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Introduction

Complex applications on grids require collective communication
schemes:

one-to-all Broadcast, Multicast, Scatter
all-to-one Gather, Reduce
all-to-all Gossip, All-to-All

Numerous studies concentrate on a single communication scheme,
mainly about one single broadcast ⇒ find the best broadcast tree.

Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but a series of same communication

schemes (e.g. a series of broadcasts from the same source)
I maximize throughput of the steady-state operation
I use several broadcast trees



Pipelining Broadcasts

Minimize the time to broadcast a unit size message at steady state

=⇒ optimal pattern ; periodic schedule + init. + clean-up

=⇒ asymptotically optimal schedule for makespan minimization

n messages from P0 to all other Pi’s

Let Topt(n) denote the optimal time for broadcasting the n
messages, possibly usually n (distinct) broadcast trees.

Asymptotic optimality: lim
n→+∞

Talg(n)
Topt(n)

= 1



Throughput maximization vs
Single broadcast makespan minimization

For large size messages, communications need to be pipelined (either
using a single broadcast tree or several broadcast trees)
For large size messages throughput maximization

, provides better results (use of several broadcast trees, thus
better use of the platform capabilities)

, is more tractable (as we will see, polynomial algorithms can be
derived, at least for broadcasts)

/ large messages =⇒ long time =⇒ stability of the platform???

platform dynamism must be taken into account
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Modeling the platform:bidirectional one port model

G = (P,E, c)
Let P1, P2, . . . , Pn be the n processors

(Pj , Pk) ∈ E denotes a communication link
between Pi and Pj

c(Pj , Pk) denotes the time to transfer one unit-size
message from Pj to Pk

one-port for incoming communications

one-port for outgoing communications

at a given time step Pi receives a message from at
most one neighbor and sends a message to at most
one neighbor.
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Modeling the platform: unidirectional one port model

G = (P,E, c)
Let P1, P2, . . . , Pn be the n processors

(Pj , Pk) ∈ E denotes a communication link
between Pi and Pj

c(Pj , Pk) denotes the time to transfer one unit-size
message from Pj to Pk

one-port for both incoming and outgoing
communications

at a given time step Pi can either receive a
message from at most one neighbor or send a
message to at most one neighbor.
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Related Work (1): models for heterogeneous networks

Model by Cappello, Fraigniaud, Maus and Rosenberg:

su + σ + λ + rv time to send the message from u to v.

u is busy during su + σ time units (does not depend on v)

v is busy during rv + σ time units (does not depend on u)

heterogeneous processors but homogeneous fully connected
network

Results
1 Single Broadcast (+personal processing): NP-Complete, the

approximation ratio depends on rmax
rmin

.

2 Single Multicast: NP-Complete, unknown approximation ratio



Related Work (2): models for heterogeneous networks

Model by Bar-Noy, Guha, Naor and Schieber:

λu,v time to send the message from u to v.

u is busy during su time units (does not depend on v)

v is busy during rv time units (does not depend on u)

su, rv and λu,v are affine in the size of the message

Results
1 Single Broadcast: NP-Hard to provide a 3 approximation

2 Single Multicast: NP Hard to provide a log k approximation,
where k is the size of the set of targets



Related Work (3): models for heterogeneous networks

Model by Bo Hong and V. Prasanna:

λu,v to send the message from the front end of u to the front end
of v

su to transfer the message between u and its front-end

rv to transfer the message between the front end of v and v

su, rv and λu,v are linear in the size of the message

Results
1 no results for pipelined collective communications (complexity

results for previous model hold true for single broadcast)

2 some problems (see later) can be formulated as flow problems



Comparison of the different models

All models are more or less 1-port (su, rv, σ, cu,v)

Some models encompass some processor heterogeneity (su,rv).

Some models encompass some link heterogeneity (λu,v, cu,v).

Which one is the more realistic?

strongly depends on

network architecture

program implementation (synchronous sends...)
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Main theorem for solving pipelined problems

In general

1 a set of weighted allocation schemes: broadcast ↔ trees

2 a way to organize communications: matchings (unidirectional ↔
platform graph, bidirectional ↔ bipartite graph)

Theorem.

From a set of weighted trees (α1, T1) . . . (αT , TT ) and a set of
weighted matchings (x1, χ1) . . . (xX , χX) such that

∀(Vj , Vk) ∈ E, (
∑

(j,k)3Tt

αt)cj,k =
∑

(j,k)3χx

xx

and
∑

χx
xx = 1,

it is possible to build a periodic schedule achieving throughput
∑

t αt.
Time and size are polynomial in G, T and X.



Consequence

The solution of the following linear program

Maximize
∑

αt
∀(Vj , Vk) ∈ E,

(∑
(j,k)3Tt

αt

)
cj,k =

∑
(j,k)3χx

xx∑
χx

xx = 1
αt > 0, xx > 0

provides a periodic schedule of optimal throughput.

This LP can be solved in polynomial time

using Ellipsoid Algorithm

either under bidirectional or unidirectional models
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Main theorem for solving pipelined problems

Under bidirectional model
1 a set of weighted allocation schemes: broadcast ↔ trees

2 a way to organize communications: matchings ↔ bipartite graph

Theorem.

From a set of weighted trees (α1, T1) . . . (αT , TT ) such that

∀Vj ∈ E, (
∑

(j,k)3Tt

αt)cj,k 6 1,

∀Vj ∈ E, (
∑

(k,j)3Tt

αt)ck,j 6 1,

it is possible to build a periodic schedule achieving throughput
∑

t αt.
Time and size are polynomial in G, T and X.



Set of matchings

1 Set of communications to execute within period T

2 One-port equations → local constraints

3 Pairwise-disjoint communications to be scheduled simultaneously
⇒ extract a collection of matchings
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Set of matchings(2)

Solution

Peel off bipartite communication graph

Idea: Use Schrijver’s weighted version of König’s edge-coloring
algorithm

I extract a matching and substract maximum weight from
participating edges

I zero out at least one edge for each matching
I strongly polynomial

Given the set of weighted trees and the set of matchings ⇒ we
can build up the schedule



Optimal throughput: Linear Program (1)

Best throughput: minimal time to broadcast a unit size message that
can be arbitrarily split.
Step 1: Number of messages, no time, no congestion

xj,k
i denotes the fraction of the message

from P0 to Pi that uses edge (Pj , Pk)
The conditions are

∀i,
∑

x0,k
i = 1

∀i,
∑

xj,i
i = 1

∀j 6= 0, i,
∑

k xj,k
i =

∑
k xk,j

i

P0

P1

P3

P2

x0,1
1

x0,1
2

x0,1
3



Optimal throughput: Linear Program (2)

Step 2: number of messages ⇒ time and congestion
tj,k denotes the time to transfer all the messages
between Pj and Pk

tj,k 6
∑

xj,k
i cj,k ????

too pessimistic since xj,k
i1

and xk,j
i2

may be
the same message

not good for a lower bound

or

∀i, tj,k 6 xj,k
i cj,k ????

too optimistic since it supposes that all the
messages are sub-messages of the largest one

OK for a lower bound, may not be feasible

...

Pk

Pj

xj,k
1

xj,k
2

xj,k
n

cj,k



Optimal throughput: Linear Program (3)

Step 3: one port constraints
one-port model, during one time unit

at most one sending operation:
∑

(Pj ,Pk)∈E

tj,k 6 tout
j

at most one receiving operation:
∑

(Pk,Pj)∈E

tk,j 6 tinj

and at last,

∀j, tout
j 6 tbroadcast

∀j, tinj 6 tbroadcast



Optimal throughput: Linear Program (4)

Minimize tbroadcast ,
subject to

∀i,
∑

x0,k
i = 1

∀i,
∑

xj,i
i = 1

∀i, ∀j 6= 0, i,
∑

xj,k
i =

∑
xk,j

i

∀i, j, k tj,k 6 xj,k
i cj,k

∀j,
∑

(Pj ,Pk)∈E tj,k 6 tout
j

∀j,
∑

(Pk,Pj)∈E tk,j 6 tinj
∀j, toutj 6 tbroadcast

∀j, tinj 6 tbroadcast



Caveats

The linear program provides a lower bound for the broadcasting
time of a unit-size divisible message

It is not obvious that this lower bound is feasible since we
considered that all the messages using the same communication
link are sub-messages of the largest one.



Caveats: Multicast Example (1)

Consider the following platform,
where the multicast set consists in
the colored nodes:
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Caveats: Multicast Example (2)

Nevertheless, the obtained throughput is not feasible:

P0

P1 P2

P3

P4P5 P6
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b

b
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b



Set of trees

c(P0, Pi) minimum weight to remove to disconnect = 1

c(P0) = min c(P0, Pi) = 1

nj,k = max
i

{
xj,k

i

}
is the fraction of messages through (Pj , Pk).

Theorem (Weighted version of Edmond’s branching Theorem).

Given a directed weighted G = (V,E, n), P0 ∈ P the source we can
find P0− rooted trees T1, . . . , TT and weights α1, . . . , αT with∑

αiδ(Ti) 6 n with ∑
αi = c(P0) = 1,

in strongly polynomial time, and T 6 |E|+ |V |3.



Set of trees

Theorem (Weighted version of Edmond’s branching Theorem).

Given a directed weighted G = (V,E, n), P0 ∈ P the source we can
find P0− rooted trees T1, . . . , TT and weights α1, . . . , αT with∑

αiδ(Ti) 6 n with ∑
αi = c(P0) = 1,

in strongly polynomial time, and T 6 |E|+ |V |3.

This theorem provides:

the set of trees, their weights

and the number of trees is “low”: 6 |E|+ |V |3.
thus we can derive an asymptotically optimal schedule



Outline

1 Platform Modeling

2 Pipelining broadcasts: general framework

3 Efficient algorithm: bidirectional one-port model

4 Decentralized Solutions (Awerbuch Leighton Algorithm)

5 Network Coding

6 Conclusion



Steady state scheduling: good news and bad news

, Steady state scheduling: throughput maximization is much
easier that makespan minimization and still realistic

, One-port model: first step towards designing realistic
scheduling heuristics (other realistic models have been proposed in
this context)

, Steady-state circumvents complexity of scheduling problems
. . . while deriving efficient (often asympotically optimal)
scheduling algorithms

/ Memory constraints, latency, period size may be large...

/ Need to acquire a good knowledge of the platform graph
(ENV, Alnem, NWS...)

/ Taking into account changes in resource performances is still
difficult: build super-steps and recompute optimal solution at the
end of each super-step...
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Dynamic platforms

On large scale distributed systems:

resource performances may change over time (resource sharing,
node may appear and disappear)

impossible to maintain a coherent snapshot of the platform at a
given node and recompute optimal solution

using fully greedy dynamic scheduling algorithms is known to lead
to bad results

inject some static knowledge into dynamic schedulers

Taking dynamic performances into account

Need for decentralized and robust scheduling algorithms based on
static knowledge



What do robust and dynamic mean?

Need for metrics in order to analyze algorithms

Robust

If Throughput(t) denotes the optimal throughput for platform
at time t and Time(N) denotes the time to process N tasks
using proposed scheduling algorithm

The objective is

(N) /

∫ Time(N)

t=0
Throughput(t)dt −→N−→+∞ 1

Decentralized

at any time step, a node makes its decisions according to

its state (local memory)

the states of its immediate neighbors



Fluid relaxation (cont’d!)

Throughput maximization
I concentrate on steady state
I define activity variables
I then, rebuild allocations and schedule

Dynamic platforms:
I put messages in different queues
I define potential functions associated to those queues
I let messages move ”by themselves” from high to low potentials
I areas where messages are retrieved quickly will become low

potential areas
I areas where messages reach destinations slowly will become high

potential areas



Example: broadcast

For the sake of simplicity, we will assume that

that ρmin = minThroughput(t) is known

and we will prove that(
N

Time(N)

)
> ρmin.

We will consider a slightly different communication model (see
next slide)

In fact, with more care, we can prove

N >
Time(N)∑

i=0

∫ i+1

t=i
Throughput(t)dt
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System Model
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Broadcast and Multi-commodity flow

Credits

based on an algorithm for multi-commodity flows (Awerbuch Leighton)

if we denote (as previously) by xj,k
i the fraction of the message for

Pi that is shipped along Pj , Pk

the x∗,∗i define a flow between Ps and Pi

the overall problem is not a multi-commodity flow problem since
(as we have seen) flow do not sum up but rather max on the edges

in fact, this is slightly more complicated since flows sum up on
incoming and outgoing edges and max on regular edges...

Awerbuch-Leighton algorithm must be adapted to this condition.



Queues (1)

Queues at intermediate nodes

each node P0 stores non-shipped messages in NBH ×N queues,
where NBH denotes the neighbors of P0 and N the overall
number of nodes.
each node Pi has a queue for incoming messages for each
destination (from its neighbor)
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Queues (2)

Queues at source node

the source node is split into
n + 1 parts.

the upper source nodes (1 per
commodity) hold a regular
buffer and an overflow buffer

the overflow buffer holds tasks
that do not fit in the regular
buffer

the lower source node works
like any other node
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Framework

Queues and potential functions

Each queue (regular or overflow) is associated with an increasing
(with the size of the queue) potential function

The potential of an edge is the sum of queue potentials at the tail
and head of the edge.

Nodes try to minimize their potential, given resource constraints
(bandwidth).

Thus, tasks go from high potential to low potential.



Potential functions

Potential functions at source node

The potential associated to
the overflow buffer of size
Ovm is
σ(Ovm) = Ovmα exp(αQ).
The potential associated to
the regular buffer of size
Regm is
Φ(Regm) = exp(αRegm).
where α is a constant and Q is
the maximal size of the regular
buffer (both depending on the
network and the expected
throughput).
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Potential functions

Potential functions at regular nodes

The potential associated to a regular
buffer of size s is
Φ(s) = exp(αs).
The potential associated to the edge
(P0, Pi) is
Φ(P0, Pi) =

∑n
1 exp(αs0

k) + exp(αr0
k).
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Overall Algorithm

Time is divided in rounds, each round consists in 4 steps

Phase 1: At each upper source node, add (1− ε)ρmin messages
to the overflow queue. Then move as many messages as possible
from the overflow queue to the regular queue (given maximum
height constraint)

Phase 2: For each edge (Pi, Pj), push messages across the edge
so as to minimize the overall potential of the edge (Pi, Pj)
without violating capacity constraint.

Phase 3: At Pi, empty all the queues corresponding to messages
for Pi

Phase 4: At each node Pi, for each destination Pj , re-balance
the queues so that all queues corresponding to Pj at Pi have
same size.



Phase 2 detailed

How to minimize potential for (P0, Pi)

The potential associated to edge
(P0, Pi) is
Φ(P0, Pi) =

∑n
1 exp(αs0

k) + exp(αr0
k).

Satisfying capacity constraint:
Minimize∑

k

(
exp(α(s0

k − f)) + exp(α(r0
k + f))

)
so that

f > 0 (directed edge)
fc0,i 6 1 (capacity constraint)
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Potential analysis during one round

Phase 1: At each upper source node, add
(1− ε)ρmin messages to the overflow queue.
Then move as many messages as possible from
the overflow queue to the regular queue (given
maximum height constraint)

Phase 2: For each edge (Pi, Pj), push
messages across the edge so as to minimize the
overall potential of the edge (Pi, Pj) without
violating capacity constraint.

Phase 3: At Pi, empty all the queues
corresponding to messages for Pi

Phase 4: At each node Pi, for each destination
Pj , re-balance the queues so that all queues
corresponding to Pj at Pi have same size.

↗

↘

↘

↘

Potential ↗ during phase 1 can be evaluated easily
Potential ↘ during phases 2-4 strongly depend on local queue sizes...



Potential analysis during one round

Sketch of the proof

Analyzing directly potential decrease during phase 2 is difficult, but

we ”know” that there exists a solution with throughput ρmin

since potential minimization is optimal (given resource constraint)
during Phase 2

=⇒ the potential decrease during Phase 2 is at least the potential
decrease that would be induced by the solution with throughput
ρmin

the potential decrease that would be induced by the solution with
throughput ρmin can be determined easily

=⇒ we get a lower bound for potential decrease during Phase 2 (and
neglect potential decreases during Phases 3-4)



Sketch of the proof (end!)

Using above technique, we can prove that the overall potential
remains bounded

=⇒ the overall number of non-shipped messages in the network
remains bounded

Since we inject (1− ε)ρmin tasks at each round, this means that
almost all tasks have been processed

=⇒ the overall throughput is optimal
(almost, due to ε, that can be chosen arbitrarily small)



Conclusion on Awerbuch Leighton algorithm

, fully decentralized

, performance guarantee

, general framework

/ ρmin???

/ lost flow?

/ message granularity???
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Introduction

if /’s find answers, AL algorithm answers the size of the message
to be sent on each edge...

but not what to send!

Network coding may be the answer (first designed to circumvent
multicast complexity)

Consider the following platform,
where the multicast set consists in
the colored nodes:
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Network Coding

Nevertheless, the obtained throughput is not feasible:

P0

P1 P2

P3

P4P5 P6

a

a

a

a

ab

b

b

b

b

Unless we change the rule of the game and send xor(a, b) between
P3 and P4!

Nodes P5 and P6 will be responsible for decoding the message



Network Coding – Centralized Version

initial message is split into blocks B1, . . . , BN

blocks are seen as elements of the field F2m

each node receives linear combinations of blocks
∑

αiBi ∈ F2m .

each node builds linear combinations of received messages ∈ F2m ,
then transfer them.

if destination nodes receive N linear combinations, and resulting
matrix transfer is non-singular, then it can build the initial
message!



Network Coding – Centralized Version

Centralized Solution for ensuring non-singularity

Let βk
i,j ’s denote the coefficients of linear combinations on the

different edges

The product of the determinant of all transfer matrices is a
multi-variate polynomial in the βk

i,j ’s.

If the field where βk
i,j ’s are chosen is ”sufficiently large”, there

exist a choice of the βk
i,j ’s so that the product of determinants is

not zero.

In this case, if destination nodes receive N linear combinations,
and resulting matrix transfer is non-singular, then it can build the
initial message!



Network Coding – Decentralized Version

Decentralized Solution for ensuring non-singularity with high
probability

Let βk
i,j ’s denote the coefficients of linear combinations on the

different edges

The product of the determinant of all transfer matrices is a
multi-variate polynomial in the βk

i,j ’s.

If the field where βk
i,j ’s are chosen is ”sufficiently large”, for any

choice of the βk
i,j ’s, with high probability, the product of

determinants is not zero.

In this case, if destination nodes receive N linear combinations,
and resulting matrix transfer is non-singular, then it can build the
initial message!

Remark: βk
i,j coefficients must be sent together with the

messages...



Conclusion on Network Coding

, fully decentralized

, Together with Awerbuch Leighton algorithm
I Awerbuch Leighton algorithm tells how much should be sent
I Network Coding says what to send

all /’s mentioned before for Awerbuch Leighton algorithm

/ what if the matrix is singular?

/ the bound for ”sufficiently large” field are very bad?

/ how to take decoding cost into account?

/ messages may arrive in any order (and even not at all...) and
still need to be stored before decoding. What about memory
constraints?
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Conclusion

, Still plenty of work to do before practical implementation

Who wants to join?
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