
Centralized versus distributed schedulers
for multiple bag-of-task applications

O. Beaumont, L. Carter, J. Ferrante,
A. Legrand, L. Marchal and Y. Robert

Laboratoire LaBRI, CNRS Bordeaux – INRIA Futurs, France

Dept. of Computer Science and Engineering,
University of California, San Diego, USA

Laboratoire ID-IMAG, CNRS-INRIA Grenoble, France

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon, France

réunion ALPAGE – 14 juin 2006

Motivation

Large-scale distributed platforms result from the collaboration
of many users:

Sharing resources among users should somehow be fair

Task regularity ; steady-state scheduling

Assessing centralized versus decentralized approaches

Loris Marchal Scheduling multiple bag-of-task applications 2/ 33

Motivation

Large-scale distributed platforms result from the collaboration
of many users:

Sharing resources among users should somehow be fair

Task regularity ; steady-state scheduling

Assessing centralized versus decentralized approaches

Loris Marchal Scheduling multiple bag-of-task applications 2/ 33

Motivation

Large-scale distributed platforms result from the collaboration
of many users:

Sharing resources among users should somehow be fair

Task regularity ; steady-state scheduling

Assessing centralized versus decentralized approaches

Loris Marchal Scheduling multiple bag-of-task applications 2/ 33

Introduction – Applications

Multiple applications:
I each consisting in a large number of same-size independent tasks
I all competing for CPU and network resources

A3A2A1

Different communication and computation demands for different
applications

Important parameter: communication size
computation size

Loris Marchal Scheduling multiple bag-of-task applications 3/ 33

Introduction – Applications

Multiple applications:
I each consisting in a large number of same-size independent tasks
I all competing for CPU and network resources

A3A2A1

Different communication and computation demands for different
applications

Important parameter: communication size
computation size

Loris Marchal Scheduling multiple bag-of-task applications 3/ 33

Introduction – Platform

Target platform: master-worker
star network tree network

��

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

��

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������
���������

���������
���������
���������
���������

�����
�����
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
 � � � �
 � � � �

!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!

"�"�"�"�"
"�"�"�"�"
"�"�"�"�"
"�"�"�"�"
"�"�"�"�"
"�"�"�"�"
"�"�"�"�"

#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#

$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$

%�%�%�%�%
%�%�%�%�%
&�&�&�&�&
&�&�&�&�&

'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'

(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(

)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)

��*�*�*
��*�*�*
��*�*�*
��*�*�*

+�+�+�+�+
+�+�+�+�+
,�,�,�,�,
,�,�,�,�,

-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-

.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.

/�/�/�/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/

0�0�0�0�0
0�0�0�0�0
0�0�0�0�0
0�0�0�0�0

1�1�1�1�1
1�1�1�1�1
2�2�2�2�2
2�2�2�2�2

3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3

4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4

5�5�5�5�5
5�5�5�5�5
5�5�5�5�5
5�5�5�5�5

6�6�6�6�6
6�6�6�6�6
6�6�6�6�6
6�6�6�6�6

7�7�7�7�7
7�7�7�7�7
8�8�8�8�8
8�8�8�8�8

9�9�9�9�9
9�9�9�9�9
9�9�9�9�9
9�9�9�9�9
9�9�9�9�9
9�9�9�9�9
9�9�9�9�9
9�9�9�9�9

:�:�:�:�:
:�:�:�:�:
:�:�:�:�:
:�:�:�:�:
:�:�:�:�:
:�:�:�:�:
:�:�:�:�:

;�;�;�;�;
;�;�;�;�;
;�;�;�;�;
;�;�;�;�;

<�<�<�<�<
<�<�<�<�<
<�<�<�<�<
<�<�<�<�<

=�=�=�=�=�=
=�=�=�=�=�=
>�>�>�>�>�>
>�>�>�>�>�>

?�?�?�?�?
?�?�?�?�?
?�?�?�?�?
?�?�?�?�?
?�?�?�?�?
?�?�?�?�?
?�?�?�?�?
?�?�?�?�?

@�@�@�@�@
@�@�@�@�@
@�@�@�@�@
@�@�@�@�@
@�@�@�@�@
@�@�@�@�@
@�@�@�@�@

A�A�A�A�A
A�A�A�A�A
A�A�A�A�A
A�A�A�A�A

B�B�B�B�B
B�B�B�B�B
B�B�B�B�B
B�B�B�B�B

C�C�C�C�C
C�C�C�C�C
D�D�D�D�D
D�D�D�D�D

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d

Master holds all tasks initially

Loris Marchal Scheduling multiple bag-of-task applications 4/ 33

Introduction – Goals

Maximize throughput

Maintain balanced execution between applications (fairness)

Scheduling decisions:
I at master: which applications to assign to which subtree
I at nodes (tree): which tasks to forward to which children

Objective function:
I priority weight: w(k) for application Ak

I throughput:
α(k) = number of tasks of type k computed per time-unit

I MAX-MIN fairness: Maximizemink

{
α(k)

w(k)

}
.

Loris Marchal Scheduling multiple bag-of-task applications 5/ 33

Introduction – Goals

Maximize throughput

Maintain balanced execution between applications (fairness)

Scheduling decisions:
I at master: which applications to assign to which subtree
I at nodes (tree): which tasks to forward to which children

Objective function:
I priority weight: w(k) for application Ak

I throughput:
α(k) = number of tasks of type k computed per time-unit

I MAX-MIN fairness: Maximizemink

{
α(k)

w(k)

}
.

Loris Marchal Scheduling multiple bag-of-task applications 5/ 33

Introduction – Goals

Maximize throughput

Maintain balanced execution between applications (fairness)

Scheduling decisions:
I at master: which applications to assign to which subtree
I at nodes (tree): which tasks to forward to which children

Objective function:
I priority weight: w(k) for application Ak

I throughput:
α(k) = number of tasks of type k computed per time-unit

I MAX-MIN fairness: Maximizemink

{
α(k)

w(k)

}
.

Loris Marchal Scheduling multiple bag-of-task applications 5/ 33

Introduction – Strategies

Centralized strategies
I central scheduler at master
I complete and reliable knowledge of the platform
I optimal schedule (Linear Programming formulation)
I reasonable for small platforms

Decentralized strategies
I more realistic for large scale platforms
I only local information available at each node (neighbors)
I assume limited memory at each node
I decentralized heuristics

Loris Marchal Scheduling multiple bag-of-task applications 6/ 33

Introduction – Strategies

Centralized strategies
I central scheduler at master
I complete and reliable knowledge of the platform
I optimal schedule (Linear Programming formulation)
I reasonable for small platforms

Decentralized strategies
I more realistic for large scale platforms
I only local information available at each node (neighbors)
I assume limited memory at each node
I decentralized heuristics

Loris Marchal Scheduling multiple bag-of-task applications 6/ 33

Outline

1 Platform and Application Model

2 Computing the Optimal Solution

3 Decentralized Heuristics

4 Simulation Results

5 Conclusion & Perspectives

Loris Marchal Scheduling multiple bag-of-task applications 7/ 33

Platform and Application Model

Outline

1 Platform and Application Model

2 Computing the Optimal Solution

3 Decentralized Heuristics

4 Simulation Results

5 Conclusion & Perspectives

Loris Marchal Scheduling multiple bag-of-task applications 8/ 33

Platform and Application Model

Platform Model

Pmaster

P1

P2

P4 P5
P6

c4

b4
b5

b6

P3 c3

c2

c1

c5
c6

b3b1

b2

Star or tree network

Workers P1, . . . , Pp, master Pmaster

Parent of Pu: Pp(u)

Bandwidth of link Pu → Pp(u): bu

Computing speed of Pu: cu

Full communication/computation overlap

One-port model for communications

Loris Marchal Scheduling multiple bag-of-task applications 9/ 33

Platform and Application Model

Platform Model

Pmaster

P1

P2

P4 P5
P6

c4

b4
b5

b6

P3 c3

c2

c1

c5
c6

b3b1

b2

Star or tree network

Workers P1, . . . , Pp, master Pmaster

Parent of Pu: Pp(u)

Bandwidth of link Pu → Pp(u): bu

Computing speed of Pu: cu

Full communication/computation overlap

One-port model for communications

Loris Marchal Scheduling multiple bag-of-task applications 9/ 33

Platform and Application Model

Platform Model

Pmaster

P1

P2

P4 P5
P6

c4

b4
b5

b6

P3 c3

c2

c1

c5
c6

b3b1

b2

Star or tree network

Workers P1, . . . , Pp, master Pmaster

Parent of Pu: Pp(u)

Bandwidth of link Pu → Pp(u): bu

Computing speed of Pu: cu

Full communication/computation overlap

One-port model for communications

Loris Marchal Scheduling multiple bag-of-task applications 9/ 33

Platform and Application Model

Platform Model

Pmaster

P1

P2

P4 P5
P6

c4

b4
b5

b6

P3 c3

c2

c1

c5
c6

b3b1

b2

Star or tree network

Workers P1, . . . , Pp, master Pmaster

Parent of Pu: Pp(u)

Bandwidth of link Pu → Pp(u): bu

Computing speed of Pu: cu

Full communication/computation overlap

One-port model for communications

Loris Marchal Scheduling multiple bag-of-task applications 9/ 33

Platform and Application Model

Application Model

K applications A1, . . . , Ak

Priority weights w(k): w(1) = 3 and w(2) = 1 ⇐⇒ process 3
tasks of type 1 per task of type 2
For each task of Ak:

I processing cost c(k) (MFlops)
I communication cost b(k) (MBytes)

Communication for input data only (no result message)

communication-to-computation ratio (CCR): b(k)

c(k)

Loris Marchal Scheduling multiple bag-of-task applications 10/ 33

Platform and Application Model

Application Model

K applications A1, . . . , Ak

Priority weights w(k): w(1) = 3 and w(2) = 1 ⇐⇒ process 3
tasks of type 1 per task of type 2
For each task of Ak:

I processing cost c(k) (MFlops)
I communication cost b(k) (MBytes)

Communication for input data only (no result message)

communication-to-computation ratio (CCR): b(k)

c(k)

Loris Marchal Scheduling multiple bag-of-task applications 10/ 33

Platform and Application Model

Application Model

K applications A1, . . . , Ak

Priority weights w(k): w(1) = 3 and w(2) = 1 ⇐⇒ process 3
tasks of type 1 per task of type 2
For each task of Ak:

I processing cost c(k) (MFlops)
I communication cost b(k) (MBytes)

Communication for input data only (no result message)

communication-to-computation ratio (CCR): b(k)

c(k)

Loris Marchal Scheduling multiple bag-of-task applications 10/ 33

Platform and Application Model

Application Model

K applications A1, . . . , Ak

Priority weights w(k): w(1) = 3 and w(2) = 1 ⇐⇒ process 3
tasks of type 1 per task of type 2
For each task of Ak:

I processing cost c(k) (MFlops)
I communication cost b(k) (MBytes)

Communication for input data only (no result message)

communication-to-computation ratio (CCR): b(k)

c(k)

Loris Marchal Scheduling multiple bag-of-task applications 10/ 33

Platform and Application Model

Application Model

K applications A1, . . . , Ak

Priority weights w(k): w(1) = 3 and w(2) = 1 ⇐⇒ process 3
tasks of type 1 per task of type 2
For each task of Ak:

I processing cost c(k) (MFlops)
I communication cost b(k) (MBytes)

Communication for input data only (no result message)

communication-to-computation ratio (CCR): b(k)

c(k)

Loris Marchal Scheduling multiple bag-of-task applications 10/ 33

Computing the Optimal Solution

Outline

1 Platform and Application Model

2 Computing the Optimal Solution

3 Decentralized Heuristics

4 Simulation Results

5 Conclusion & Perspectives

Loris Marchal Scheduling multiple bag-of-task applications 11/ 33

Computing the Optimal Solution

Linear Program for a Star Network

α
(k)
u = rational number of tasks of Ak executed by Pu every

time-unit

α
(k)
u = 0 for all Ak ⇐⇒ Pu does not participate

Constraint for computations by Pu:∑
k α

(k)
u · c(k) 6 cu

Number of bytes sent to worker Pu:
∑K

k=1 α
(k)
u · b(k)

Constraint for communications from the master:

∑p
u=1

K∑
k=1

α(k)
u · b(k)

bu
6 1

Throughput for application Ak: α(k) =
∑p

u=1 α
(k)
u

Objective:

MAXIMIZE mink
α(k)

w(k)

Loris Marchal Scheduling multiple bag-of-task applications 12/ 33

Computing the Optimal Solution

Linear Program for a Star Network

α
(k)
u = rational number of tasks of Ak executed by Pu every

time-unit

α
(k)
u = 0 for all Ak ⇐⇒ Pu does not participate

Constraint for computations by Pu:∑
k α

(k)
u · c(k) 6 cu

Number of bytes sent to worker Pu:
∑K

k=1 α
(k)
u · b(k)

Constraint for communications from the master:

∑p
u=1

K∑
k=1

α(k)
u · b(k)

bu
6 1

Throughput for application Ak: α(k) =
∑p

u=1 α
(k)
u

Objective:

MAXIMIZE mink
α(k)

w(k)

Loris Marchal Scheduling multiple bag-of-task applications 12/ 33

Computing the Optimal Solution

Linear Program for a Star Network

α
(k)
u = rational number of tasks of Ak executed by Pu every

time-unit

α
(k)
u = 0 for all Ak ⇐⇒ Pu does not participate

Constraint for computations by Pu:∑
k α

(k)
u · c(k) 6 cu

Number of bytes sent to worker Pu:
∑K

k=1 α
(k)
u · b(k)

Constraint for communications from the master:

∑p
u=1

K∑
k=1

α(k)
u · b(k)

bu
6 1

Throughput for application Ak: α(k) =
∑p

u=1 α
(k)
u

Objective:

MAXIMIZE mink
α(k)

w(k)

Loris Marchal Scheduling multiple bag-of-task applications 12/ 33

Computing the Optimal Solution

Linear Program for a Star Network

α
(k)
u = rational number of tasks of Ak executed by Pu every

time-unit

α
(k)
u = 0 for all Ak ⇐⇒ Pu does not participate

Constraint for computations by Pu:∑
k α

(k)
u · c(k) 6 cu

Number of bytes sent to worker Pu:
∑K

k=1 α
(k)
u · b(k)

Constraint for communications from the master:

∑p
u=1

K∑
k=1

α(k)
u · b(k)

bu
6 1

Throughput for application Ak: α(k) =
∑p

u=1 α
(k)
u

Objective:

MAXIMIZE mink
α(k)

w(k)

Loris Marchal Scheduling multiple bag-of-task applications 12/ 33

Computing the Optimal Solution

Linear Program for a Star Network

α
(k)
u = rational number of tasks of Ak executed by Pu every

time-unit

α
(k)
u = 0 for all Ak ⇐⇒ Pu does not participate

Constraint for computations by Pu:∑
k α

(k)
u · c(k) 6 cu

Number of bytes sent to worker Pu:
∑K

k=1 α
(k)
u · b(k)

Constraint for communications from the master:

∑p
u=1

K∑
k=1

α(k)
u · b(k)

bu
6 1

Throughput for application Ak: α(k) =
∑p

u=1 α
(k)
u

Objective:

MAXIMIZE mink
α(k)

w(k)

Loris Marchal Scheduling multiple bag-of-task applications 12/ 33

Computing the Optimal Solution

Linear Program for a Star Network

α
(k)
u = rational number of tasks of Ak executed by Pu every

time-unit

α
(k)
u = 0 for all Ak ⇐⇒ Pu does not participate

Constraint for computations by Pu:∑
k α

(k)
u · c(k) 6 cu

Number of bytes sent to worker Pu:
∑K

k=1 α
(k)
u · b(k)

Constraint for communications from the master:

∑p
u=1

K∑
k=1

α(k)
u · b(k)

bu
6 1

Throughput for application Ak: α(k) =
∑p

u=1 α
(k)
u

Objective:

MAXIMIZE mink
α(k)

w(k)

Loris Marchal Scheduling multiple bag-of-task applications 12/ 33

Computing the Optimal Solution

Linear Program for a Star Network

α
(k)
u = rational number of tasks of Ak executed by Pu every

time-unit

α
(k)
u = 0 for all Ak ⇐⇒ Pu does not participate

Constraint for computations by Pu:∑
k α

(k)
u · c(k) 6 cu

Number of bytes sent to worker Pu:
∑K

k=1 α
(k)
u · b(k)

Constraint for communications from the master:

∑p
u=1

K∑
k=1

α(k)
u · b(k)

bu
6 1

Throughput for application Ak: α(k) =
∑p

u=1 α
(k)
u

Objective:

MAXIMIZE mink
α(k)

w(k)

Loris Marchal Scheduling multiple bag-of-task applications 12/ 33

Computing the Optimal Solution

Reconstructing an Optimal Schedule

Solution of linear program: α
(k)
u = pu,k

qu,k
, throughput ρ

Set period length: Tp = lcm{qu,k}

During each period, send n
(k)
u = α

(k)
u · Tperiod to each worker Pu

⇒ periodic schedule with throughput ρ

Initialization and clean-up phases

Asymptotically optimal schedule (computes optimal number of
tasks in time T , up to a constant independent of T)

Loris Marchal Scheduling multiple bag-of-task applications 13/ 33

Computing the Optimal Solution

Reconstructing an Optimal Schedule

Solution of linear program: α
(k)
u = pu,k

qu,k
, throughput ρ

Set period length: Tp = lcm{qu,k}

During each period, send n
(k)
u = α

(k)
u · Tperiod to each worker Pu

⇒ periodic schedule with throughput ρ

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

0 40 80 120 160

Initialization and clean-up phases

Asymptotically optimal schedule (computes optimal number of
tasks in time T , up to a constant independent of T)

Loris Marchal Scheduling multiple bag-of-task applications 13/ 33

Computing the Optimal Solution

Reconstructing an Optimal Schedule

Solution of linear program: α
(k)
u = pu,k

qu,k
, throughput ρ

Set period length: Tp = lcm{qu,k}

During each period, send n
(k)
u = α

(k)
u · Tperiod to each worker Pu

⇒ periodic schedule with throughput ρ

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

0 40 80 120 160

Initialization and clean-up phases

Asymptotically optimal schedule (computes optimal number of
tasks in time T , up to a constant independent of T)

Loris Marchal Scheduling multiple bag-of-task applications 13/ 33

Computing the Optimal Solution

Structure of the Optimal Solution

Theorem

Sort the link by bandwidth so that b1 > b2 . . . > bp.

Sort the applications by CCR so that b(1)

c(1)
> b(2)

c(2)
. . . > b(K)

c(K) .

Then there exist indices a0 6 a1 . . . 6 aK , a0 = 1, ak−1 6 ak for
1 6 k 6 K, aK 6 p, such that only processors Pu, u ∈ [ak−1, ak],
execute tasks of type k in the optimal solution.

increasing bandwidth

increasing CCR

Pmaster

A2 A3A1

Loris Marchal Scheduling multiple bag-of-task applications 14/ 33

Computing the Optimal Solution

Adaptation to Tree Networks

Linear Program can be extended

Similarly reconstruction of periodic schedule

No proof of a particular structure

Problems with this approach:

Linear programming

Centralized, needs all global information at master

Schedule period possibly huge
; difficult to adapt to load variation

Large memory requirement, huge flow time

Loris Marchal Scheduling multiple bag-of-task applications 15/ 33

Computing the Optimal Solution

Adaptation to Tree Networks

Linear Program can be extended

Similarly reconstruction of periodic schedule

No proof of a particular structure

Problems with this approach:

Linear programming

Centralized, needs all global information at master

Schedule period possibly huge
; difficult to adapt to load variation

Large memory requirement, huge flow time

Loris Marchal Scheduling multiple bag-of-task applications 15/ 33

Decentralized Heuristics

Outline

1 Platform and Application Model

2 Computing the Optimal Solution

3 Decentralized Heuristics

4 Simulation Results

5 Conclusion & Perspectives

Loris Marchal Scheduling multiple bag-of-task applications 16/ 33

Decentralized Heuristics

Decentralized Heuristics

General scheme for a decentralized heuristic:
I Finite buffer (makes the problem NP hard)
I Demand-driven algorithms
I Local scheduler:

Loop
If there will be room in your buffer, request work from parent.
Select which child to assign work to.
Select the type of application that will be assigned.
Get incoming requests from your local worker and children, if any.
Move incoming tasks from your parent, if any, into your buffer.
If you have a task and a request that match your choice Then

Send the task to the chosen thread (when the send port is free)
Else

Wait for a request or a task

I Use only local information

Loris Marchal Scheduling multiple bag-of-task applications 17/ 33

Decentralized Heuristics

Heuristics – LP

Centralized LP based (LP)
I Solve linear program with global information
I Give each node the α

(k)
u for its children and himself

I Use a 1D load balancing mechanism with these ratios
→ close to optimal throughput?

I Hybrid heuristic: centralized computation of rates (α
(k)
u) but

distributed control of the scheduling

First Come First Served (FCFS)
I Each scheduler enforces a FCFS policy
I Master ensures fairness using 1D load balancing mechanism

Loris Marchal Scheduling multiple bag-of-task applications 18/ 33

Decentralized Heuristics

Heuristics – LP

Centralized LP based (LP)
I Solve linear program with global information
I Give each node the α

(k)
u for its children and himself

I Use a 1D load balancing mechanism with these ratios
→ close to optimal throughput?

I Hybrid heuristic: centralized computation of rates (α
(k)
u) but

distributed control of the scheduling

First Come First Served (FCFS)
I Each scheduler enforces a FCFS policy
I Master ensures fairness using 1D load balancing mechanism

Loris Marchal Scheduling multiple bag-of-task applications 18/ 33

Decentralized Heuristics

Heuristics – One application = bandwidth-centric strategy

Optimal strategy for a single application:
send tasks to faster-communicating children first

participating processors

Pmaster

Demand-driven based on local information:
bandwidth and CPU speed of children

Extension to trees by bottom-up node reduction

Loris Marchal Scheduling multiple bag-of-task applications 19/ 33

Decentralized Heuristics

Heuristics – CGBC

Coarse-Grain Bandwidth-Centric (CGBC)
I Bandwidth-centric = optimal solution for a single application

(send tasks to children communicating faster first)
I Assemble different types of tasks into one macro-task:

w(1) = 3 w(2) = 2 w(3) = 1
A1 A2 A3

I Not expected to reach optimal throughput:
slow links are used to transfer tasks with high CCR

Loris Marchal Scheduling multiple bag-of-task applications 20/ 33

Decentralized Heuristics

Heuristics – PBC

Parallel Bandwidth-Centric (PBC)
I Superpose bandwidth-centric strategy for each application
I On each worker, K independent schedulers
I Fairness enforced by the master, distributing the tasks
I Independent schedulers → concurrent transfers
I Limited capacity on outgoing port

; gives an (unfair) advantage to PBC (allows interruptible
communications)

Loris Marchal Scheduling multiple bag-of-task applications 21/ 33

Decentralized Heuristics

Heuristics – DATA-CENTRIC

Data-centric scheduling (DATA-CENTRIC)
I Decentralized heuristic
I Try to convergence to the solution of LP
I Intuition based on the structure of optimal solution for star

networks
I Start by scheduling only tasks with higher CCR, then periodically:

F substitute tasks of type A (high CCR) for tasks of type B (lower
CCR)

F if unused bandwidth appears, send more tasks with high CCR
F if only tasks with high CCR are sent, lower this quantity to free

bandwidth, in order to send other types of tasks

I Needs information on neighbors
I Some operations are decided on the master, then propagated along

the tree

Loris Marchal Scheduling multiple bag-of-task applications 22/ 33

Simulation Results

Outline

1 Platform and Application Model

2 Computing the Optimal Solution

3 Decentralized Heuristics

4 Simulation Results

5 Conclusion & Perspectives

Loris Marchal Scheduling multiple bag-of-task applications 23/ 33

Simulation Results

Methodology

How to measure fair-throughput ?
I Concentrate on phase where all applications simultaneously run
→ T = first time s.t. all tasks of some application are terminated

I Ignore initialization and termination phases
I Set time-interval: [0.1× T ; 0.9× T]
I Compute achieved throughput for each application on this interval

Platform generation
I 150 random platforms generated, preferring wide trees
I Links and processors characteristics based on measured values
I Buffer of size 10 tasks (of any type)

Application generation
I CCR chosen between 0.001 (matrix multiplication) and 4.6 (matrix

addition)

Heuristic implementation
I Distributed implementation using SimGrid,
I Link and processor capacities measured within SimGrid

Loris Marchal Scheduling multiple bag-of-task applications 24/ 33

Simulation Results

Methodology

How to measure fair-throughput ?
I Concentrate on phase where all applications simultaneously run
→ T = first time s.t. all tasks of some application are terminated

I Ignore initialization and termination phases
I Set time-interval: [0.1× T ; 0.9× T]
I Compute achieved throughput for each application on this interval

Platform generation
I 150 random platforms generated, preferring wide trees
I Links and processors characteristics based on measured values
I Buffer of size 10 tasks (of any type)

Application generation
I CCR chosen between 0.001 (matrix multiplication) and 4.6 (matrix

addition)

Heuristic implementation
I Distributed implementation using SimGrid,
I Link and processor capacities measured within SimGrid

Loris Marchal Scheduling multiple bag-of-task applications 24/ 33

Simulation Results

Methodology

How to measure fair-throughput ?
I Concentrate on phase where all applications simultaneously run
→ T = first time s.t. all tasks of some application are terminated

I Ignore initialization and termination phases
I Set time-interval: [0.1× T ; 0.9× T]
I Compute achieved throughput for each application on this interval

Platform generation
I 150 random platforms generated, preferring wide trees
I Links and processors characteristics based on measured values
I Buffer of size 10 tasks (of any type)

Application generation
I CCR chosen between 0.001 (matrix multiplication) and 4.6 (matrix

addition)

Heuristic implementation
I Distributed implementation using SimGrid,
I Link and processor capacities measured within SimGrid

Loris Marchal Scheduling multiple bag-of-task applications 24/ 33

Simulation Results

Methodology

How to measure fair-throughput ?
I Concentrate on phase where all applications simultaneously run
→ T = first time s.t. all tasks of some application are terminated

I Ignore initialization and termination phases
I Set time-interval: [0.1× T ; 0.9× T]
I Compute achieved throughput for each application on this interval

Platform generation
I 150 random platforms generated, preferring wide trees
I Links and processors characteristics based on measured values
I Buffer of size 10 tasks (of any type)

Application generation
I CCR chosen between 0.001 (matrix multiplication) and 4.6 (matrix

addition)

Heuristic implementation
I Distributed implementation using SimGrid,
I Link and processor capacities measured within SimGrid

Loris Marchal Scheduling multiple bag-of-task applications 24/ 33

Simulation Results

Theoretical v/ Experimental Throughput

LP, CGBC: possible to compute expected (theoretical) throughput

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Deviation from theoretical throughput

average deviation = 9.4%

Increase buffer size from 10 to 200 → average deviation = 0.3%

In the following, LP = basis for comparison

Compute log performance of H
performance of LP

for each heuristic H, on each platform

Plot distribution

Loris Marchal Scheduling multiple bag-of-task applications 25/ 33

Simulation Results

Theoretical v/ Experimental Throughput

LP, CGBC: possible to compute expected (theoretical) throughput

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Deviation from theoretical throughput

average deviation = 9.4%

Increase buffer size from 10 to 200 → average deviation = 0.3%

In the following, LP = basis for comparison

Compute log performance of H
performance of LP

for each heuristic H, on each platform

Plot distribution

Loris Marchal Scheduling multiple bag-of-task applications 25/ 33

Simulation Results

Theoretical v/ Experimental Throughput

LP, CGBC: possible to compute expected (theoretical) throughput

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Deviation from theoretical throughput

average deviation = 9.4%

Increase buffer size from 10 to 200 → average deviation = 0.3%

In the following, LP = basis for comparison

Compute log performance of H
performance of LP

for each heuristic H, on each platform

Plot distribution

Loris Marchal Scheduling multiple bag-of-task applications 25/ 33

Simulation Results

Theoretical v/ Experimental Throughput

LP, CGBC: possible to compute expected (theoretical) throughput

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Deviation from theoretical throughput

average deviation = 9.4%

Increase buffer size from 10 to 200 → average deviation = 0.3%

In the following, LP = basis for comparison

Compute log performance of H
performance of LP

for each heuristic H, on each platform

Plot distribution

Loris Marchal Scheduling multiple bag-of-task applications 25/ 33

Simulation Results

Theoretical v/ Experimental Throughput

LP, CGBC: possible to compute expected (theoretical) throughput

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Deviation from theoretical throughput

average deviation = 9.4%

Increase buffer size from 10 to 200 → average deviation = 0.3%

In the following, LP = basis for comparison

Compute log performance of H
performance of LP

for each heuristic H, on each platform

Plot distribution

Loris Marchal Scheduling multiple bag-of-task applications 25/ 33

Simulation Results

Performance of FCFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4 6 8

Fr
eq

ue
nc

y

0
0.01
0.02
0.03
0.04
0.05

0 0.5 1 1.5 2 2.5 3

Log(deviation from LP-BASED heuristic)

FCFS

Geometrical average: FCFS is 1.56 times worse than LP

Worst case: 8 times worse

Loris Marchal Scheduling multiple bag-of-task applications 26/ 33

Simulation Results

Performance of CGBC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4 6 8

Fr
eq

ue
nc

y

0
0.01
0.02
0.03
0.04
0.05

0 0.5 1 1.5 2 2.5 3

Log(deviation from LP-BASED heuristic)

CGBC

Geometrical average: CGBC is 1.15 times worse than LP

Worst case: 2 times worse

Loris Marchal Scheduling multiple bag-of-task applications 27/ 33

Simulation Results

Performance of PBC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4 6 8

Fr
eq

ue
nc

y

0
0.01
0.02
0.03
0.04
0.05

0 0.5 1 1.5 2 2.5 3

Log(deviation from LP-BASED heuristic)

PBC

In 35% of the cases: one application is totally unfavored, its
throughput is close to 0.

Loris Marchal Scheduling multiple bag-of-task applications 28/ 33

Simulation Results

Performance of DATA-CENTRIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4 6 8

Fr
eq

ue
nc

y

0
0.01
0.02
0.03
0.04
0.05

0 0.5 1 1.5 2 2.5 3

Log(deviation from LP-BASED heuristic)

DATA-CENTRIC

Geometrical average: DATA-CENTRIC is 1.16 worse than LP

Few instances with very bad solution

On most platforms, very good solution

Hard to know why it performs badly in few cases

Loris Marchal Scheduling multiple bag-of-task applications 29/ 33

Conclusion & Perspectives

Outline

1 Platform and Application Model

2 Computing the Optimal Solution

3 Decentralized Heuristics

4 Simulation Results

5 Conclusion & Perspectives

Loris Marchal Scheduling multiple bag-of-task applications 30/ 33

Conclusion & Perspectives

Conclusion

Centralized algorithm computes optimal solution with global
information

Nice characterization of optimal solution on single-level trees

Design distributed heuristics to deal with practical settings of
clusters and grids (distributed information, variability, limited
memory)

Evaluation of these heuristics through extensive simulations

Good performance of sophisticated heuristics compared to the
optimal scheduling

Loris Marchal Scheduling multiple bag-of-task applications 31/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Analogy with Multicommodity flows

Awerbuch & Leighton algorithm:

ship a collection of different commodities from their source to
their destination, with respect to edge capacity constraints

input: throughput dk for each commodity k

fully decentralized control: maintain queues for each commodity
on each node, and minimize the overall potential associated to
queues at each node (at each step)

multiport model

Adaptation to our problem:

one application = one commodity

different sizes for application files
need for more complex constraints on edges (weighted sum),
⇒ potential minimization mechanism has been adapted

computing constraints: add special edges targeting fictitious
“sink” nodes (one per application)

one-port model: easily enforced for tree platforms
Loris Marchal Scheduling multiple bag-of-task applications 32/ 33

Conclusion & Perspectives

Perspectives

Awerbuch & Leighton algorithm:

, decentralized algorithm

/ slow convergence, “synchronous” algorithm

/ need to compute throughput for each application before

Consider other kinds of fairness such as proportional fairness:
I Reasonable (close to the behavior of TCP)
I Easy to enforce with distributed algorithms

Study robustness and adaptability of these heuristics. . .

Loris Marchal Scheduling multiple bag-of-task applications 33/ 33

Conclusion & Perspectives

Outline

1 Platform and Application Model

2 Computing the Optimal Solution

3 Decentralized Heuristics

4 Simulation Results

5 Conclusion & Perspectives

Loris Marchal Scheduling multiple bag-of-task applications 34/ 33

	Platform and Application Model
	Computing the Optimal Solution
	Decentralized Heuristics
	Simulation Results
	Conclusion & Perspectives

