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INTRODUCTION



INTERACTION NETWORKS

Communication networks

— Internet

— Ad hoc and sensor networks
Societal networks

— The Web

— P2P networks (the unstructured ones)
Social network

— Acquaintance

— Mail exchanges

Biology, linguistics, etc.
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COMMON STATISTICAL
PROPERTIES

* Low density

« “Small world” properties:

— Average distance between two nodes is small,
typically O(log n)

— The probability p that two distinct neighbors u, and
u, of a same node v are neighbors is large.

p =
. «Scale free” properties:

— Heavy tailed probability distributions (e.g., of the
degrees)
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GAUSSIAN VS. HEAVY TAIL

Example : human sizes Example : salaries
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POWER LAW

log py

prob{ X=k } = kK¢

log k
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RANDOM GRAPHS VS.
INTERACTION NETWORKS

- Random graphs
— prob(e exists) = log(n)/n
— low clustering coefficient
— Gaussian distribution of the degrees
* Interaction networks
— High clustering coefficient
— Heavy tailed distribution of the degrees
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NEW PROBLEMATIC

Why these networks share these
properties?
What model for

— Performance analysis of these networks
— Algorithm design for these networks

Impact of the measures?
This lecture addresses



NAVIGABILITY



MILGRAM EXPERIMENT

Source person s (e.g., in Wichita)
Target person t (e.g., in Cambridge)

— Name, professional occupation, city of
living, etc.

Letter transmitted via a chain of
individuals related on a basis

Result: * "’



NAVIGABILITY

- Jon Kleinberg (2000)

— Why should there short chains of
acquaintances linking together arbitrary
pairs of strangers?

— Why should arbitrary pairs of strangers be
able to short chains of acquaintances
that link them together?

* |n other words: how to N a
small worlds?
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AUGMENTED GRAPHS H=G+D

Individuals as nodes of a graph G

— Edges of G model relations between individuals
deducible from their societal positions

A number k of * ” are added to G at

random, according to the probability

distribution D

— Long links model relations between individuals
that be deduced from their societal

positions
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GREEDY ROUTING

IN AUGMENTED GRAPHS

» Source s € V(G)
- Targett & V(G)
» Current node x selects among its deg(x)+k

neighbors the closest to t in G, that is
according to the distance function dist;().

Greedy routing in augmented graphs aims at
modeling the routing process performed by social
entities in Milgram’s experiment.
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AUGMENTED MESHES
KLEINBERG [STOC 2000]

d-dimensional n-node meshes
augmented with d-harmonic links

LT

prob(u—v) = 1/(log(n)*dist(u,v)?)
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HARMONIC DISTRIBUTION

« d-dimensional mesh
- B(x,r) = ball centered at x of radius r

- S(x,r) = sphere centered at x of radius r
+ |n d-dimensional meshes:

IB(x,r)| = rd
1IS(X,r )| = rd-
>, (1/dist(u,v)d) = = 1S(u,r)l/r
~2 1/r=logn
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PERFORMANCES

Expected #steps
to enter B(t,r/2) is O(log n)

For a current node x at distance r from f,
prob{x — B(t,r/2)} is at least ()(1/log n)
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KLEINBERG’S THEOREMS

- Greedy routing performs in O(log=n / k)
expected #steps in d-dimensional meshes
augmented with k links per node, chosen
according to the d-harmonic distribution.

— Note: k = log n = O(log n) expect. #steps
 Greedy routing in d-dimensional meshes

augmented with a h-harmonic distribution,
hzd, performs in (Q(n¢) expected #steps.



EXTENSIONS

» Two-step greedy routing: O(log n / loglog n)
— Coppersmith, Gamarnik, Sviridenko (2002)

 Percolation theory

— Manku, Naor, Wieder (2004)
* NoN routing
 Routing with partial knowledge: O(log'+/d n)
— Martel, Nguyen (2004)

* Non-oblivious routing

— Fraigniaud, Gavoille, Paul (2004)
- Oblivious routing
 Decentralized routing: O(log n * log@log n)
— Lebhar, Schabanel (2004)

- O(log?n) expected #steps to find the route
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AN IMPOSSIBILITY RESULT



NAVIGABLE GRAPHS

« Letf: N — R be a function

» An n-node graph G is f-navigable if
there exists an augmentation D for GG

such that greedy routing in G+D
performs in at most f(n) expected

#steps.
* |.e., for any two nodes u,v we have

E,(#steps,_.,) < f(n)



O(POLYLOG(N))-NAVIGABLE
GRAPHS

- Bounded growth graphs

— Definition: IB(x,2r)l = p IB(x,r)l
— Duchon, Hanusse, Lebhar, Schabanel (2005,2006)

- Bounded doubling dimension

— Definition: DD d if every B(x,2r) can be covered by at
most 29 balls of radius r

— Slivkins (2005)

- Graphs of bounded treewidth

— Fraigniaud (2005)

- Graphs excluding a fixed minor

— Abraham, Gavoille (2006)
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QUESTION

Are all graphs O(polylog(n))-navigable?
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DOUBLING DIMENSION

\_/
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SVILKINS’ THEOREM

» Theorem: Any family of graphs with
doubling dimension O(loglog n) is
navigable.

- Proof: Graphs are augme
—distg(u,v) =r
— prob(u — v) = 1/IB(v,r)!

X Q
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IMPOSSIBILITY RESULT

Theorem
Let d such that
lim,_.,. loglogn/d(n)=0
There exists an infinite family of n-node

graphs with doubling dimension at most d(n)
that are not O(polylog(n))-navigable.

Consequences:
1. Slivkins’ result is tight
2. Not all graphs are O(polylog(n))-navigable
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PROOF OF NON-NAVIGABILITY

The graphs H, with n=p® nodes

19 octobre 2006

X = Xq Xy ... X4
IS connected to all nodes

Y=Y1Y2 - ¥4
such that y, = x;, + a, where

a € {-1,0,+1)

H4 has doubling dimension d
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INTUITIVE APPROACH

 Large doubling dimension d

= every nodes x € H, has choices over
exponentially many directions

» The underlying metric of H;is L




DIRECTIONS

0 = (04, ..., 04) where 6. € {-1,0,+1}
Dirs(u)={v / v, =u, + x, gsi ¥vher'e x; = 1..p/2}

1,+1 +1,+1

-1,0 | | o | +1,0

1,-1 +1,-1
0,-1
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CASE OF SYMMETRIC

DISTRIBUTION
,’O Target t

7/
7/
7/
7/
7/
7/

|
|

|

|

I -~ Disadvantaged

| ) direction

| /// At every step: probability = 1/2¢
I/ to go in the right direction

N\

d/ \
Source s
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-- GENERAL CASE --
DIAGONALS

0,+1

-
i)

Réunion ALPAGE

31



19 octobre 2006

LINES

e

p lines in each direction
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INTERVALS
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CERTIFICATES

v IS a certificate for J
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COUNTING ARGUMENT

24 directions
Lines are split in intervals of length L
n/L x 29intervals in total

Every node belongs to many intervals, but
can be the certificate of at most one interval

If L<2¢ there is one interval J, without
certificate



L-1 STEPS FROM S TO T

target t

source s
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IN EXPECTATION...

n/L x 29- n intervals without certificate
L = 297 = n of the 2n intervals are without certificate

 This is true for any trial of the long links
Hence E = E(#interval without certificate) = n

* On the other hand:
E = >, Pr(J has no certificate)

Hence there is an interval J,=[s,t] such that
Pr(J, has no certificate) =1/2

Hence E(#steps, .,) = (L-1)/2 QED

Remark: The proof still holds even if the
long links are not set pairwise independently.
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HIERARCHICAL MODELS



KLEINBERG’S HIERARCHICAL
MODEL

QN

O(log n) long links per node
Prob(x—y) # height of their lowest common ancestor
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INTERLEAVED HIERARCHIES

* Many hierarchies:
— place of living
— professional activity
— recreative activity
— etc.

- Can we extract a “global” hierarchy reflecting
all these interleaved hierarchies?
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GRAPH CLASSES

Bounded doubling dimension Bounded treewidth
Meshes
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TREE-DECOMPOSITION

Definition: A tree-decomposition of a graph G is
a pair (T,X) where T is a tree of node set | and
Xis a collection {X. C V(G), i € |} such that
— U X; = V(G)

- Ve={x,y}eEG),diel/{xy}C X
— if k& lin on the path betweeniandjin T,
then X, N Xj C X,
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RECURSIVE SEPARATORS

~

"
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TREEWIDTH

* The of a tree-decomposition (T,X)
* The of a graph G is the

minimum width of any tree-
decomposition (T,X) of G:
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CENTROID

A centroid of an n-node tree T is a vertex v
such that T-{v} is a forest of trees, each of at
most n/2 vertices.
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TREE-DECOMPOSITION BASED
DISTRIBUTION

N\ L
VAN
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THEOREM

» For any n-node graph G of treewidth k, there
exists a tree-decomposition based distribution
D such that greedy routing in G+D performs in

O(k log?n)
expected number of steps.
» Application: graphs of bounded treewidth.



PROOF SKETCH

Let c be the centroid separating the current
node x and t.

It takes O(log n) expect. #steps to reach a
node in c.

The centroid ¢ cannot be visited more than
tw(G)+1 times

There are < log n levels of centroids
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