Fundamental Aspects of Decentralized Networks

Pierre Fraigniaud CNRS LRI, Univ. Paris Sud, Orsay, France

Summary

 Overlay networks for P2P systems Semi-decentralized systems Decentralized systems Non-structured networks Structured networks Large interaction networks Common properties Navigable networks • Putting things together

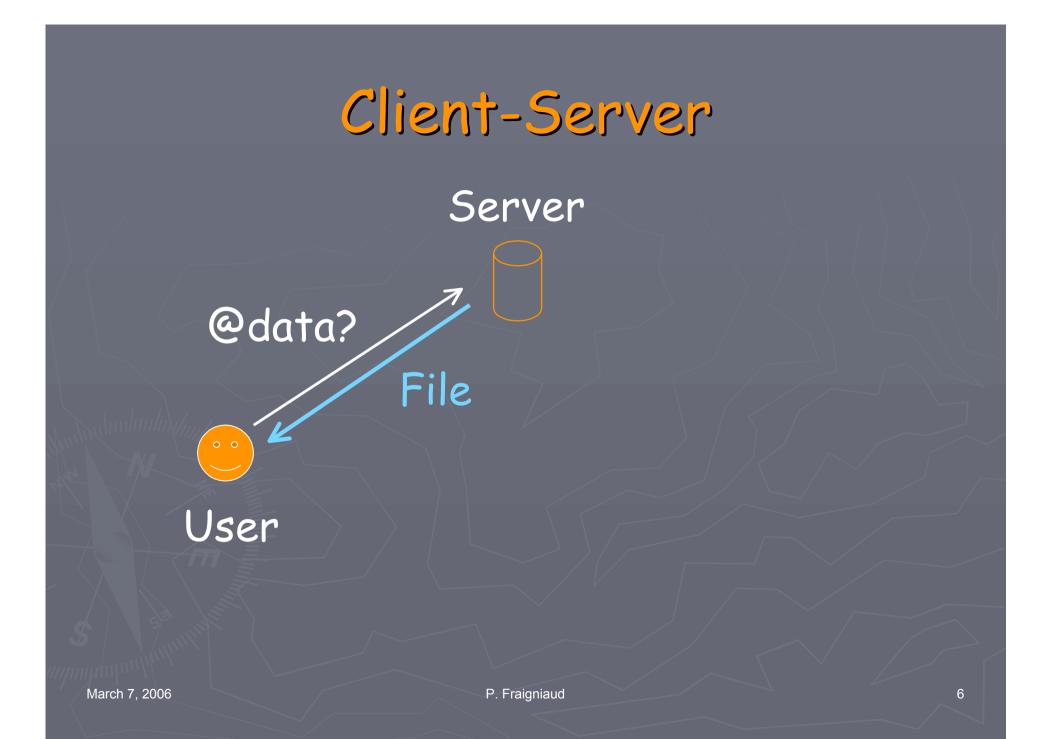
Overlay Networks for P2P Systems

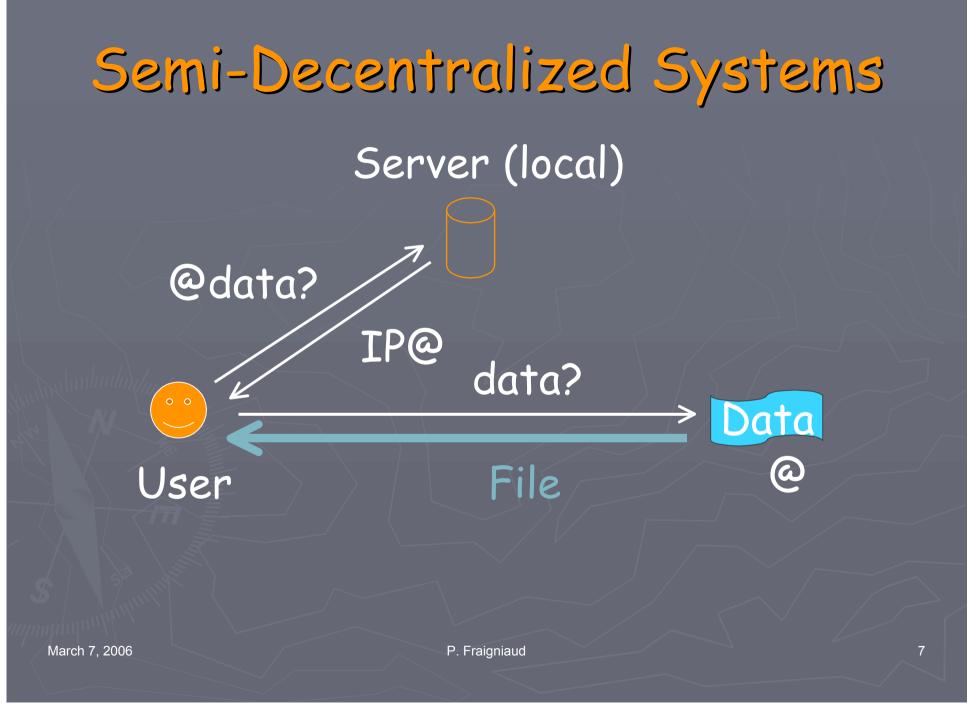
Peer-to-Peer (P2P) Paradigm

- Opposed to the master-slave paradigm
- A group of users share a common space in a decentralized manner, all playing the same role
- Objectives:
 - Share data (music, movies, etc.)
 - Share resources (computing facilities)
- Functionalities:
 - Publish
 - Search

Main (Ideal) Characteristics

- No central server
- Self organization
- Users can join and leave the system at any time
- Fault-tolerance
- Anonymity (?)





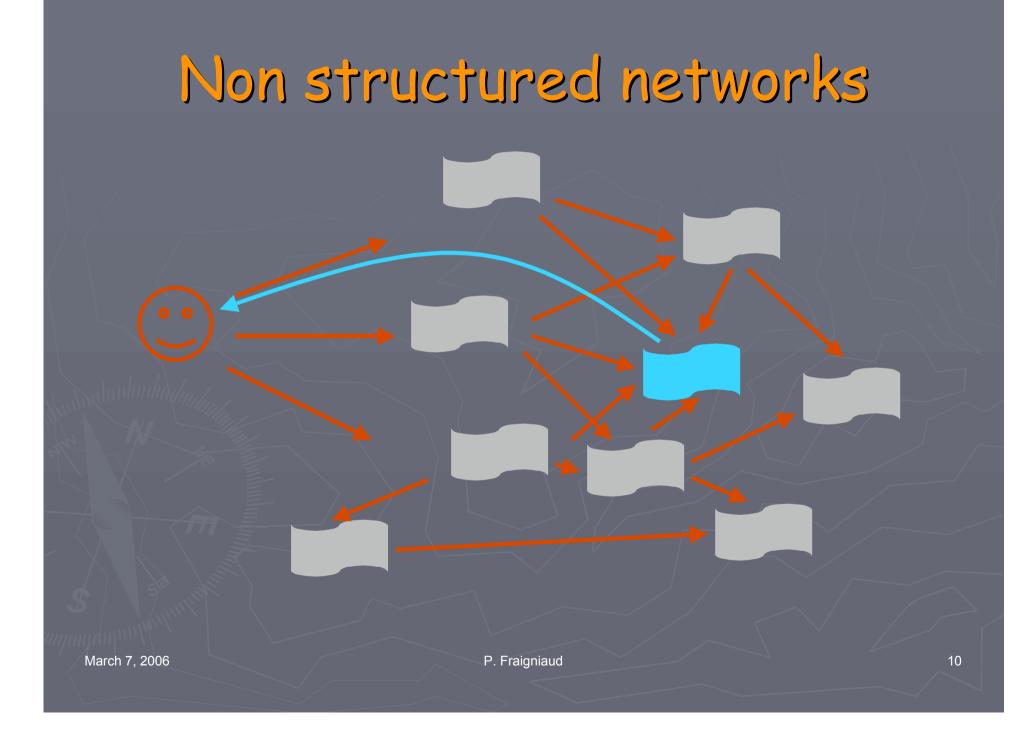
Discussion

• Pro:

- Quick acces
- Enable sophisticated types of request
- Con:
 - Expensive (computation and storage)
 - Bottleneck (high congestion)
 - Single point of failure

Decentralized Systems

- Nodes are connected by a logical overlay network, deployed over the Internet
- Link (u,v) means u knows the IP@ of v
- Structure of the overlay:
 - Not structured:
 - nodes connect to arbitrary nodes
 - Structured:
 - o nodes are connected to specific nodes
 o in order to achieve a specific topology



Discussion

- Pro:
 - Easy to implement, and cheap!
- Con:
 - High traffic load (if flooding)
 - Non exhaustive (if search is bounded)
 - Routing is hazardous

Structured networks

- Principles:
 - Let K be a metric space (e.g., [0,1[)
 - Assign a label to every node
 label : { IP@ } → K
 - Assign a key to every resource key : { resources } → K
 - The resource r is published at the node u such that dist(label(u), key(r)) is minimal.

Principles (cont)

- Connections:
 - \bullet Depends on K
 - Roughly:

Routing

- Key-based routing (Content Addressable Networks)
- Greedy routing to κ at current node u:
 - N(u) = { neighbors of u }
 - Let v be a node such that:
 dist(label(v), κ) = min_{w∈N(u)} dist (label(w), κ)
 - Route to v

Resource publication

- Node u aims at publishing resource r
 - Node u computes $\kappa = \text{key}(\mathbf{r})$
 - Node u tells to the node v in charge of κ that it is storing r
 - Node v stores the IP@ of u in its lookup table
- The second phase is based on the routing procedure

Searching for resources

- Node u search for resource r
 - Node u computes $\kappa = \text{key}(\mathbf{r})$
 - Node u asks the IP@s of nodes storing r to the node v where k is published
 - Node v sends these IP@s to u
- The second phase is based on the routing procedure

Dynamics

- Node u leaves:
 - Reallocation of keys to u's neighbors
 - Update connections between u's neighbors
- Node u joins:
 - Connection to an entry point
 - Label computation (hash function: label(u)=hash(IP@(u))
 - Setting of u's connections
 - Reallocation of keys from u's neighbors

Discussion

 Structured networks are based on the Distributed Hash Table (DHT) paradigm

• Pro:

- Fully distributed
- Low traffic and load balancing
- Exhaustive search
- Con:
 - The dynamics is a bit complex
 - Basic requests (key-based)

Problem

- Design a dynamic network (i.e., nodes can join and leave at their convenience) in which routing and updating are efficient.
- Many solutions, based on standard static graph topologies

Constraints

Fast updates

 Limited amount of control messages
 small degree

 Fast lookups

 Short routes ⇒ small diameter

 Balanced routing traffic

 No hot spot

Example: the oriented ring

March 7, 2006

P. Fraigniaud

"Content-Addressable Network"

Ratnasamy, Francis, Handley, Karp, Shenker [SIGCOMM '01]

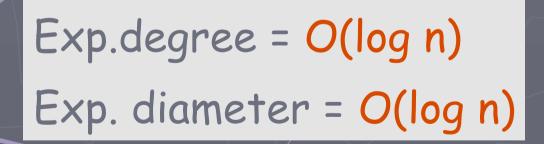
d-dimensionnal torus



Chord

Stoica, Morris, Karger, Kaashoek, Balakrishnan [SIGCOMM '01]

d-dimensional hypercube



March 7, 2006

P. Fraigniaud

Malkhi, Naor, Ratajczak [PODC '02]

Butterfly Network

Exp. degree = O(1) Exp. diameter = O(log n)

P. Fraigniaud

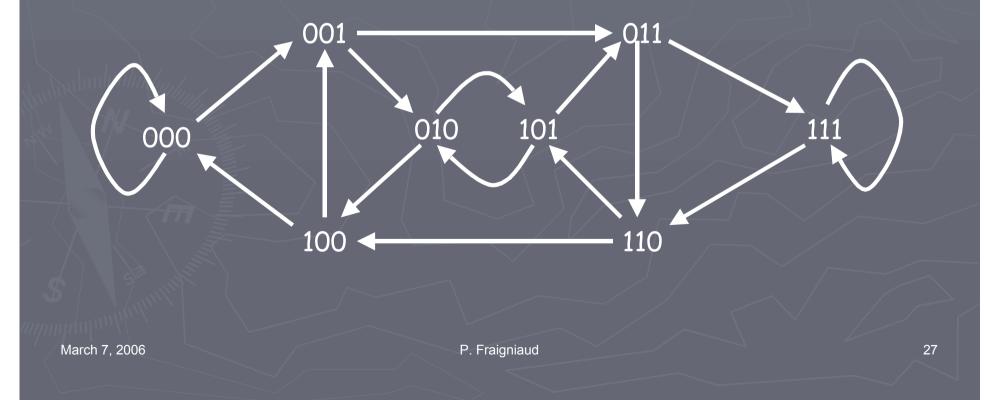
de Bruijn-based DHTs

- I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, E. Pavlov: A generic scheme for building overlay networks in adversial scenarios
- P. Fraigniaud, Ph. Gauron: D2B: a de Bruijn Based Content-Addressable Network
- F. Kaashoek, D. Karger: Koorde: a simple degree-optimal distributed hash table
- M. Naor, U. Wieder: Novel architectures for P2P applications: the continuous-discrete approach

- Based on the de Bruijn graph
- Measures:
 - #key per node
 - Degree
 - Length of the routes
 - Congestion
- Performances
 - In expectation
 - With high probability (Prob \geq 1-1/n)

De Bruijn graph

V = {binary sequences of length k} E = { $(x_1x_2...x_k) \rightarrow (x_2...x_ky)$, y=0 or 1}



Node and key labels

Label = binary sequence of length ≤ m.
Key = binary sequence of length = m. ⇒ up to 2^m labels and keys In practice, set m=128 or even 256
The key κ is stored by node x if and only if x is a prefix of κ.

Universal Prefix Set

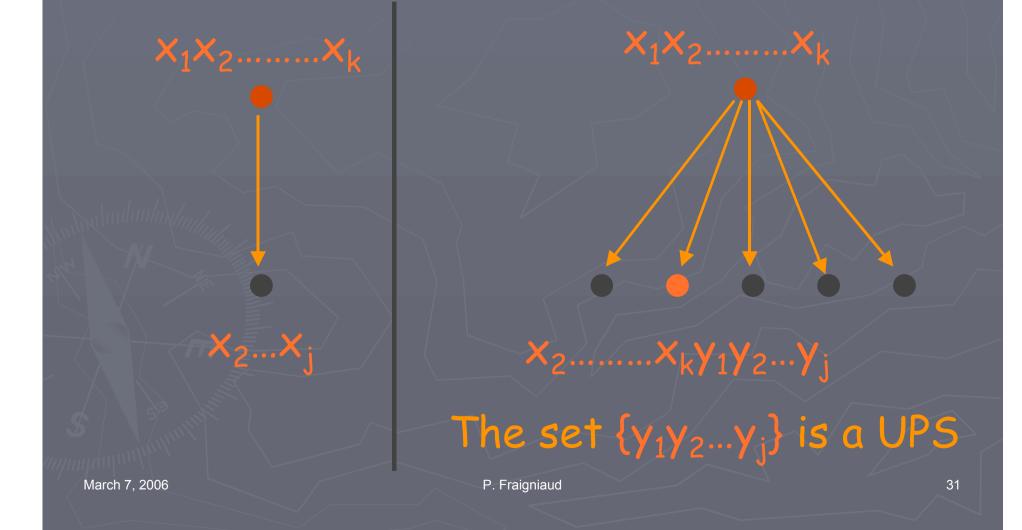
- Let W_i , i=1,...,q, be q binary sequences.
- The set S={W₁,W₂,...,W_q} is a universal prefix set if and only if, for any infinite binary sequence B, there is one and only one W_i which is a prefix of B.
- Example: {0,11,100,1010,10110,10111}
- Remark: {ɛ} where ɛ is the empty sequence is a universal prefix set.
- By construction, the set of nodes in D2B is a universal prefix set.

Routing Connections

Parents

P. Fraigniaud

Children Connections and Routing



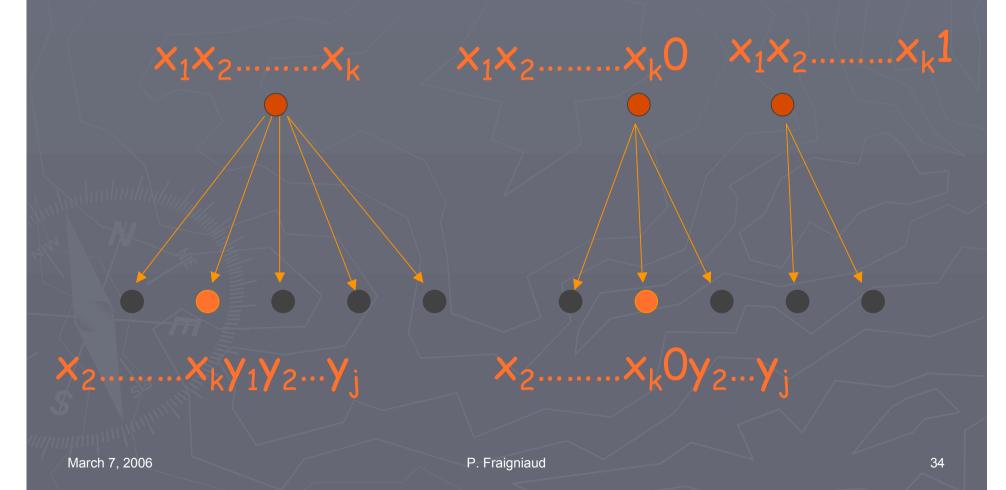
Join Procedure (1/3)

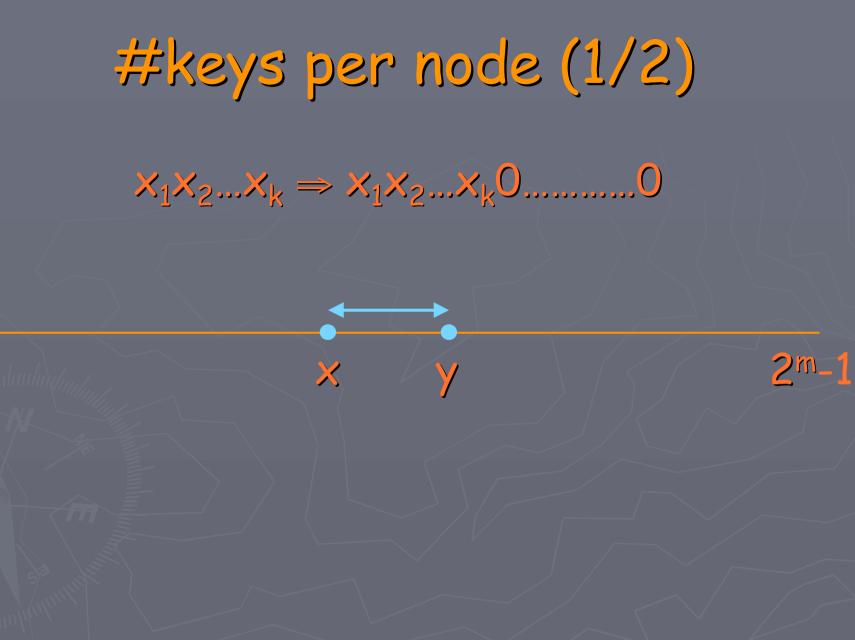
- A joining node u contacts an entry point v in the network
- Node u selects an m-bit binary sequence L at random: its preliminary label
- A request for join is routed from v to the node w that is in charge of key L

Join Procedure (2/3)

- Node w labeled x₁x₂.....x_k extends its label to x₁x₂.....x_k0
- Node u takes label $x_1 x_2 \dots x_k 1$
- Node w transfers to u all keys κ such that x₁x₂....x_k1 is prefix of κ

Join Procedure (3/3)





 \bigcirc

#keys per node (2/2)

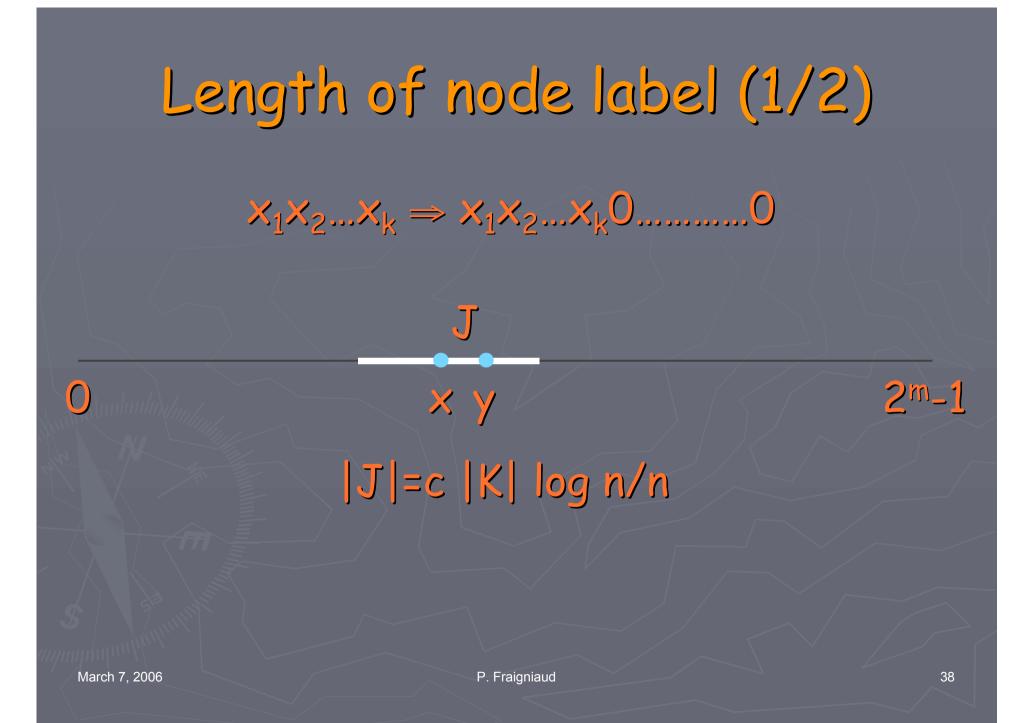
- Divide K in n/(c log n) intervals, each containing c log n |K|/n keys.
- Let X = #nodes in interval J starting at x
- n Bernouilli trials with probability p = c log n/n
- Chernoff bound:

Prob($|\sum X_i - np| > k$) < 2 e^{-k²/3np} ⇒ Prob(|X-c log n|>(3c)^{1/2} log n) < 2/n ⇒ W.h.p., there is at least one node in J ⇒ W.h.p., a given node manages O(|K|log n/n) keys

Lookup routing

Node $x_1 x_2 \dots x_k$ looks for key $\kappa_1 \kappa_2 \dots \kappa_m$ $\Rightarrow X_2 \dots X_k K_1 \dots K_h$ $\Rightarrow X_3 \dots X_k K_1 \dots K_h K_{h+1} \dots \dots K_{h+r}$ $\Rightarrow X_{\underline{A}}, \dots, X_{\underline{k}} K_{1}, \dots K_{\underline{h}} K_{\underline{h+1}}, \dots, K_{\underline{h+i}}$ $\Rightarrow X_5 \dots X_k K_1 \dots K_h K_{h+1} \dots K_{h+i} K_{h+i+1} \dots K_{h+i+s}$ $\Rightarrow X_6 \dots X_t$ $\Rightarrow X_7 \dots X_t K_1 \dots K_d$ At most k hops to reach the node in charge of the key

 $K_1 K_2 \dots K_m$



Length of node-label (2/2)

Prob(|X-c log n|>(3c)^{1/2} log n) < 2/n ⇒ W.h.p., at most O(log n) nodes in J ⇒ x manages at least |J| / $2^{O(\log n)}$ keys ⇒ k ≤ m - log|J| + O(log n) ⇒ k ≤ O(log n) ⇒ W.h.p., a lookup route is of length O(log n)

Degree and congestion

W.h.p., degree = O(log n) using similar techniques (expected degree O(1))
Congestion = proba that a node is traversed by a lookup from a random node to a random key = O(log n/n)

Summary: Expected properties

	Update	Lookup	Congestion
ÇAN	O(d)	O(dn ^{1/d})	O(d/n ^{1-1/d})
Chord	O(log n)	O(log n)	O(log n/n)
Viceroy	O(1)	O(log n)	O(log n/n)
D2B	O(1)	O(log n)	O(log n/n)

Large Interaction Networks

Interaction Networks

Communication networks

- Internet
- Ad hoc and sensor networks
- Societal networks
 - The Web
 - P2P networks (the unstructured ones)
- Social network
 - Acquaintance
 - Mail exchanges
 - Biology, linguistics, etc.

 \bullet

Common statistical properties

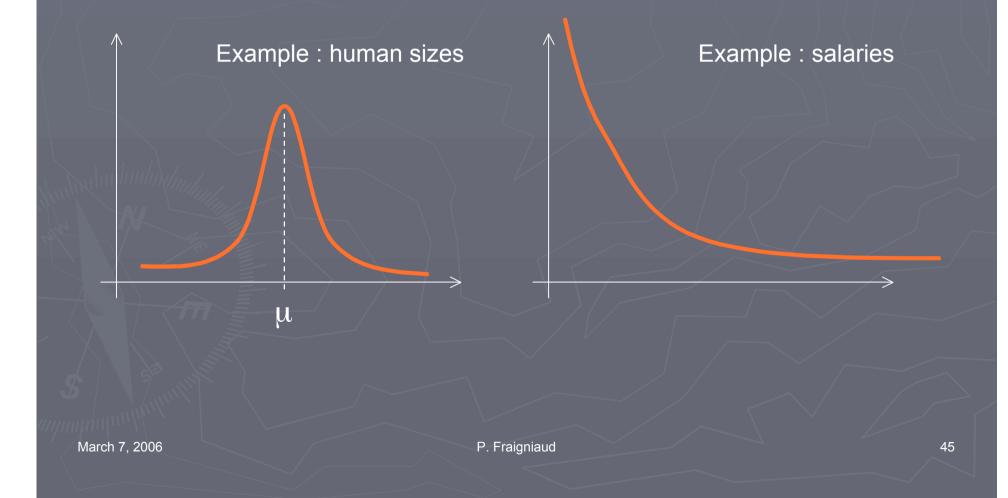
Low density

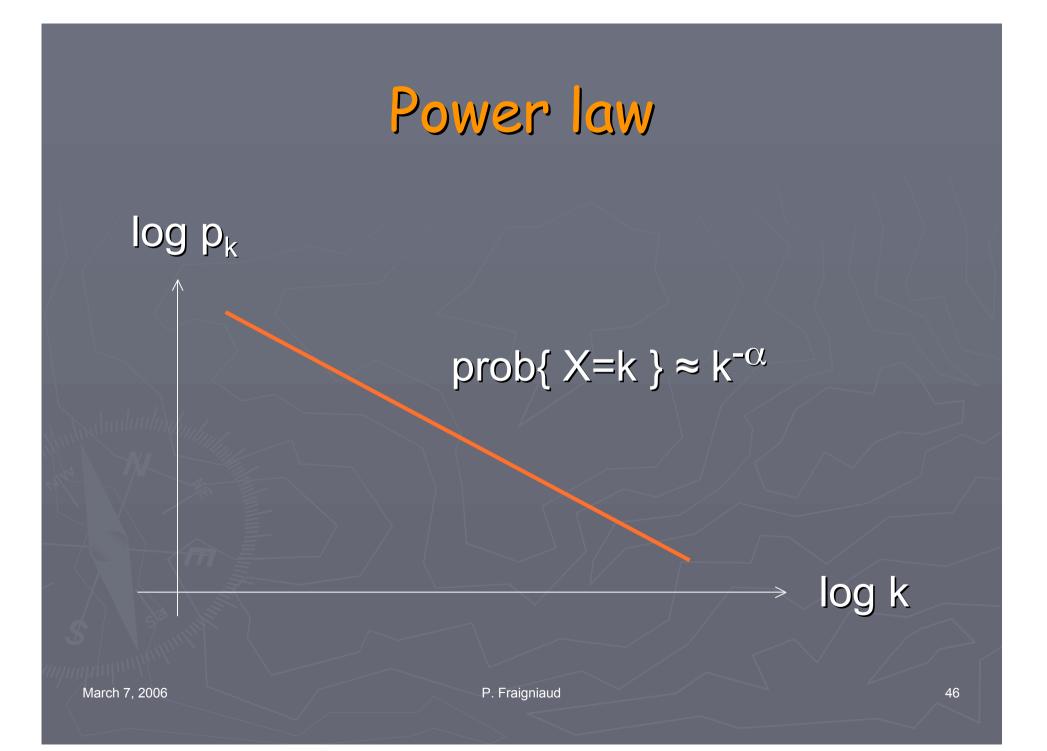
- "Small world" properties:
 - Average distance between two nodes is small, typically O(log n)
 - The probability p that two distinct neighbors u₁ and u₂ of a same node v are neighbors is large.

p = clustering coefficient

- "Scale free" properties:
 - Heavy tailed probability distributions (e.g., of the degrees)

Gaussian vs. Heavy tail





Random graphs vs. Interaction networks Random graphs (p~log(n)/n): Iow clustering coefficient Gaussian distribution of the degrees Interaction networks High clustering coefficient Heavy tailed distribution of the degrees

New problematic

- Why these networks share these properties?
- What model for
 - Performance analysis of these networks
 - Algorithm design for these networks
- Impact of the measures?

More insights available at: <u>http://www.liafa.jussieu.fr/~latapy/</u>

Milgram Experiment

- Source person s (e.g., in Wichita)
- Target person t (e.g., in Cambridge)
 - Name, professional occupation, city of living, etc.
- Letter transmitted via a chain of individuals related on a personal basis
- Result: "six degrees of separation"

Navigability

- Jon Kleinberg (2000)
 - Why should there exist short chains of acquaintances linking together arbitrary pairs of strangers?
 - Why should arbitrary pairs of strangers be able to find short chains of acquaintances that link them together?
- In other words: how to navigate in a small worlds?

Augmented graphs H=(G,D)

Individuals as nodes of a graph G

- Edges of G model relations between individuals deducible from their societal positions
- A number k of "long links" are added to G at random, according to the probability distribution D
 - Long links model relations between individuals that cannot be deduced from their societal positions

Greedy Routing

in augmented graphs

- Source $s \in V(G)$
- Target $t \in V(G)$
- Current node x selects among its deg_G(x)+k neighbors the closest to t in G, that is according to the distance function dist_G().

 Greedy routing in augmented graphs aims at modeling the routing process performed by social entities in Milgram's experiment. Augmented meshes Kleinberg (2000) d-dimensional n-node meshes augmented with d-harmonic links

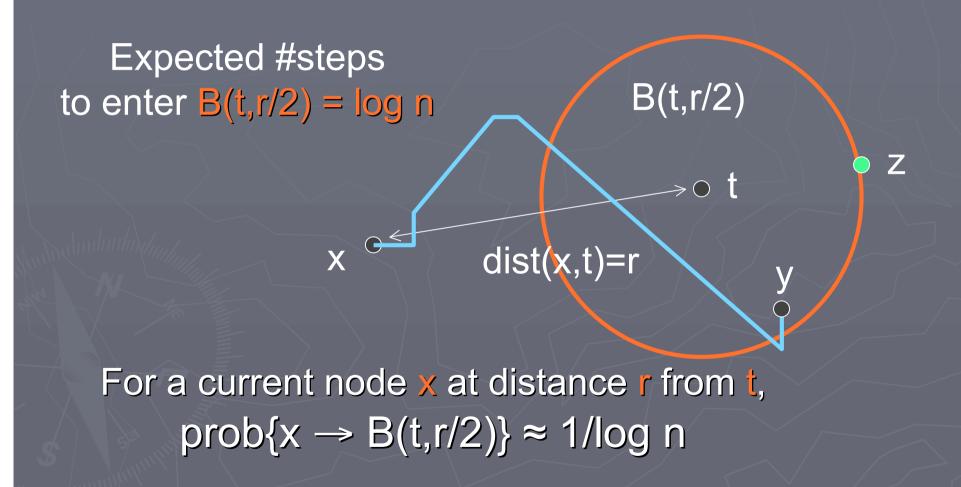
 $prob(u \rightarrow v) \approx 1/(log(n)^*dist(u,v)^d)$

March 7, 2006

Harmonic distribution

- d-dimensional mesh
- B(x,r) = ball centered at x of radius r
- S(x,r) = sphere centered at x of radius r
- In d-dimensional meshes:
 - $|B(x,r)| \approx r^{cl}$
 - |S(x,r)| ≈ r^{d-1}
 - $\Sigma_{v \neq u}(1/\text{dist}(u,v)^d) = \Sigma_r |S(u,r)|/r^d$ $\approx \Sigma_r 1/r \approx \log n$

Performances



March 7, 2006

Kleinberg's theorems

 Greedy routing performs in O(log²n / k) expected #steps in **d**-dimensional meshes augmented with k links per node, chosen according to the d-harmonic distribution. • Note: $k = \log n \Rightarrow O(\log n)$ expect. #steps Greedy routing in d-dimensional meshes augmented with a h-harmonic distribution, h \neq d, performs in $\Omega(n^{\epsilon})$ expected #steps.

Extensions

- Two-step greedy routing: O(log n / loglog n)
 - Coppersmith, Gamarnik, Sviridenko (2002)
 Percolation theory
 - Manku, Naor, Wieder (2004)
 NoN routing
- Routing with partial knowledge: O(log^{1+1/d} n)
 - Martel, Nguyen (2004)
 - Non-oblivious routing
 - Fraigniaud, Gavoille, Paul (2004)
 Oblivious routing
- Decentralized routing: O(log n * log²log n)
 - Lebhar, Schabanel (2004)
 - o O(log²n) expected #steps to find the route

March 7, 2006

Navigable graphs

Definition: An infinite family F of graphs is navigable if there exist
an augmentation D_G for every graph G ∈ F
a function f ∈ O(polylog)
such that, for every n-node graph G ∈ F, greedy routing in (G,D_G) performs in f(n) expected #steps.

Known navigable graphs

- Bounded growth graphs
 - Definition: $|B(x,2r)| \le k |B(x,r)|$
 - Duchon, Hanusse, Lebhar, Schabanel (2005)
- Bounded doubling dimension
 - Definition: every B(x,2r) can be covered by at most 2^d balls of radius r, B(x_i,r)
 - Slivkins (2005)
- Graphs of bounded treewidth
 - Fraigniaud (2005)

Doubling dimension

Svilkins' theorem

- Theorem: Any family of graphs with doubling dimension O(loglog n) is navigable.
- Proof: Graphs are augmented with
 - dist_G(u,v) = r
 - prob(u \rightarrow v) \approx 1/|B(v,r)|

X

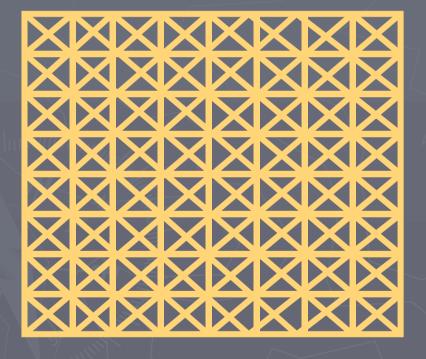
Graphs of large doubling dim.

- Remark: f(n)-dimensional n-node meshes
 C₁xC₂x...xC_{f(n)}
 - are navigable for any $f(n) \leq \log n$
- 1-harmonic distribution on every dimension.

Theorem (Fraigniaud, Lebhar, Lotker) Let f such that lim loglog n / f(n) = 0 Any family F of graphs containing all graphs of doubling dimension at most O(f) is not navigable.

Proof of non-navigability

The family F contains the graph H_f:



 $x = x_1 x_2 \dots x_f$ is connected to all nodes $y = y_1 y_2 \dots y_f$ such that $y_i = x_i + a_i$ where $a_i \in \{-1, 0, +1\}$

H_f has doubling dimension f

Intuitive approach

- Large doubling dimension f implies that every nodes x ∈ H_f has choices over exponentially many directions
- The underlying metric of H_f is L_w:

Cayley Graph

- A Cayley graph G is defined by a pair (Γ,S)
 - Γ is a group: $V(G) = \Gamma$
 - **S** is a generating set of **Γ**:

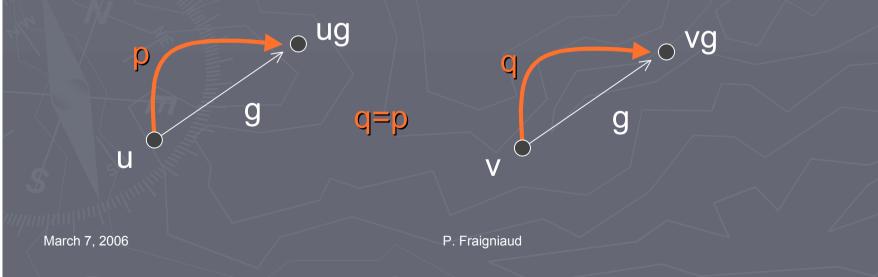
 $(u,v) \in E(G) \Leftrightarrow u^{-1}v \in S$

- Representation of groups
- Explicit construction of expanders
- Examples:
 - $C_n = (Z_n, \{-1, +1\})$
 - $Q_d = (\{0,1\}^d, \{e_1,e_2,\dots,e_d\})$

• $H_{f} = (C_{n^{1/f}} \times C_{n^{1/f}} \times ... \times C_{n^{1/f}}, \{g_{1}, g_{2}, ..., g_{3}f\})$

Symmetric augmentation

An augmentation D of a Cayley graph G is symmetric if for every g ∈ V
 prob(u → ug) = prob(v → vg)
 for any pair of nodes u and v.



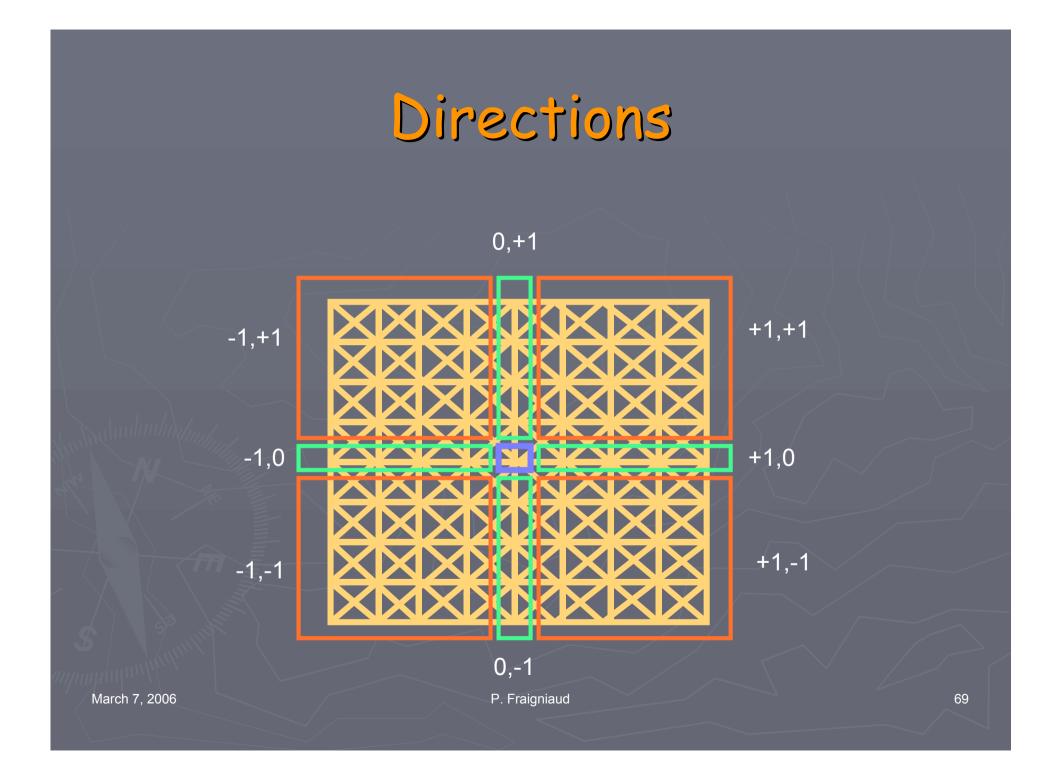
Symmetrization lemma

 Lemma: for any augmentation D of G, there exists a symmetric augmentation D' of G such that, for any pair s,t

Exp(#step routing from s to t in (G,D'))
≤ max_{x,y}Exp(#step routing from x to y in (G,D))
• Proof:

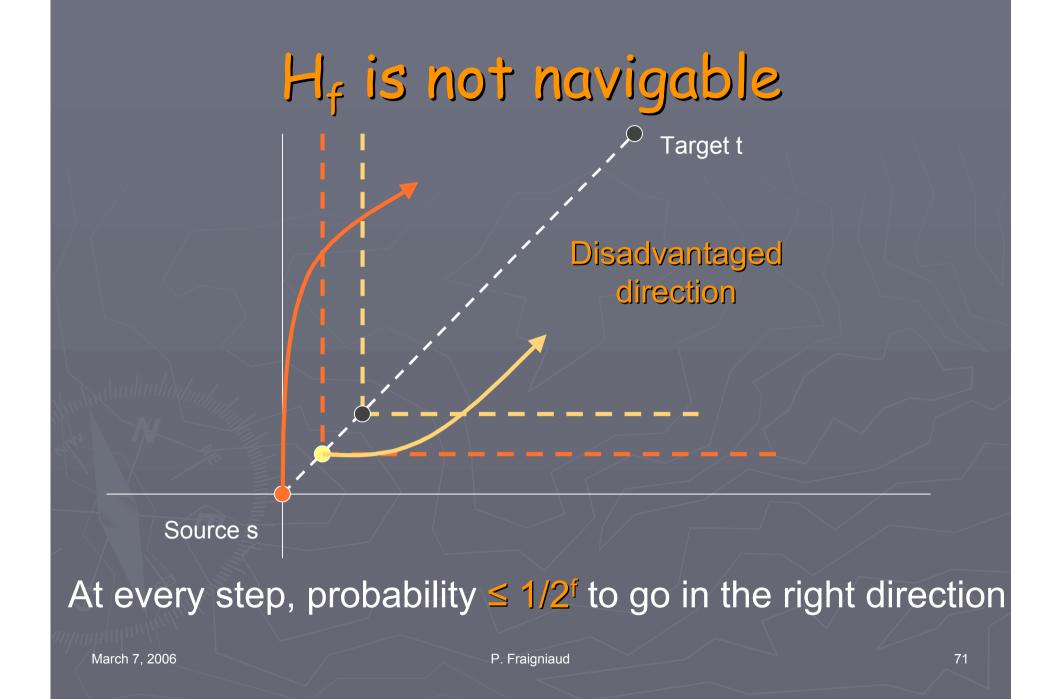
• x = node of G chosen uniformly at random

• $D'_{u}(v) = D_{xu}(xv)$



Disadvantaged directions

- $d = (d_1, d_2, ..., d_f) \in \{-1, 0, +1\}^f$
- $dir_{u}(d) = \{ v = (v_1, v_2, ..., v_f), v_i = u_i + a_i d_i$ where $1 \le a_i \le n^{1/f}/2 \}$
- d is disadvantaged at node u if
 prob(u → dir_u(d)) = min_d, prob(u → dir_u(d'))
- For a symmetric distribution, if d is disadvantaged at some node, then it is disadvantaged at every node.



What time is it?

- If time then treewidth
- else next-slide

Putting things together

Using Small World and Scale Free Properties for the Design of Overlay Networks in P2P Systems

Communities

- Context: unstructured overlay networks
- Objective: create communities
- Rule: keep connected to nodes with whom you exchanged resources
- Impact: the search time is significantly reduced (observed in, e.g., Gnutella)
- Reason: acquaintances have high clustering coef., thus resources you are interested in are close to you in a network that maps the acquaintance graph.

High-degree-first search

- Context: unstructured overlay networks with power law degree distribution
- Rule: High-degree-first search strategy
 - Every node keeps track of the list of all the resources stored by its neighbors
 - DFS search visiting high degree neighbors first
- Impact: sub-linear search time
- Reason: well informed nodes are reached rapidely

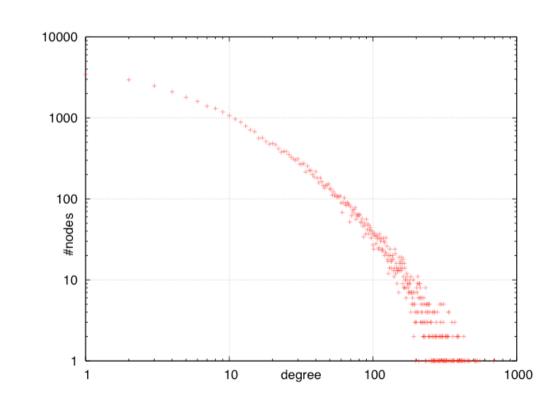
Mixing the two

- Nodes
 - join one by one, and initially connect to k arbitrary nodes
 - keep connected to nodes with whom they exchanged resources
 - store the lists of their neighbors' resources
 - perform DFS search with high-degree node priority

Experiments

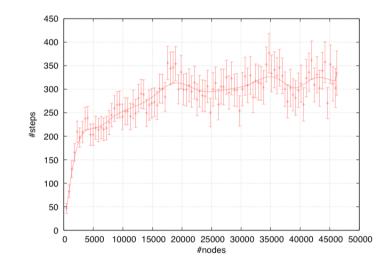
- P2P trace from eDonkey
 The trace is 2h53 long
 Involves 46,202 peers and 342,204
 - requests
- Simulation of each (search) request:
 - Routing from source to targets (there can be many)
 - Update connections

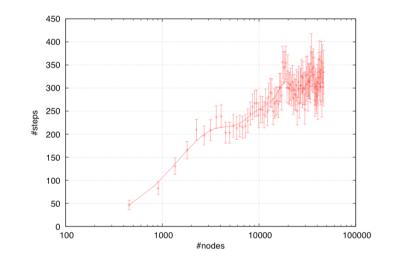
Degree distribution



March 7, 2006

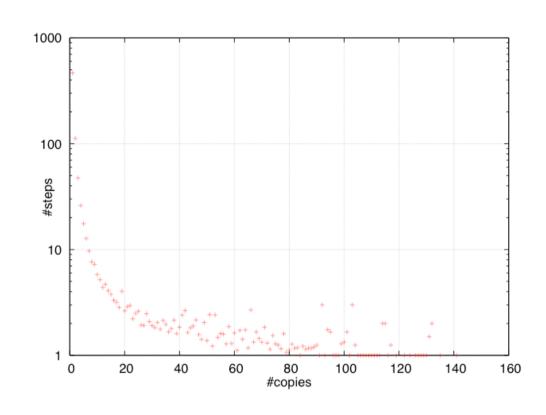
Search time





March 7, 2006

Search time vs. #copies



March 7, 2006

Navigable Small World DHT

Ring with k links chosen according to the 1-harmonic distribution

March 7, 2006

Expected properties

	degree	routing
CAN	O(cl)	O(dn ^{1/d})
Chord	O(log n)	O(log n)
Viceroy	O(1)	O(log n)
D2B	O(1)	O(log n)
Small World	k	O(log ² n /k)

 $1 \le k \le \log n$

References

References

- Go to <u>http://www.lri.fr/~pierre</u>
- Download
 - Peer-to-peer
 - o D2B: a de Bruijn Based Content-Addressable Network
 - Combining the use of clustering and scale-free nature of user exchanges into a simple and efficient P2P system
 - Navigable networks
 - A New Perspective on the Small-World Phenomenon: Greedy Routing in Tree-Decomposed Graphs
 - Eclecticism Shrinks Even Small Worlds
 - And see the references therein

THANK YOU!