Fundamental Aspects of Decentralized Networks (suite...)

Pierre Fraigniaud Réunion ALPAGE 19/10/06

INTRODUCTION

INTERACTION NETWORKS

- Communication networks
 - Internet
 - Ad hoc and sensor networks
- Societal networks
 - The Web
 - P2P networks (the unstructured ones)
- Social network
 - Acquaintance
 - Mail exchanges
- Biology, linguistics, etc.

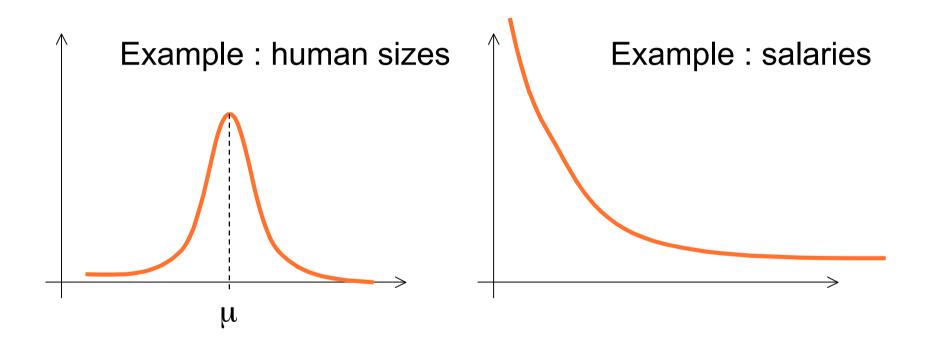
COMMON STATISTICAL PROPERTIES

- Low density
- "Small world" properties:
 - Average distance between two nodes is small, typically O(log n)
 - The probability p that two distinct neighbors u₁ and
 u₂ of a same node v are neighbors is large.

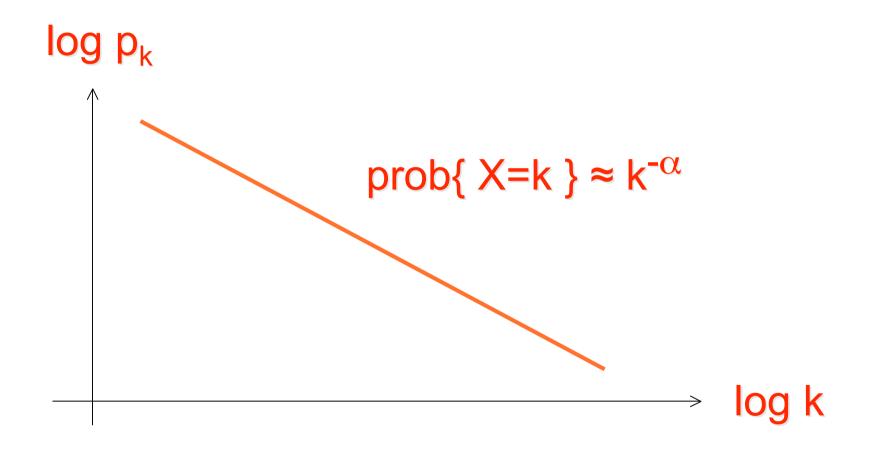
p = clustering coefficient

- "Scale free" properties:
 - Heavy tailed probability distributions (e.g., of the degrees)

GAUSSIAN VS. HEAVY TAIL



POWER LAW



RANDOM GRAPHS VS. INTERACTION NETWORKS

- Random graphs
 - prob(e exists) ≈ log(n)/n
 - low clustering coefficient
 - Gaussian distribution of the degrees
- Interaction networks
 - High clustering coefficient
 - Heavy tailed distribution of the degrees

NEW PROBLEMATIC

- Why these networks share these properties?
- What model for
 - Performance analysis of these networks
 - Algorithm design for these networks
- Impact of the measures?
- This lecture addresses navigability

NAVIGABILITY

MILGRAM EXPERIMENT

- Source person s (e.g., in Wichita)
- Target person t (e.g., in Cambridge)
 - Name, professional occupation, city of living, etc.
- Letter transmitted via a chain of individuals related on a personal basis
- Result: "six degrees of separation"

NAVIGABILITY

- Jon Kleinberg (2000)
 - Why should there exist short chains of acquaintances linking together arbitrary pairs of strangers?
 - Why should arbitrary pairs of strangers be able to find short chains of acquaintances that link them together?
- In other words: how to navigate in a small worlds?

PRIX NEVANLINNA

- Prix récompensant une contribution majeure dans le domaine des mathématiques, dans son aspect informatique.
- Lauréats
 - 1982 Robert Tarjan
 - 1986 Leslie Valiant
 - 1990 A.A. Razborov
 - 1994 Avi Wigderson
 - 1998 Peter Shor
 - 2002 Madhu Sudan
 - 2006 Jon Kleinberg

AUGMENTED GRAPHS H=G+D

- Individuals as nodes of a graph G
 - Edges of G model relations between individuals deducible from their societal positions
- A number k of "long links" are added to G at random, according to the probability distribution D
 - Long links model relations between individuals that cannot be deduced from their societal positions

GREEDY ROUTING IN AUGMENTED GRAPHS

- Source $s \in V(G)$
- Target t ∈ V(G)
- Current node x selects among its deg_G(x)+k neighbors the closest to t in G, that is according to the distance function dist_G().

Greedy routing in augmented graphs aims at modeling the routing process performed by social entities in Milgram's experiment.

AUGMENTED MESHES

KLEINBERG [STOC 2000]

d-dimensional n-node meshes augmented with d-harmonic links

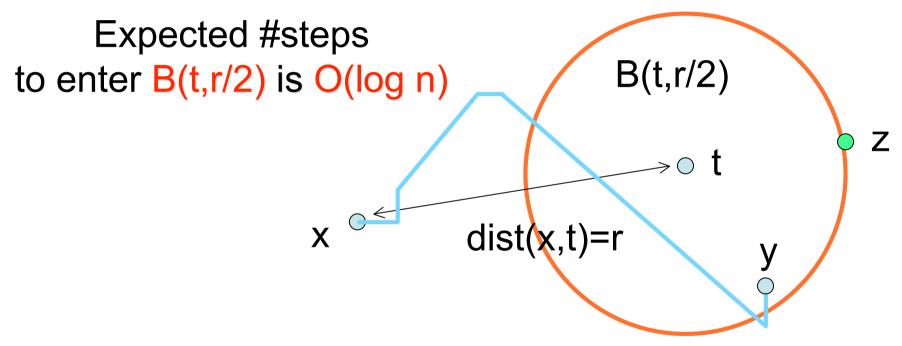
prob(u→v) ≈
$$1/(log(n)*dist(u,v)^d)$$

HARMONIC DISTRIBUTION

- d-dimensional mesh
- B(x,r) = ball centered at x of radius r
- S(x,r) = sphere centered at x of radius r
- In d-dimensional meshes:

```
\begin{split} \text{IB}(\textbf{x},\textbf{r})\textbf{I} &\approx \textbf{r}^{\text{d}} \\ \text{IS}(\textbf{x},\textbf{r})\textbf{I} &\approx \textbf{r}^{\text{d}-1} \\ &\Sigma_{\textbf{v}\neq\textbf{u}}(\textbf{1}/\text{dist}(\textbf{u},\textbf{v})^{\text{d}}) = \Sigma_{\textbf{r}} \, \text{IS}(\textbf{u},\textbf{r})\textbf{I}/\textbf{r}^{\text{d}} \\ &\approx \Sigma_{\textbf{r}} \, \textbf{1}/\textbf{r} \approx \text{log n} \end{split}
```

PERFORMANCES



For a current node x at distance r from t, $prob\{x \rightarrow B(t,r/2)\}\$ is at least $\Omega(1/\log n)$

KLEINBERG'S THEOREMS

- Greedy routing performs in O(log²n / k)
 expected #steps in d-dimensional meshes
 augmented with k links per node, chosen
 according to the d-harmonic distribution.
 - Note: $k = log n \Rightarrow O(log n)$ expect. #steps
- Greedy routing in d-dimensional meshes augmented with a h-harmonic distribution, h≠d, performs in Ω(n^ε) expected #steps.

EXTENSIONS

- Two-step greedy routing: O(log n / loglog n)
 - Coppersmith, Gamarnik, Sviridenko (2002)
 - Percolation theory
 - Manku, Naor, Wieder (2004)
 - NoN routing
- Routing with partial knowledge: O(log^{1+1/d} n)
 - Martel, Nguyen (2004)
 - Non-oblivious routing
 - Fraigniaud, Gavoille, Paul (2004)
 - Oblivious routing
- Decentralized routing: O(log n * log²log n)
 - Lebhar, Schabanel (2004)
 - O(log²n) expected #steps to find the route

AN IMPOSSIBILITY RESULT

NAVIGABLE GRAPHS

- Let f: N → R be a function
- An n-node graph G is f-navigable if there exists an augmentation D for G such that greedy routing in G+D performs in at most f(n) expected #steps.
- I.e., for any two nodes u,v we have

$$\mathbf{E}_{D}(\#steps_{u\rightarrow v}) \leq f(n)$$

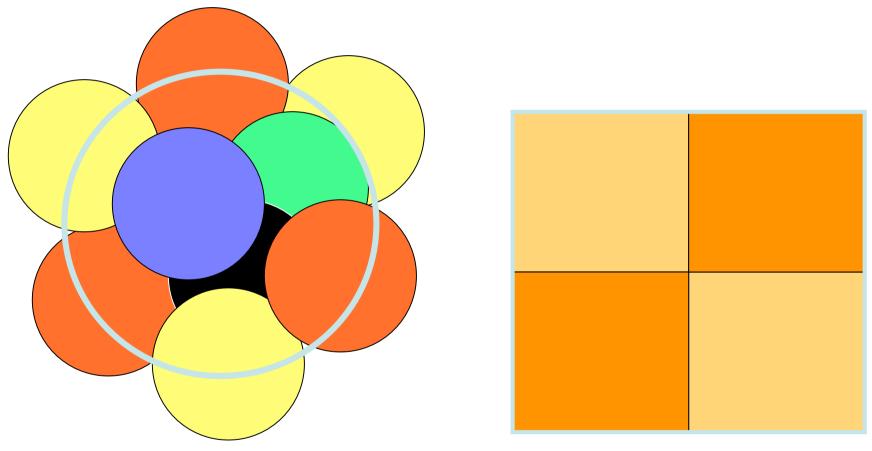
O(POLYLOG(N))-NAVIGABLE GRAPHS

- Bounded growth graphs
 - Definition: IB(x,2r)I ≤ ρ IB(x,r)I
 - Duchon, Hanusse, Lebhar, Schabanel (2005,2006)
- Bounded doubling dimension
 - Definition: DD d if every B(x,2r) can be covered by at most 2^d balls of radius r
 - Slivkins (2005)
- Graphs of bounded treewidth
 - Fraigniaud (2005)
- Graphs excluding a fixed minor
 - Abraham, Gavoille (2006)

QUESTION

Are all graphs O(polylog(n))-navigable?

DOUBLING DIMENSION



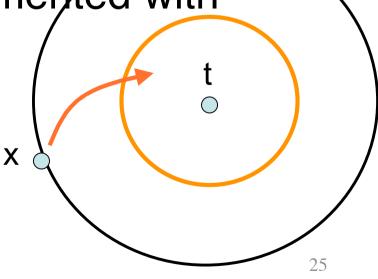
SVILKINS' THEOREM

 Theorem: Any family of graphs with doubling dimension O(loglog n) is navigable.

Proof: Graphs are augmented with

 $-\operatorname{dist}_{G}(u,v) = r$

- prob(u → v) ≈ 1/IB(v,r)I



19 octobre 2006

Réunion ALPAGE

IMPOSSIBILITY RESULT

Theorem

Let d such that

 $\lim_{n\to+\infty} \log\log n / d(n) = 0$

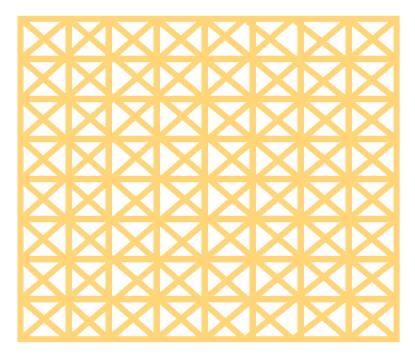
There exists an infinite family of n-node graphs with doubling dimension at most d(n) that are not O(polylog(n))-navigable.

Consequences:

- 1. Slivkins' result is tight
- 2. Not all graphs are O(polylog(n))-navigable

PROOF OF NON-NAVIGABILITY

The graphs H_d with $n=p^d$ nodes



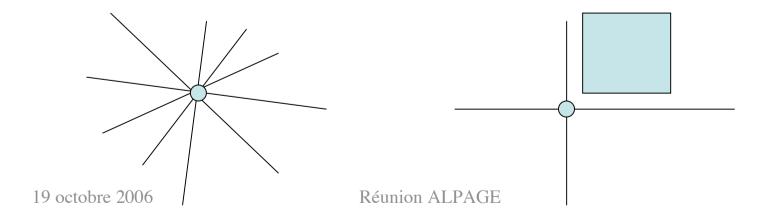
$$x = x_1 x_2 ... x_d$$

is connected to all nodes
 $y = y_1 y_2 ... y_d$
such that $y_i = x_i + a_i$ where
 $a_i \in \{-1,0,+1\}$

H_d has doubling dimension d

INTUITIVE APPROACH

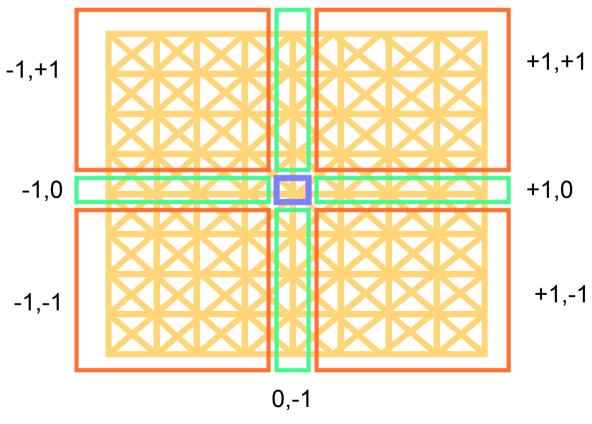
- Large doubling dimension d
 - \Rightarrow every nodes $x \in H_d$ has choices over exponentially many directions
- The underlying metric of H_d is L_∞



2.8

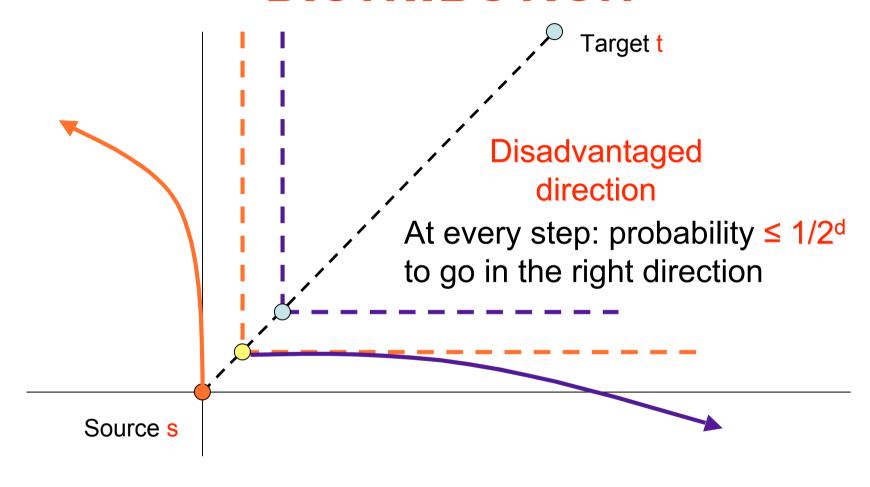
DIRECTIONS

$$\delta = (\delta_1, ..., \delta_d)$$
 where $\delta_i \in \{-1,0,+1\}$
 $Dir_{\delta}(u) = \{v \ / \ v_i = u_i + x_i \delta_i \text{ where } x_i = 1...p/2\}$

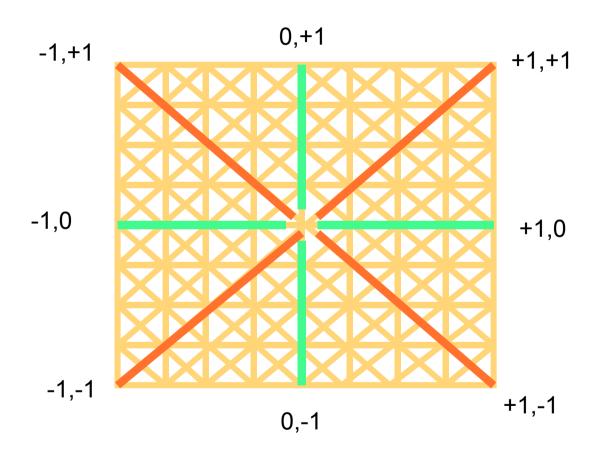


CASE OF SYMMETRIC

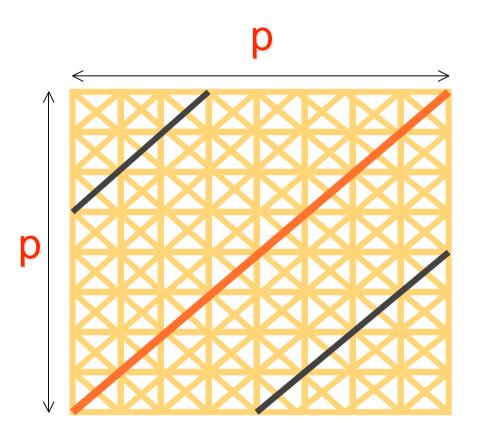
DISTRIBUTION



-- GENERAL CASE -DIAGONALS

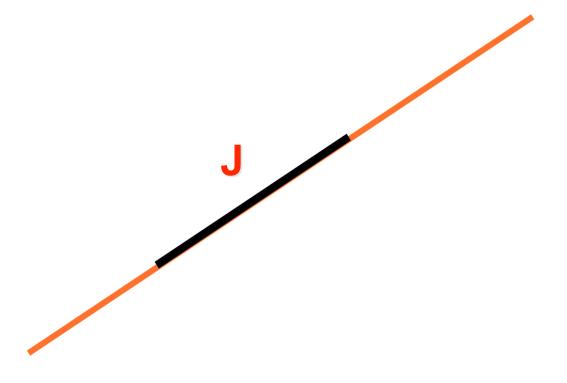


LINES

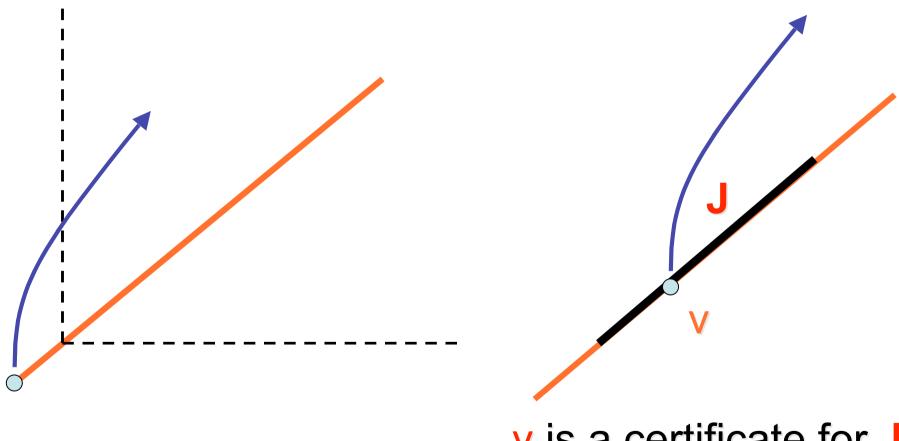


p lines in each direction

INTERVALS



CERTIFICATES

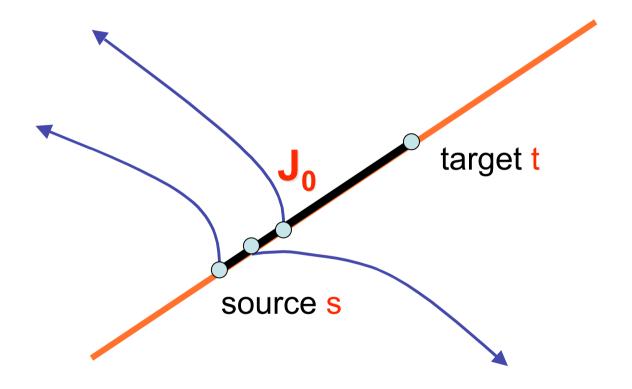


v is a certificate for J

COUNTING ARGUMENT

- 2^d directions
- Lines are split in intervals of length L
- n/L × 2^d intervals in total
- Every node belongs to many intervals, but can be the certificate of at most one interval
- If L<2^d there is one interval J₀ without certificate

L-1 STEPS FROM S TO T



IN EXPECTATION...

- n/L × 2^d n intervals without certificate
- $L = 2^{d-1} \Rightarrow n$ of the 2n intervals are without certificate
- This is true for any trial of the long links
- Hence E = E_D(#interval without certificate) ≥ n
- On the other hand:

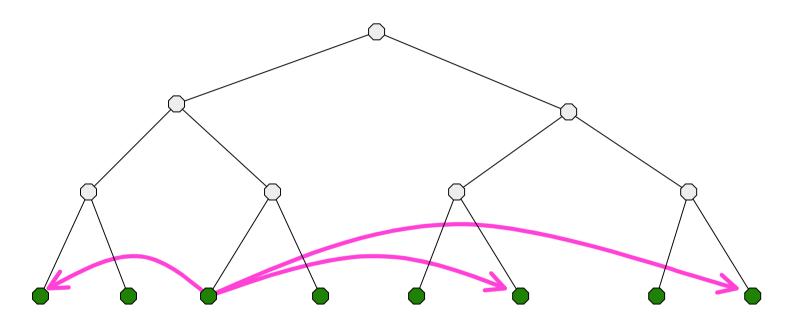
 $E = \sum_{J} Pr(J \text{ has no certificate})$

- Hence there is an interval $J_0=[s,t]$ such that $Pr(J_0 \text{ has no certificate}) \ge 1/2$
- Hence $E_D(\#steps_{s\rightarrow t}) \ge (L-1)/2$ QED

Remark: The proof still holds even if the long links are not set pairwise independently.

HIERARCHICAL MODELS

KLEINBERG'S HIERARCHICAL MODEL

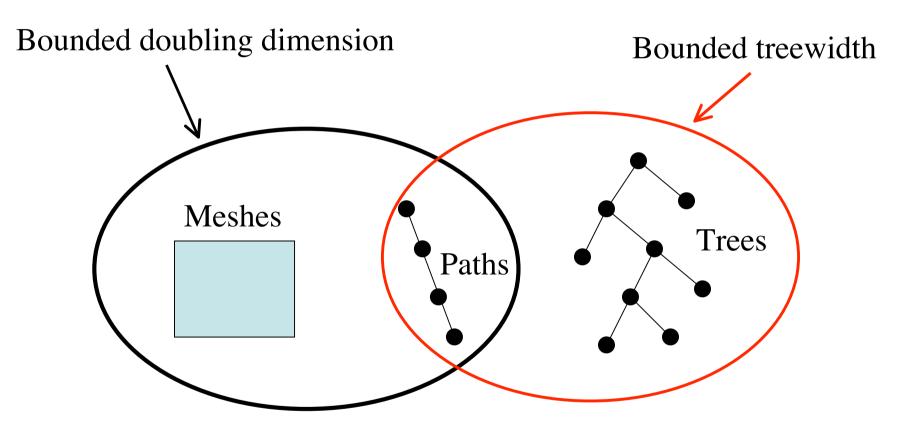


 $\Theta(\log n)$ long links per node $Prob(x\rightarrow y) \approx$ height of their lowest common ancestor

INTERLEAVED HIERARCHIES

- Many hierarchies:
 - place of living
 - professional activity
 - recreative activity
 - etc.
- Can we extract a "global" hierarchy reflecting all these interleaved hierarchies?

GRAPH CLASSES

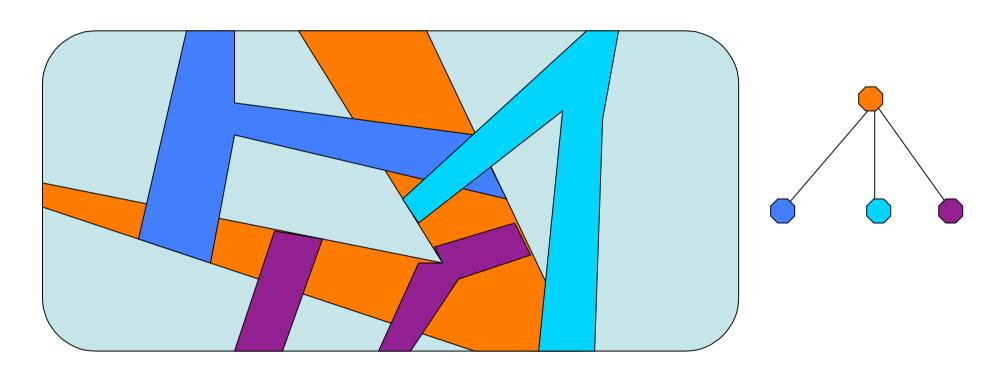


TREE-DECOMPOSITION

Definition: A tree-decomposition of a graph G is a pair (T,X) where T is a tree of node set I and X is a collection $\{X_i \subseteq V(G), i \in I\}$ such that

- $\bigcup_{i \in I} X_i = V(G)$
- \forall e={x,y} \in E(G), \exists i \in I / {x,y} \subseteq X_i
- if $k \in I$ in on the path between i and j in T, then $X_i \cap X_i \subseteq X_k$

RECURSIVE SEPARATORS



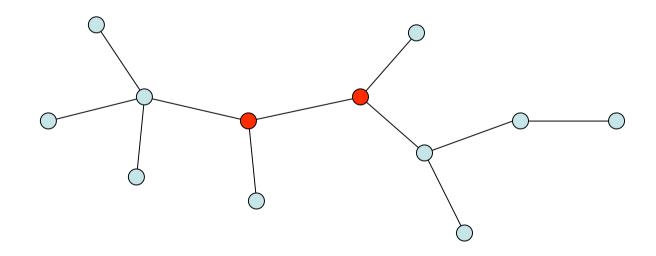
TREEWIDTH

- The width of a tree-decomposition (T,X) is: width(T,X) = max_{i∈I} IX_iI-1
- The treewith of a graph G is the minimum width of any treedecomposition (T,X) of G:

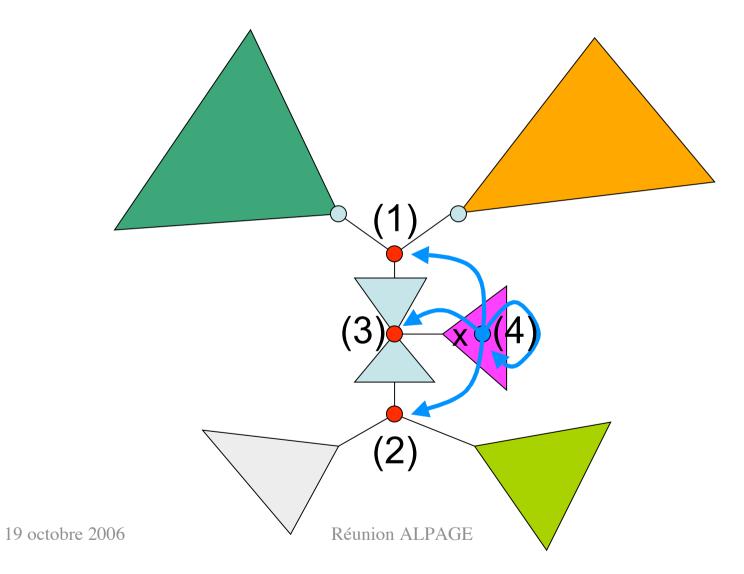
 $tw(G) = min_{(T,X)} width(T,X)$

CENTROID

A centroid of an n-node tree T is a vertex v such that T-{v} is a forest of trees, each of at most n/2 vertices.



TREE-DECOMPOSITION BASED DISTRIBUTION



46

THEOREM

For any n-node graph G of treewidth k, there exists a tree-decomposition based distribution D such that greedy routing in G+D performs in O(k log²n)

expected number of steps.

Application: graphs of bounded treewidth.

PROOF SKETCH

- Let c be the centroid separating the current node x and t.
- It takes O(log n) expect. #steps to reach a node in c.
- The centroid c cannot be visited more than tw(G)+1 times
- There are ≤ log n levels of centroids

REFERENCES

- Cf. Jon Kleinberg's Homepage http://www.cs.cornell.edu/home/kleinber/
- His talk at the International Congress of Mathematicians, 2006

http://icm2006.org/AbsDef/Invited/15_kleinberg.pdf