represents

a response of the model to a specific stimulus (e.g. the block at the

upper left corner represents the response of the model to a stimulus

at the upper left corner of the skin grid) providing a way to verify

self-organization and also provides a frame of reference of the

receptive field location on the skin patch. Similar results are

illustrated in figure 6B where we used equation (9) in order to

compute the location of each receptive field on the skin patch. The

radius of each circle has been calculated by using the size of each

RF.

In addition, the distribution of RF sizes can undergo alterations

during training. Panel 6E shows the distribution of RF sizes before

any learning occurs in the model. As one can expected, there is no

RFs at all since the neurons have not yet learned anything.

However, once learning is finished, one can see in figure 6F the

normal-like distribution of the RF sizes. There is a high-value

component near zero which indicates a large number of very small

RF sizes that is due to side (border) effects of the neural field.

Other RF sizes follow a normal-like distribution with mean

0:02246 (SD~0:01190). This indicates that there is a better

acquisition of RFs at the center of the field than at the periphery.

Combining all the aforementioned results we can conclude that

the model has achieved proper self-organization. Subsequently,

the emergence of such an ordered map tends to confirm the initial

hypothesis that thalamocortical connections are an adequate site

of plasticity for both the formation and the maintenance of

topographic representations. In this context, lateral connections

mainly serve as support for competition at the cortical level for the

emergence of a unique bump of activity that drives learning.

Finally, figure 7 displays the RFs of all the neurons after 10000
presented stimuli. One can clearly see that ordered representations

have emerged over the whole field.

Reorganization after a Skin Lesion
We first studied the case of sensory deprivation resulting, for

example, from damaged sensory nerves or physical damages to the

receptors. This has been modeled by silencing a specific amount of

skin receptors (25% in type I and type II skin lesions and 9% for

type III skin lesion) such that only a subpart of previously sensory

information is made available to the cortex. A lesion was made

onto three specific areas which are referred as lesion type I, type II,

and type III (see figure 2 for precise shape). We only report, in this

section, results from type II lesion since we found qualitatively

equivalent results regarding type I and type III lesions (see figures 8

and 9, respectively, for details). Following a skin lesion, the model

has been retrained over 10000 epochs using the same set of stimuli

as before but with missing values from disabled receptors. Panel

10A shows the temporal evolution of the receptive field of unit

(25,15) and figure 10C shows the overall reorganization of

representations that has occurred according to the response of the

model to 10|10 different stimuli. This is most clearly illustrated in

figure 10B that displays the preferred location of units that do not

intersect with the skin lesioned area. Comparing the RFs

illustrated in this figure with the ones on figure 6B, one can

conclude that the sizes of RFs which were previously innervated by

the lesioned skin area are now larger. This is because neurons lost

their preferred input and therefore the balance of excitation and

inhibition is disrupted. Therefore neurons expand the size of their

RFs in order to acquire new inputs. This resilient behavior can be

easily explained because thalamus provides divergent inputs to the

cortex. Neurons that were previously tuned to dead receptors will

expand their RFs in order to reach neighboring receptors. This

expansion takes place immediately after the sensory deprivation as

shown in figure 10B and 10A where the RF of neuron (25,15)
underwent an expansion immediately after sensory deprivation

(epoch 50). Panels 10E and 10F shows the histograms before and

after sensory deprivation, respectively. The former corresponds to

the intact model which we discussed in previous subsection and the

later corresponds to the sensory deprivation case after retraining of

the model. There is a small shift of the main peak of the

distribution from the value of 0:02246 towards 0:02227, but with a

noticeable spreading of the RFs (SD = 0:02256) size indicating a

new distribution of RF towards both smaller and larger receptive

fields (while the large component at zero because of border effects

remains). This alteration in the distribution tends to show that

even if most RFs have shrunk, a significant portion have expanded

in size.

Furthermore, from figure 10A describing the temporal evolu-

tion of unit (25,15), we can see that reorganization occurs in two

major phases. At the beginning, each neuron innervated by

deprived skin area undergoes an expansion of its RF simulta-

neously with a spatial shifting in order to capture a new skin area

(first phase). This lasts almost during the whole retraining process.

Near the end of training process the affected neuron has shrunk its

RF (second phase). Similar to this finding, Foeller in [21] proposes

a three-phases model of the RFs reorganization. In the first phase

and due to reduction of inhibitory connections the RFs expand

their size. During the second phase, a further increase of RFs size
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is taking place because of homeostatic plasticity of GABA circuits.

Finally, in the third phase, a shrinkage of RFs around their new

centers occurring as it is driven by re-established inhibitory

connections. We can merge the two first phases into one in our

model since we do not involve any kind of neurobiological

mechanism and therefore a such detailed timescale is not

necessary.

However, the refinement of the RFs is not so exquisite because,

according to our main hypothesis, lateral connections remain fixed

and non-plastic throughout all simulations. This means that

neurons are able to receive proper excitation and inhibition

Figure 6. Intact model. A Evolution of the receptive field of neuron (25,15) during learning. The neuron is initially silent (epoch 0) but learns
quickly to answer to a large range of stimuli (epoch 1500) until finally settling on a narrower range of stimuli. B Receptive fields of the whole model.
Each blue circle represents a neuron. The center of the circle indicates the (converted) receptive field center and the radius expresses the (relative)
size of the receptive field. C Response of the model (after learning) to a set of 10610 regularly spaced stimuli. Each square represent a response to a
specific stimulus. D This represents the mean evolution of thalamo-cortical weights of neuron (25,15) during learning (i.e. E(25,15)). E & F Histogram of
receptive field sizes (100 bins) before (E) and after (F) learning. The final distribution is Gaussian-shaped centered around a mean value of 0:02246. Is is
to be noted the high number of very small receptive field size that correspond to neurons on the border of the field that are mostly silent during the
whole simulation.
doi:10.1371/journal.pone.0040257.g006
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conserving the competitive nature of the reorganization process.

Nevertheless, a better refinement could be possible by using a

learning rule also for the lateral connections. Furthermore and as

it has been explained, the precise type of lesion does not impact

result in a significant way. Neurons that were preferentially tuned

to a disabled skin area tends to have their receptive fields shifting

away from the site of the lesion to neighboring locations. However,

for type II and type III lesions, there is an additional topological

constraint onto those neurons because they can still be part of an

active bump in the field (and tune their receptive field

accordingly). They can be thus attracted either to the left or to

the right part of the lesion site for type II and to any border of the

lesion site for type III. This explains that some neurons do not

express any kind of resilience and have their preferred location still

on the lesioned area even after extensive retraining (figures 10B

and 9B). This also explains the increased oscillations in average

evolution of feed-forward weights, Ei (figures 10D and 9D).

Reorganization after a Cortical Lesion
We also addressed the case of reorganization by causing a

cortical lesion, i.e. silencing some neurons in the neural field. In

living tissue, such damages can be caused by a stroke, a hematoma

or by a surgery either for therapeutic or experimental purposes.

Subsequently, we caused three different types of cortical lesions

(i.e. type I, II and III) by applying a mask to the self-organized

representational map as we previously described in methods

section. These lesions were of an extent of 25% of the total amount

of neurons. We applied a type I lesion close to the border of

cortical sheet, a type III, localized ablation and a type II band-

shaped lesion in the mainland of cortical sheet (see figure 2 for

precise lesion shapes). Thus, after retraining of the network using

10000 stimuli patterns for each of these lesion cases, a new

representational map has emerged as it is depicted in figure 11 for

type I lesion.

Comparing the RFs size before and after cortical lesion, they

have been clearly altered. After lesion, RFs tend to become larger

and consequently to respond to larger skin areas. More precisely,

RFs size after lesion is almost twice bigger compared to pre-lesion

ones. As it is shown in figure 11A the evolution of neuron (25,15)
after a cortical lesion of type I has been altered. Immediately

following the lesion (epoch 50), RF has expanded itself and cover

the skin patch which was previously represented by lesioned

neurons. The temporal evolution of the RF indicates that this

neuron has changed its preferred input in order to promote the

recovery. In addition and as it is illustrated in figure 11B, RFs of

almost all neurons have been changed. The radii of the blue discs

have been increased in size, especially around the lesion site.

Taking also into account the results coming from the histograms of

figures 11E and 11F concerning the pre-lesion and the post-lesion

cases, respectively, one can see the overall distribution of RFs size

has changed in favor of a larger number of large RFs. The mean

value of RFs after cortical lesion is equal to 0:02235 and the SD is

equal to 0:02179 indicating a significant spread of RF sizes.

This is quite consistent with Sober [12] who reported similar

results with the noticeable difference, that weeks after a lesion,

cortex is able to completely recover, having its neurons RFs

sharpened. This is because of re-establishment of inhibitory

connections and/or sprouting of neural axons as it has been

proposed by Florence [57]. Consequently, the refinement of RFs

arise in two phases. During the first phase, there is an expansion of

RFs towards lost territories followed by a shrinkage of the second

phase. In our computational experiments there is no such

shrinkage during the second phase because of the fixed set of

lateral connections as it is depicted in figures 11A, 12A and 13A.

This leads us to ascertain that the lateral connections are crucial to

the development of stable representational maps. Neurons are not

able to precisely refine their RFs since there is no balance

mechanism between excitation and inhibition within cortical

circuits. Sur [58] has shown that intralaminar excitatory connec-

tions are the major factor for expansion of RFs. In consequence,

RFs in figures 11A and 11B have successfully expanded themselves

leading to larger skin area representation but have failed at

shrinking themselves because of the non-plastic lateral connec-

tions. Furthermore, it is remarkable to see that neurons have

migrated to cover the whole skin surface again (figures 11A, 11B)

and non-functional representations (just after lesion) have been

Figure 7. Receptive fields of the intact model. A Of the whole cortical sheet. B Magnification of the white box.
doi:10.1371/journal.pone.0040257.g007
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recaptured by neighboring units. The model is able to respond again

to stimuli applied on areas innervating neurons within the lesioned

cortical area (figure C). This indicates that other neurons took over

and recovered from lesion by migrating their representations

towards the lost ones, making the cortical patch functional but

degraded.

Recovery from cortical lesions of type II and III is displayed in

figures 12 and 13 and show the degraded response of the model

with only a partial recovery of lost territories. Furthermore,

figures 12A, 12B and 13A, 13B clearly show that most RFs have

been shifted and expanded spatially without any kind of

refinement except for a small number which have underwent a

shrinkage as it is pointed out by figures 12 F and 13F. This

Figure 8. Skin lesion type I (gray area). A Evolution of the receptive field of neuron (25,15) during retraining after a skin lesion of type I. B
Receptive fields of the whole model. C Response of the model (after retraining) to a set of 10610 regularly spaced stimuli. D This represents the
mean evolution of thalamo-cortical weights of neuron (25,15) during retraining (i.e. E(25,15). E & F Histogram of receptive field sizes (100 bins) before
(E) and after (F) skin lesion. The initial distribution is Gaussian-shaped centered around a mean value of 0:02246. However, the final distribution is a
Poison-like centered around a mean value of 0:2241 with a long tail indicating that there are a lot of neurons whose RFs have underwent an
expansion. At the same time an almost equivalent amount of neurons has moved toward smaller RF sizes underlying that a shrinkage of RFs has
taken place.
doi:10.1371/journal.pone.0040257.g008
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behavior can be explained quite simply in terms of topology. The

first type of cortical lesion is topologically equivalent to the intact

one while type II lesion introduces a separation of the cortical

patch into two distinct patches and type III introduces a hole in

the topology. In both cases, neurons from either sides of the lesion

cannot cooperate because their influence is mostly inhibitory (due

to their respective distance from each other). This means that the

active population resulting from the competition cannot exist on

any borders of the lesion. This brings severe constraints to the self-

organization process that can only be partially overcome without

relearning a new topology through the modifications of lateral

connections.

Figure 9. Skin lesion type III (gray area). A Evolution of the receptive field of neuron (25,15) during retraining after a skin lesion of type III. B
Receptive fields of the whole model. C Response of the model (after retraining) to a set of 10610 regularly spaced stimuli. D This represents the
mean evolution of thalamo-cortical weights of neuron (25,15) during retraining (i.e. E(25,15). E & F Histogram of receptive field sizes (100 bins) before
(E) and after (F) skin lesion. The initial distribution is Gaussian-shaped centered around a mean value of 0:02246. Although, the final distribution is a
Poison-like centered around a mean value of 0:2248 with a long tail indicating that there are a lot of neurons whose RFs have underwent an
expansion. At the same time an almost equivalent amount of neurons has moved toward smaller RF sizes underlying that a shrinkage of RFs has
taken place.
doi:10.1371/journal.pone.0040257.g009
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Discussion

We have introduced a computational model of primary

somatosensory cortex that is able to develop topographic maps,

maintain and reorganize them in the face of lesions. We used

neural fields as a mathematical and computational framework and

focused on area 3b innervated by hand mechanoreceptors. The

combination of such neural field with a simple Hebbian/anti-

Hebbian like learning rule advocates for an unsupervised,

distributed, robust and biologically plausible model of a (simplified)

somatosensory cortical model where thalamocortical connections

are the main sites of plasticity. The major finding of our model is

Figure 10. Skin lesion type II (gray area). A Evolution of the receptive field of neuron (25,15) during retraining after a skin lesion of type II.
Immediately following skin lesion (epoch 50), RF tends to expand. This phenomenon persists until the final epoch is reached where a shrinkage takes
place. B Receptive fields of the whole model. C Response of the model (after retraining) to a set of 10610 regularly spaced stimuli. D This represents
the mean evolution of thalamo-cortical weights of neuron (25,15) during retraining (i.e. E(25,15)). E & F Histogram of receptive field sizes (100 bins)
before (E) and after (F) skin lesion. The initial distribution is Gaussian-shaped centered around a mean value of 0:02246. However, the final distribution
is a Poisson-like centered around a mean value of 0:2241 with a long tail indicating that there are a lot of neurons whose RFs have underwent an
expansion. At the same time an almost equivalent amount of neurons has moved toward smaller RF sizes underlying that a shrinkage of RFs has also
taken place.
doi:10.1371/journal.pone.0040257.g010

A Neural Field Model of the Somatosensory Cortex

PLoS ONE | www.plosone.org 12 July 2012 | Volume 7 | Issue 7 | e40257



that a topographic map can emerge as a consequence of the

interaction between thalamus and cortical excitatory afferent

connections. These feed-forward connections are capable of

causing the reorganization of a topographic map even in the

presence of a cortical lesion or a sensory deprivation. Bruno in

[34] has shown that excitatory thalamocortical connections can

synchronize themselves in order to drive cortical neurons without

making use of any kind of cortical amplification mechanism. This

enhanced our hypothesis, which states that the main effort of the

emergence and reorganization of a topographic map can be

promoted by thalamocortical connections. This also holds for all

three investigated cases. First, the formation and emergence (one)

of a topographic map. Second, sensory deprivation (two -

congenital and contracted). And in the end, cortical lesions (four

Figure 11. Cortical lesion type I (red area). A Evolution of the receptive field of neuron (25,15) during retraining after a cortical lesion of type I.
Immediately following the lesion (epoch 50), RF tends to expand. This phenomenon persists until the final epoch is reached. B Receptive fields of the
whole model. C Response of the model (after retraining) to a set of 10610 regularly spaced stimuli. The activity of the model is now bound to the
unlesioned area. D This represents the mean evolution of thalamo-cortical weights of neuron (25,15) during retraining (i.e. E(25,15)). E & F Histogram
of receptive field sizes (100 bins) before (E) and after (F) skin lesion. The initial distribution is Gaussian-shaped centered around a mean value of
0:02246. However, the final distribution is a uniform-like centered around a mean value of 0:02245 (0:02235). This uniform-like distribution indicates
the existence of neurons whose RFs have underwent an expansion, but not a shrinkage.
doi:10.1371/journal.pone.0040257.g011
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- congenital, boundary contracted, centered contracted, localized

ablation).

Those results are quite consistent with the existing literature on

the computational modeling of the somatosensory cortex even

though we think we brought new insights on the inner

mechanisms. One the earliest model of the SI has been proposed

by Pearson et al. [41]. They designed a computational model of

the somatosensory cortex based on a dual population of neurons

Figure 12. Cortical Lesion type II (red area). A Evolution of the receptive field of neuron (15,25) during retraining after a cortical lesion of type II.
This particular neuron has not expanded its RF but it has replaced its preferred location as it is depicted at the final profile (epoch 10000). B Receptive
fields of the whole model. The cortical lesion is appeared at the preferred locations since the previously corresponding neurons are now affected by
the lesion. The RFs around the lesion have been increased in size comparing with the corresponding pre-lesion figure 6B. C Response of the model
(after retraining) to a set of 10610 regularly spaced stimuli.The activity of the model is now bound to the unlesioned area. D This represents the
mean evolution of thalamo-cortical weights of neuron (15,25) during retraining (i.e. E(15,25)). E & F Histogram of receptive field sizes (100 bins) before
(E) and after (F) skin lesion. The initial distribution is Gaussian-shaped centered around a mean value of 0:02246. However, the final distribution is a
Uniform-like centered around a mean value of 0:02233. This uniform-like distribution indicates the existence of neurons whose RFs have underwent
an expansion, but not a shrinkage as in cortical lesion type I case. In this case we illustrate results regarding neuron (15,25) because neuron (25,15)
lies in the lesion.
doi:10.1371/journal.pone.0040257.g012
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(excitatory/inhibitory) which receive topographic projections from

two receptor sheets corresponding to the glabrous and dorsal

surfaces of the hand. Following the repetitive tapping of the

sensory surface, the model is able to shape itself into several

segregated neuronal groups that are dedicated to a subpart of the

whole sensory space. Authors used both intrinsic and extrinsic

connections modifications although they underlined that they do

not know if this is really the case in vivo. Joublin et al. [59]

introduced a combination of neurophysiological recordings from

rats with computational simulations. The model is described using

a set of Wilson-Cowan equations and the architecture is made of

three layers (receptors grid, subcortical grid and cortex). Authors

tried to keep the model close to real data in order to be able to

compare their simulations with neurophysiological data. However,

the model relies on a pre-cortical level whose role is to

topographically order representations in order to simplify the

simulation. Furthermore, they didn’t treat lesion cases and focused

instead on the learning rule pointing out that different learning

rules underlying different forms of plasticity. Xing and Gerstein

[60–62] used a spiking neural network within a three layer model

(i.e. receptors, thalamus, cortex) paying attention to the lateral

connections. Authors showed that inhibitory connections are

crucial for limiting the number of activated cortical neurons, while

the balance between excitation and inhibition is crucial to the

stability of the network. This is quite consistent with our own

results since the competitive process occurring within the model

relies on a precise balance between inhibition and excitation. In

the cortical lesion cases, we’ve also shown that the model cannot

achieve full recovery without modifications of the lateral connec-

tions. This is again quite consistent with the important role of

lateral connections given by previous models even though those

models did not address specifically the case of cortical and

cutaneous lesions. We can conclude with them that lateral

connections play an important role and the refinement of RFs

following a lesion may be due to the modification of lateral

connections. However, we maintain that thalamocortical afferent

connections are the main sites of plasticity for both primary self-

organization and later reorganization.

We would like now to point out a few more interesting results.

Foeller and Feldman [21] as well as Florence et al. [63], proposed

that RFs are capable of refinement and shrinkage during a long-

term reorganization process of a topographic map in the presence

of a sensory deprivation. Our model, due to non-labile lateral

connections, is not able to achieve such precise refinement during

the reorganization of the topographic map. This leads us to claim

that lateral connections is a major moderator of RFs, especially

during the reorganization process of the cortical sheet. Neverthe-

less, we have been able to show the expansion of RFs, which

means that RFs are able, during the reorganization process, to

represent a larger skin area rather than they did before lesion. But

this is only one part of the whole picture as it is only one out of two

(or maybe three) reorganization phases. This second phase is

missing in our model. During that reorganization phase a

shrinkage of RFs takes place due to adaptation of lateral

connections, the sprouting of new intra-cortical connections and

the left-over unaffected thalamocortical connections. In addition

lateral connections must be an important and valuable mechanism

of the balance between excitatory and inhibitory neural popula-

tions, which, in turn, steers to the reorganization of robust

topographic maps. Nevertheless, our model indicates that even

without relearning lateral connections, cortical sheet is able to fully

or partially recover from a cortical lesion depending on its type.

Lesion of type I does not modify the topology of the field and allow

for a robust and full recovery while lesions of type II and III are

more problematic and leads to partial recovery only. From a

neurophysiological point of view such cortical lesions means that

the skin patch which provides afferent input to the dead neurons

loses its cortical representation. Hence, neurons that are unaffect-

ed by lesion receive input from the non-representative skin patch

and a reorganization of the SI topographic map takes place. The

consequence in our model is an expansion of the RF for the

unaffected neurons (see figure 13B). However, one would expect

unaffected neurons to cover almost the whole skin patch or at least

a larger part. Instead, it is obvious that there is a covering of the

skin patch but still there is a part of the skin which remains

uncovered. This means that there is input from some areas of the

skin but the responsible neurons are now dead. After the

reorganization process a new topographic map has formed and

hence the unaffected neurons have taken over the previously non-

representative territories of the skin patch. This phenomenon is

illustrated in figure 13C, where the model is able to respond to

different stimuli. Therefore, the tuning of RFs of unaffected

neurons is not optimal. We believe that this is closely related to the

lack of relearning of lateral connections. More precisely, the

cortical lesion disrupts the balance in the lateral connections and

we do not allow the model to fix it by relearning these connections.

This seems to be a critical process because lateral connections are

not able to convey proper competition anymore.

At this point, we can point out two major characteristics of a

cortical lesion (or ablation) that could be responsible for a proper

reorganization and recovery of a cortical sheet. First, is the

location of the lesion, Where the lesion is located? and second the

extent of the lesion, What is the amount of the dead neurons? Both,

location and extent are intertwined, in a fashion that the former

pervades the later and vice versa. Therefore, we can discriminate

two different cases. First, if the lesion is located around the border

of two or more cortical representations and provided the extent of

the lesion is not too large, then recovery is easily achievable. This

is because of the large amount of left over neurons and afferent

connections. However, if the extent of the lesion is large enough,

then the representations cannot recover completely and they may

even not recover at all. Second, if the lesion is located within a

single representation, recovery is only a matter of the extent of the

lesion itself. That is because, if a significant amount of neurons are

affected by the lesion, there is no enough neurons to deploy their

RFs and revive previously lost territory. Yet, in a localized lesion

case we noticed that in the vicinity of the lesioned area, there are

some neurons which do not respond so intensively as the others

and those neurons drive other neurons leading them to reorganize

themselves. As it is depicted in figure 4 those neurons have a

specific shape which is inherited by the neighboring neurons that

expand their RFs omnidirectionaly. Similar findings have been

pointed out by Sober in [12], where a disinhibitory halo around

cortical ablation has been found. Proximal neurons to this halo are

able to drive the reorganization of the neighborhood neurons via

their intact lateral connections. Proximal neurons have been

loosed their inhibitory connections due to ablation and therefore

they have omnidirectionally expanded RFs. Furthermore distant

neurons have narrower RFs. Likewise, the case of cortical lesion

type III of our model presents a similar behavior as it has been

illustrated by figures 6B and 13B considering the pre- and

postlesion state, respectively. RFs in the later figure are larger than

those in the former figure. In the later figure neurons around

lesion have larger RFs in size. This is in accordance with the

results of Sober and the so-called disinhibitory halo. Although, in

our model we keep the lateral connections fixed and therefore in

the case of a cortical lesion there is no way to recover them.

Hence, a disturbance of lateral connections triggers a disturbance
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of excitation/inhibition balance and thus neurons close to lesion

receive mostly excitatory connections rather than inhibitory,

which in turn causes the expansion of the RFs around lesion

and the shrinkage of the distant ones. To test further this

hypothesis, we can observe that lateral cortico-cortical connections

are a major component of the competitive mechanism that allows

to have a unique and compact active population. The shape of this

population is critical for learning since it enforces the topology

within the model. More precisely, we can predict that any

modification on the size of the active population would have a

Figure 13. Cortical lesion type III (red area). A Evolution of the receptive field of neuron (25,15) during retraining after a cortical lesion of type
III. This particular neuron has expanded its RF immediately after lesion and moreover it has has replaced his preferred location as it is depicted at the
final profile (epoch 10000). B Receptive fields of the whole model. The cortical lesion is appeared at the preferred locations since the previously
corresponding neurons are now affected by the lesion. The RFs around the lesion have been increased in size comparing with the corresponding pre-
lesion figure 6B. C Response of the model (after retraining) to a set of 10610 regularly spaced stimuli. D This represents the mean evolution of
thalamo-cortical weights of neuron (25,15) during retraining (i.e. E(25,15)). E & F Histogram of receptive field sizes (100 bins) before (E) and after (F)
skin lesion. The initial distribution is Gaussian-shaped centered around a mean value of 0:02246. However, the final distribution is a Uniform-like
centered around a mean value of 0:02227. This uniform-like distribution indicates the existence of neurons whose RFs have underwent an expansion,
but not a shrinkage as in cortical lesion type I case.
doi:10.1371/journal.pone.0040257.g013
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direct impact on the receptive fields. For example, if we were to

decrease the inhibition level at the cortical level while blocking

learning, the size of the active population would grow and this

would result in larger receptive fields. This would mean a loss in

sensory representation: the two point discrimination distance

would be increased. On the opposite, if we were to increase the

inhibition level, the size of the active population would become

smaller and lead to smaller receptive fields (and higher precision).

The model has been kept deliberately simple and it comes as no

surprise that a number of known mechanisms have not been taken

into account like for example homeostatic mechanisms and/or

metaplasticity which have been proposed by Turrigiano and

Nelson [64] as moderator factors of lateral connections. The

former conserves and regulates the average activity of brain

circuits by scaling neural synapses and the later prevents them

from saturation effects [65]. As future work we left the

examination of homeostatic mechanisms and metaplasticity as

we believe that this model is offered for further investigation

through its ability to adjust its activity depending on the intensity

of stimulus. This, in turn, can prevent networks from saturation

effects in the same way metaplasticity may affect neural circuits of

the brain. Another aspect we did not treat is the phenomenon of

spontaneous activity. It is rational to discuss about this because it

seems to play a key role in the development of a topographic map

within cortex. For instance, Katz and Shatz [66] and Khazipov

and Luhmann [35] have found a mechanism which could explain

the early formation of L4 in barrel cortex and V1 in rats,

respectively. In both cases the topographic map has been formed

almost completely before birth. Adding to that findings from

Khazipov et al. [36], we can conclude that a fetus in utero may take

advantage of spontaneous movements in order to establish an

early formed topographic map in L4 within a sensorimotor loop.

We also neglected top-down mechanisms such as attentional

modulatory signals. Knight et al. in [67] have proposed that the

prefrontal cortex acts as a modulator of balance of excitation and

inhibition of the brain. This provides a straight-forward attentional

mechanism since this regulation of balance can affect the receptive

fields of neurons. Furthermore, according to the results of Schaefer

[68], prefrontal cortex seems to provide to somatosensory cortical

areas a gating mechanism which is able to refine receptive fields

through inhibition/excitation regulation regarding to attention.

We neglected such mechanisms in this work because we believe

that they are out of the scope due to the lack of a closed loop (e.g.

sensorimotor loop). We thus left as future work the investigation of

the role of top-down mechanisms in topographic maps formation

and reorganization.

In conclusion, even though this model does not consider all

neurophysiological aspects which might play an important role in

the overall organization process, we believe that it can help to

investigate further the emergence of somatotopic maps during the

early months of life. The model is simple enough from a

mathematical/computational point of view to allow for further

refinement that could potentially give account on more experi-

mental data.
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