The impact of heterogeneity on master-slave scheduling

Jean-François PINEAU, Yves ROBERT and Frédéric VIVIEN

Laboratoire de l'Informatique du Parallélisme École Normale Supérieure de Lyon, France

Jean-Francois.Pineau@ens-lyon.fr

http://graal.ens-lyon.fr/~jfpineau

ALPAGE June 13, 2006

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- Experiments
- Conclusion

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

The tasks

described by:

- their amount of computation
- their amount of communication
- their release date r_i

Notation for their date of end of execution: C_i

The processors

The tasks

described by:

- identical amount of computation
- identical amount of communication
- their release date r_i

Notation for their date of end of execution: C_i

The processors

The tasks

The processors

described by:

- their computation speed w_i
- the speed of their communication links c_i

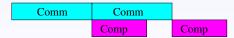
The tasks

The processors

described by:

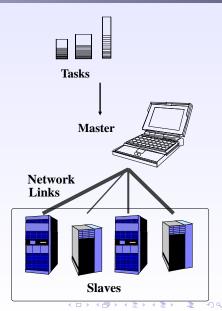
- their computation speed w_i
- ullet the speed of their communication links c_j

If $c_{j_0} = min c_j$ and $c_{j_0} > w_{j_0}$, then the optimal algorithm is trivial.



The master

- Receive the tasks
- Send them to the processors



Goal

Scheduling tasks onto processors

- according to the constraints,
 - of the processors
 - of the tasks
- and optimizing some objective functions
 - makespan: max C_i
 - maximum flow time: max $(C_i r_i)$
 - average flow time: $\sum (C_i r_i)$

On-line scheduling

Scheduler does not know neither the total number of tasks nor their released dates

Competitive ratio

An algorithm $\mathcal X$ has a lower bound ρ on its competitive ratio for some objective function if there exists one problem instance such that:

$$(\max C_i)_{\mathcal{X}} \geq \rho(\max C_i)_{Opt}$$

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

On homogeneous platforms

Round-Robin

is an optimal algorithm to minimize all three

- makespan,
- max flow time,
- sum flow time,

for an on-line problem with release dates.

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

On heterogeneous platforms

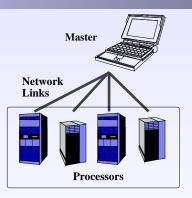
Optimal algorithm

does not exist, to minimize one objective function among

- makespan,
- max flow time,
- sum flow time,

This can be proved by an adversary method.

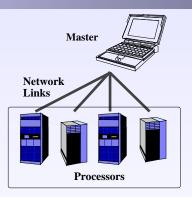
Example



Theorem

There is no scheduling algorithm for the problem Q, MS | online, r_i , w_j , $c_j = c$ | max C_i whose competitive ratio ρ is strictly lower than $\frac{5}{4}$.

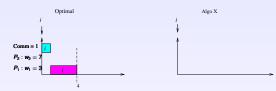
Example



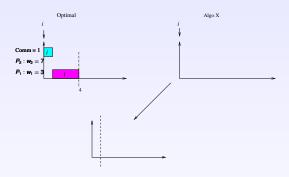
Theorem

There is no scheduling algorithm for the problem $Q, MS \mid$ online, r_i , w_j , $c_j = c \mid \max C_i$ whose competitive ratio ρ is strictly lower than $\frac{5}{4}$.

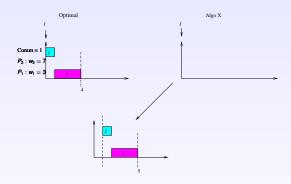
- ① Suppose the existence of an on-line algorithm $\mathcal X$ with a competitive ratio $\rho=\frac{5}{4}-\epsilon$, with $\epsilon>0$.
- 2 Let's study the behavior of \mathcal{X} opposed to our adversary on a platform composed of two processors, where $w_1 = 3$, $w_2 = 7$, and c = 1.



Adversary sends a single task i at time 0: best makespan = 4 At time $t_1 = c$, we check the decision of \mathcal{X} .

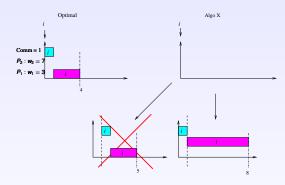


Adversary sends a single task i at time 0: best makespan = 4 At time $t_1 = c$, we check the decision of \mathcal{X} .



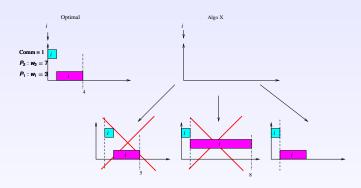
Adversary sends a single task i at time 0: best makespan = 4 At time $t_1 = c$, we check the decision of \mathcal{X} .

• competitive ratio : $\frac{t_1+c+w_1}{4}=\frac{5}{4}>\rho$



Adversary sends a single task i at time 0: best makespan = 4 At time $t_1 = c$, we check the decision of \mathcal{X} .

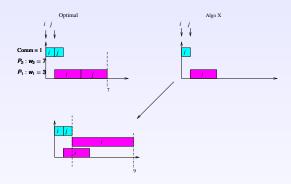
• competitive ratio : $\frac{c+w_2}{4} = 2 > \rho$



Adversary sends a single task i at time 0: best makespan = 4 At time $t_1 = c$, we check the decision of \mathcal{X} .

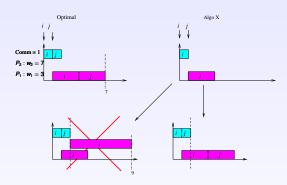
 X has no choice but to schedule task i on P₁ to enforce its competitive ratio.

At time $t_1 = c$, adversary sends task j. At time $t_2 = 2c$:

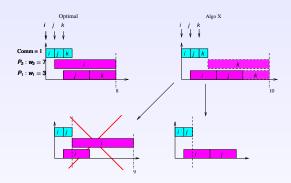


At time $t_1 = c$, adversary sends task j. At time $t_2 = 2c$:

• competitive ratio : $\frac{2c+w_2}{7} = \frac{9}{7} > \frac{5}{4} > \rho$.

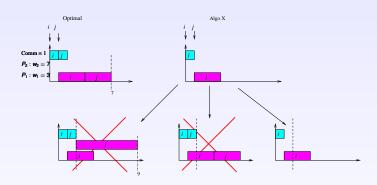


At time $t_1 = c$, adversary sends task j. At time $t_2 = 2c$:

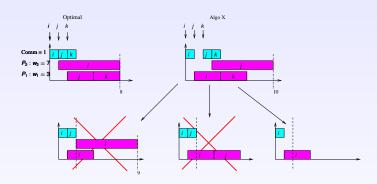


At time $t_1 = c$, adversary sends task j. At time $t_2 = 2c$:

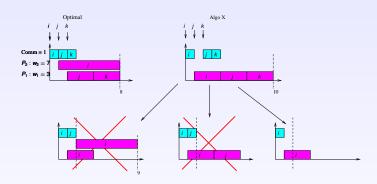
• competitive ratio : $\frac{10}{8} = \frac{5}{4} > \rho$.



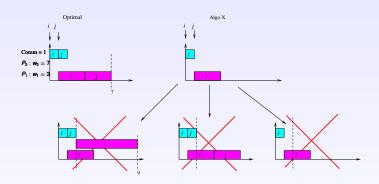
At time $t_1 = c$, adversary sends task j. At time $t_2 = 2c$:



At time $t_1 = c$, adversary sends task j. At time $t_2 = 2c$:



At time $t_1 = c$, adversary sends task j. At time $t_2 = 2c$:



At time $t_1 = c$, adversary sends task j. At time $t_2 = 2c$:

• competitive ratio : $\frac{10}{8} = \frac{5}{4} > \rho$.

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

General approach

How does it work?

Let's see how we find the worst platform for an on-line algorithm.

Example

- Fully heterogeneous platform
- Minimization of max flow

General approach

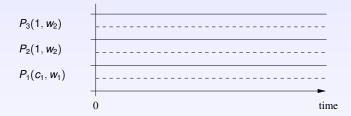
How does it work?

Let's see how we find the worst platform for an on-line algorithm.

Example

- Fully heterogeneous platform
- Minimization of max flow

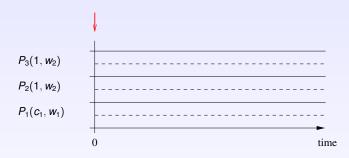
Generalisation



Idea:

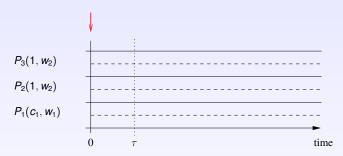
- one fast processor with slow communication ($c_1 > 1$);
- two slow identical processors with fast communication;
- if only one task, send it on fast processor $(c_1 + w_1 < 1 + w_2)$.
- if more than one task, do not send the first task on the fast processor

Generalisation

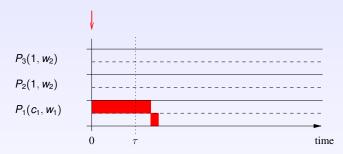


Idea:

- one fast processor with slow communication ($c_1 > 1$);
- two slow identical processors with fast communication;
- if only one task, send it on fast processor $(c_1 + w_1 < 1 + w_2)$.
- if more than one task, do not send the first task on the fast processor

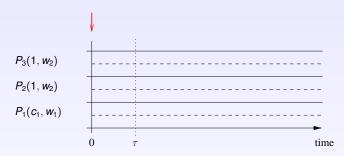


At time $\tau \geq 1$ we look at what happened:



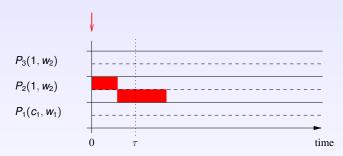
At time $\tau \geq 1$ we look at what happened:

• Optimal : max flow = $c_1 + w_1$.



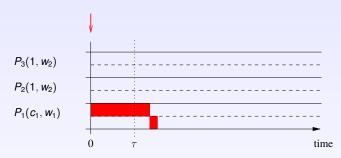
At time $\tau \geq 1$ we look at what happened:

- Optimal : max flow = $c_1 + w_1$.
- 2 max flow $\geq \tau + c_1 + w_1$, ratio $\geq \frac{\tau + c_1 + w_1}{c_1 + w_1}$.



At time $\tau \geq 1$ we look at what happened:

- Optimal : max flow = $c_1 + w_1$.
- 2 max flow $\geq \tau + c_1 + w_1$, ratio $\geq \frac{\tau + c_1 + w_1}{c_1 + w_1}$.
- **3** max flow $\geq 1 + w_2$, ratio $\geq \frac{1+w_2}{c_1+w_1}$.

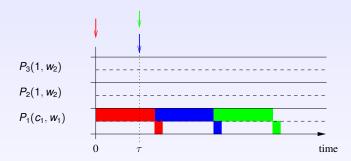


We choose τ , c_1 , w_1 and w_2 to have:

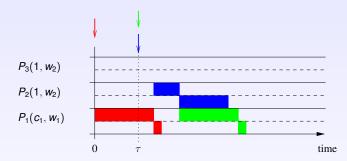
$$\min\left\{\frac{1+w_2}{c_1+w_1}, \frac{\tau+c_1+w_1}{c_1+w_1}\right\} \ge \rho$$

So algorithm has to execute the first task on P_1 .

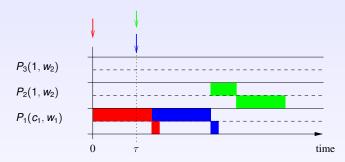
At time τ we send two new tasks. Let's see all possible schedulings.



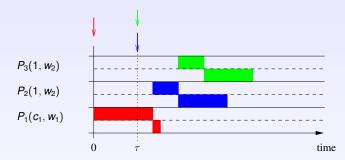
$$\max \left\{ \begin{array}{l} c_1 + w_1, \\ \max\{\max\{c_1, \tau\} + c_1 + w_1, c_1 + 2w_1\} - \tau, \\ \max\{\max\{c_1, \tau\} + c_1 + w_1 + \max\{c_1, w_1\}, c_1 + 3w_1\} - \tau \right\} \end{array} \right.$$



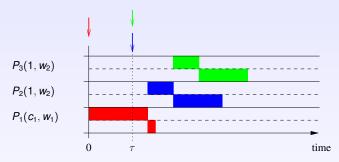
$$\max \left\{ \begin{array}{l} c_1 + w_1, \\ \left(\max\{c_1, \tau\} + c_2 + w_2 \right) - \tau, \\ \max\{\max\{c_1, \tau\} + c_2 + c_1 + w_1, c_1 + 2w_1\} - \tau \right\} \end{array} \right.$$



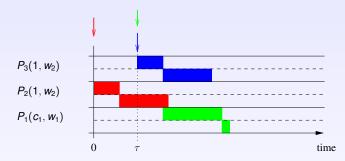
$$\max \left\{ \begin{array}{l} c_1 + w_1, \\ \max\{\max\{c_1, \tau\} + c_1 + w_1, c_1 + 2w_1\} - \tau, \\ (\max\{c_1, \tau\} + c_1 + c_2 + w_2) - \tau \right\} \end{array} \right.$$



$$\max \left\{ \begin{array}{l} c_1 + w_1, \\ (\max\{c_1, \tau\} + c_2 + w_2) - \tau, \\ (\max\{c_1, \tau\} + c_2 + c_2 + w_2) - \tau \} \end{array} \right.$$



The case where two tasks are allocated on P_2 is even worse than the previous case.



Better max flow:

$$\max \left\{ \begin{array}{l} \textit{c}_2 + \textit{w}_2, \\ (\max\{\textit{c}_2, \tau\} + \textit{c}_2 + \textit{w}_2) - \tau, \\ (\max\{\textit{c}_2, \tau\} + \textit{c}_2 + \textit{c}_1 + \textit{w}_1) - \tau \} \end{array} \right.$$

Lower bound of competitiveness:

```
 \begin{aligned} & \text{min} \left\{ \begin{array}{l} \frac{\tau + c_1 + w_1}{c_1 + w_1}, \\ \\ \frac{1 + w_2}{c_1 + w_1}, \\ \\ \min \left\{ \begin{array}{l} \max\{c_1 + w_1, \max\{\max\{c_1, \tau\} + c_1 + w_1, c_1 + 2w_1\} - \tau, \max\{\max\{c_1, \tau\} + c_1 + w_1 + \max\{c_1, w_1\}, c_1 + 3w_1\} - \tau\} \\ \max\{c_1 + w_1, \max\{c_1, \tau\} + c_2 + w_2) - \tau, \max\{\max\{c_1, \tau\} + c_2 + c_1 + w_1, c_1 + 2w_1\} - \tau\} \\ \max\{c_1 + w_1, \max\{\max\{c_1, \tau\} + c_2 + w_2) - \tau, \max\{c_1, \tau\} + c_2 + w_2) - \tau\} \\ \max\{c_1 + w_1, \max\{c_1, \tau\} + c_2 + w_2) - \tau, \max\{c_2 + w_2, \max\{c_2, \tau\} + c_2 + c_1 + w_1) - \tau\} \\ \max\{c_2 + w_2, \max\{c_2, \tau\} + c_2 + c_1 + w_1) - \tau\} \\ \end{array} \right. \end{aligned}
```

Lower bound of competitiveness:

```
 \min \left\{ \begin{array}{l} \frac{\tau + c_1 + w_1}{c_1 + w_1}, \\ \\ \frac{1 + w_2}{c_1 + w_1}, \\ \\ \min \left\{ \begin{array}{l} \max\{c_1 + w_1, \max\{\max\{c_1, \tau\} + c_1 + w_1, c_1 + 2w_1\} - \tau, \max\{\max\{c_1, \tau\} + c_1 + w_1 + \max\{c_1, w_1\}, c_1 + 3w_1\} - \tau\} \\ \max\{c_1 + w_1, \max\{c_1, \tau\} + c_2 + w_2) - \tau, \max\{\max\{c_1, \tau\} + c_2 + c_1 + w_1, c_1 + 2w_1\} - \tau\} \\ \max\{c_1 + w_1, \max\{\max\{c_1, \tau\} + c_2 + w_2) - \tau, \max\{c_1, \tau\} + c_2 + c_2 + w_2) - \tau\} \\ \max\{c_1 + w_1, \max\{c_1, \tau\} + c_2 + w_2) - \tau, \max\{c_2 + w_2, \max\{c_2, \tau\} + c_2 + c_1 + w_1\} - \tau\} \end{array} \right. \\ \left\{ \begin{array}{l} \max\{c_1 + w_1, \max\{c_1, \tau\} + c_2 + w_2) - \tau, \max\{c_2 + w_2, \max\{c_2, \tau\} + c_2 + c_1 + w_1\} - \tau\} \\ \max\{c_2 + w_2, \max\{c_2, \tau\} + c_2 + c_1 + w_1\} - \tau\} \end{array} \right.
```

Problem

Find τ , c_1 , w_1 and w_2 ($c_2 = 1$) which maximize this lower bound, such as : $c_1 + w_1 < 1 + w_2$.

- Numerical resolution
- ② Characterization of optimal : $\tau < c_1$, $w_1 = 0$, etc.
- New system:

$$\min \left\{ \begin{array}{l} \frac{\tau + c_1}{c_1}, \\ \frac{1 + w_2}{c_1}, \\ \min \left\{ \begin{array}{l} 3c_1 - \tau, \\ c_1 + 1 - \tau + w_2, \\ 2c_1 - \tau + 1 + w_2 \\ c_1 + 2 + w_2 - \tau \\ \end{array} \right. = \min \left\{ \begin{array}{l} \frac{\tau + c_1}{c_1}, \\ \frac{1 + w_2}{c_1}, \\ \frac{c_1 + 1 - \tau + w_2, \\ \frac{c_1 + 1 - \tau + w_2, \\ 1 + w_2}{1 + w_2}, \end{array} \right.$$

① Solution: $c_1 = 2(1 + \sqrt{2}), w_2 = \sqrt{2}c_1 - 1, \tau = 2, \rho = \sqrt{2}c_1$

- Numerical resolution
- ② Characterization of optimal : $\tau < c_1$, $w_1 = 0$, etc.
- New system:

$$\min \left\{ \begin{array}{l} \frac{\tau + c_1}{c_1}, \\ \frac{1 + w_2}{c_1}, \\ \min \left\{ \begin{array}{l} 3c_1 - \tau, \\ c_1 + 1 - \tau + w_2, \\ 2c_1 - \tau + 1 + w_2 \\ c_1 + 2 + w_2 - \tau \\ \end{array} \right. = \min \left\{ \begin{array}{l} \frac{\tau + c_1}{c_1}, \\ \frac{1 + w_2}{c_1}, \\ \frac{c_1 + 1 - \tau + w_2,}{1 + w_2}, \\ \frac{c_1 + 1 - \tau + w_2,}{1 + w_2}, \end{array} \right.$$

① Solution: $c_1 = 2(1 + \sqrt{2}), w_2 = \sqrt{2}c_1 - 1, \tau = 2, \rho = \sqrt{2}c_1$

- Numerical resolution
- 2 Characterization of optimal : $\tau < c_1$, $w_1 = 0$, etc.
- New system:

$$\min \left\{ \begin{array}{l} \frac{\tau+c_1}{c_1}, \\ \frac{1+w_2}{c_1}, \\ \\ \min \left\{ \begin{array}{l} 3c_1-\tau, \\ c_1+1-\tau+w_2, \\ 2c_1-\tau+1+w_2 \\ \hline c_1+2+w_2-\tau \\ \hline 1+w_2 \end{array} \right. = \min \left\{ \begin{array}{l} \frac{\tau+c_1}{c_1}, \\ \frac{1+w_2}{c_1}, \\ \frac{c_1+1-\tau+w_2, \\ 1+w_2 \end{array} \right.$$

- Numerical resolution
- 2 Characterization of optimal : $\tau < c_1$, $w_1 = 0$, etc.
- New system:

$$\min \left\{ \begin{array}{l} \frac{\tau+c_1}{c_1}, \\ \frac{1+w_2}{c_1}, \\ \\ \min \left\{ \begin{array}{l} 3c_1-\tau, \\ c_1+1-\tau+w_2, \\ 2c_1-\tau+1+w_2 \\ \hline c_1+2+w_2-\tau \\ \hline 1+w_2 \end{array} \right. = \min \left\{ \begin{array}{l} \frac{\tau+c_1}{c_1}, \\ \frac{1+w_2}{c_1}, \\ \frac{c_1+1-\tau+w_2, \\ 1+w_2} \\ \end{array} \right.$$
 Solution: $c_1=2(1+\sqrt{2}), \ w_2=\sqrt{2}c_1-1, \ \tau=2, \ \rho=\sqrt{2}.$

Solution: $c_1 = 2(1 + \sqrt{2}), w_2 = \sqrt{2}c_1 - 1, \tau = 2, \rho = \sqrt{2}$.

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

All results

	Objective function		
Platform type	Makespan	Max-flow	Sum-flow
Homogeneous	1	1	1
Communication homogeneous (with more than two slaves)	$\frac{5}{4}$ = 1.250	$\frac{5-\sqrt{7}}{2} \approx 1.177$	$\frac{2+4\sqrt{2}}{7} \approx 1.093$
Computation homogeneous (with more than two slaves)	$\frac{6}{5}$ = 1.200	$\frac{5}{4}$ = 1.250	$\frac{23}{22}$ ≈ 1.045
Heterogeneous (with more than three slaves)	$\frac{1+\sqrt{3}}{2} \approx 1.366$	$\sqrt{2} \approx 1.414$	$\frac{\sqrt{13}-1}{2} \approx 1.302$

Table: Lower bounds on the competitive ratio of on-line algorithms, depending on the platform type and on the objective function.

Outline

- Scheduling
- 2 On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

Optimal algorithm...

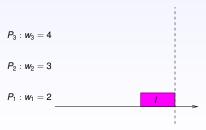
to minimize the *makespan* as soon as it knows the total number of tasks.

- Set a virtual deadline
- Schedule the tasks as late as possible, according to previous choices
- Memorize the scheduling of the tasks to the processors
- Send them as soon as possible

- Set a virtual deadline
- Schedule the tasks as late as possible, according to previous choices
- Memorize the scheduling of the tasks to the processors
- Send them as soon as possible

$$P_3: w_3 = 4$$
 $P_2: w_2 = 3$
 $P_1: w_1 = 2$

- Set a virtual deadline
- Schedule the tasks as late as possible, according to previous choices
- Memorize the scheduling of the tasks to the processors
- Send them as soon as possible



- Set a virtual deadline
- Schedule the tasks as late as possible, according to previous choices
- Memorize the scheduling of the tasks to the processors
- Send them as soon as possible

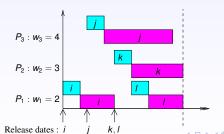


- Set a virtual deadline
- Schedule the tasks as late as possible, according to previous choices
- Memorize the scheduling of the tasks to the processors
- Send them as soon as possible

- Set a virtual deadline
- Schedule the tasks as late as possible, according to previous choices
- Memorize the scheduling of the tasks to the processors
- Send them as soon as possible

- Set a virtual deadline
- Schedule the tasks as late as possible, according to previous choices
- Memorize the scheduling of the tasks to the processors
- Send them as soon as possible

- Set a virtual deadline
- Schedule the tasks as late as possible, according to previous choices
- Memorize the scheduling of the tasks to the processors
- Send them as soon as possible



Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

lf

$$\sum_{i=1}^m c_i \leq w$$

lf

$$\sum_{i=1}^m c_i \leq w$$

$$P_4: c_4 = 5$$

$$P_3: c_3 = 4$$

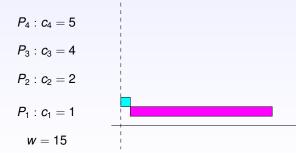
$$P_2: c_2 = 2$$

$$P_1: c_1 = 1$$

$$w = 15$$

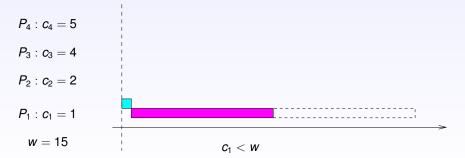
lf

$$\sum_{i=1}^m c_i \leq w$$



lf

$$\sum_{i=1}^m c_i \leq w$$



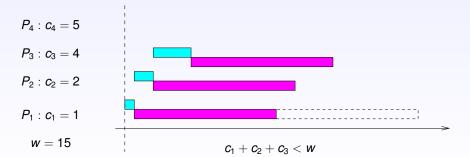
lf

$$\sum_{i=1}^m c_i \leq w$$



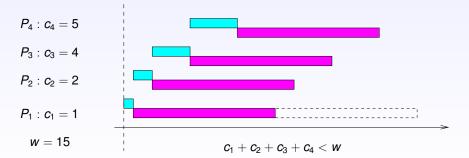
lf

$$\sum_{i=1}^m c_i \leq w$$



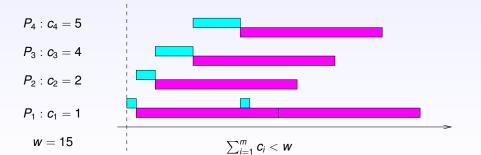
lf

$$\sum_{i=1}^m c_i \leq w$$



If S

$$\sum_{i=1}^m c_i \leq w$$



Platform reduction

Platform reduction

$$P_5: c_5 \geq 5$$

$$P_4: c_4=5$$

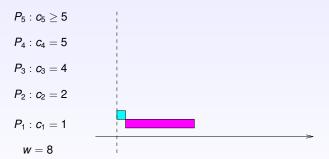
$$P_3: \textit{c}_3 = 4$$

$$P_2: c_2 = 2$$

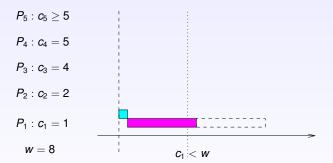
$$P_1: c_1 = 1$$

$$w = 8$$

Platform reduction



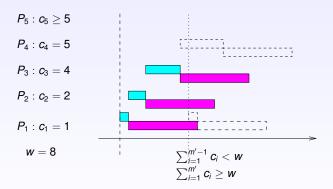
Platform reduction



Platform reduction

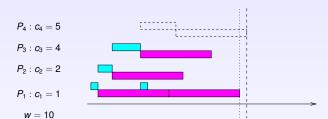
Platform reduction

Platform reduction

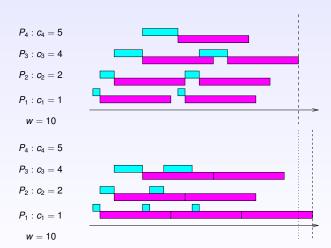


But the m' can be useful.

But the m' can be useful.



But the m' can be useful.



$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$

$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$

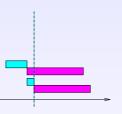
$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



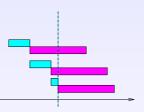
$$P_4: c_4 = 3$$

$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1 : c_1 = 1$$

$$w = 8$$

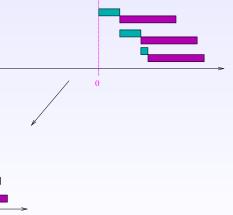
$$P_4: c_4 = 3$$

$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



$$P_4: c_4 = 3$$

$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

w = 8

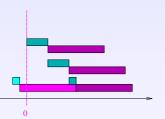
$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1 : c_1 = 1$$

$$w = 8$$



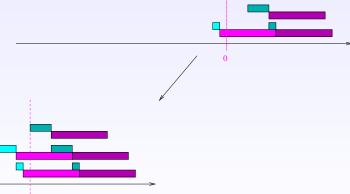
$$P_4: c_4 = 3$$

$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

w = 8



$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1 : c_1 = 1$$

w = 8

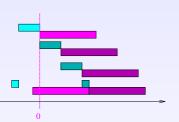
$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



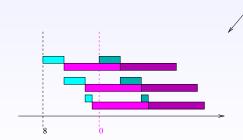
$$P_4: c_4 = 3$$

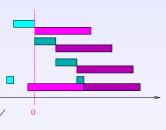
$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1 : c_1 = 1$$

w = 8



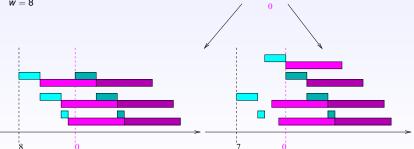


$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

w = 8



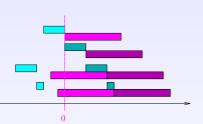
$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



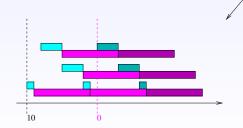
$$P_4: c_4 = 3$$

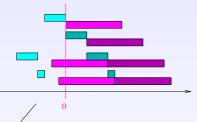
$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1 : c_1 = 1$$

$$w = 8$$

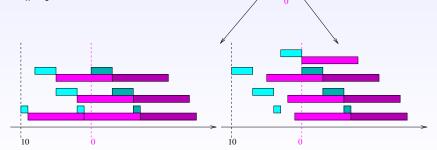




$$P_3: c_3 = 3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$



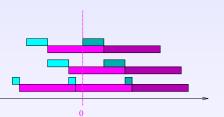
$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1 : c_1 = 1$$

$$w = 8$$



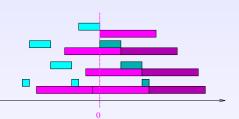
$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



$$P_4: c_4=3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



$$P_4: c_4=3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$

$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$

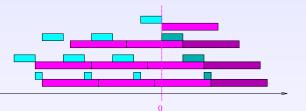
$$P_4: c_4 = 3$$

 $P_3: c_3 = 3$

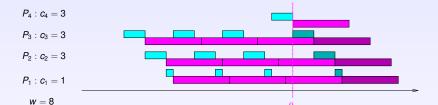
$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



Heuristic



Heuristic

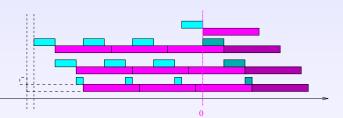
$$P_4: c_4 = 3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



Heuristic

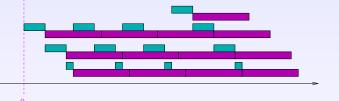
$$P_4: c_4=3$$

$$P_3: c_3=3$$

$$P_2: c_2 = 3$$

$$P_1: c_1 = 1$$

$$w = 8$$



Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- 4 Experiments
- Conclusion

The platform

Hardware

- 5 computers (1 master, 4 slaves)
- 1 Fast-Ethernet switch

Software

- MPI communications
- Modification of slave parameters

Tasks

Computation of matrices determinant

Algorithms

- Algorithm 1 is SRPT
- Algorithms 2 is List Scheduling
- Algorithms 3, 4, 5 are variant of Round Robin
- Algorithms 6, 7 are respectively built for minimizing makespan on communication homogeneous and computation homogeneous platforms.

Algorithms

Properties

- Algorithm 1 is a dynamic one
- Algorithms 4 and 7 only take into account communication heterogeneity
- Algorithms 5 and 6 only take into account computation heterogeneity
- Algorithms 2 and 3 take into account both communication and computation heterogeneity

Heterogeneous computation:

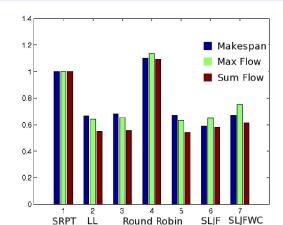


Figure: Normalized objective functions

Heterogeneous communication:

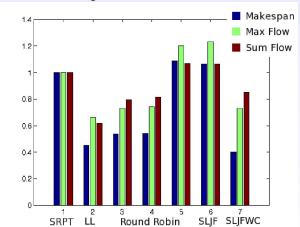


Figure: Normalized objective functions

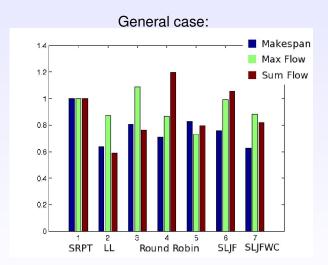


Figure: Normalized objective functions

Summary

- Dynamic algorithm is outperformed by static algorithms on stable platform, because of communication delay
- One heuristic meant to be used on a computation homogeneous platform is better than the other most of the time (95%), and close to the best found algorithm (2%) elsewhere

Point out the importance to take into account the relative speed of communication links when searching a close-to-optimal solution to our scheduling problem.

Summary

- Dynamic algorithm is outperformed by static algorithms on stable platform, because of communication delay
- One heuristic meant to be used on a computation homogeneous platform is better than the other most of the time (95%), and close to the best found algorithm (2%) elsewhere

Point out the importance to take into account the relative speed of communication links when searching a close-to-optimal solution to our scheduling problem.

Outline

- Scheduling
- On-line competitiveness
 - Homogeneous platform
 - Heterogeneous platform
 - General approach
 - Results
- Off-line problem
 - On communication homogeneous platforms
 - On computation homogeneous platforms
- Experiments
- Conclusion

Contributions and perspectives

Contributions

- Comprehensive set of lower bounds for the competitive ratio of any scheduling algorithm, for each source of heterogeneity and for each target objective function,
- Experiments on real small-size master-slave platform.

Perspectives

- See which bounds can be met, if any, and design the corresponding approximation algorithms,
- Theoretical study of off-line scheduling problems
- Detailed comparison of all previous heuristics on larger platforms,
- Widen the scope of the MPI experiments

Contributions and perspectives

Contributions

- Comprehensive set of lower bounds for the competitive ratio of any scheduling algorithm, for each source of heterogeneity and for each target objective function,
- Experiments on real small-size master-slave platform.

Perspectives

- See which bounds can be met, if any, and design the corresponding approximation algorithms,
- Theoretical study of off-line scheduling problems,
- Detailed comparison of all previous heuristics on larger platforms,
- Widen the scope of the MPI experiments.

Thank you

Any question?

