

19/10/2006 ALPAGE

Peers, how many are we? System size estimation in large scale overlays

Ayaldi Ganesh – Microsoft Research Anne-Marie Kermarrec - INRIA/IRISA Erwan Le Merrer – FTR&D/IRISA Laurent Massoulié - Thomson Research

Why count? (Motivations)

- Parameter value setting
- Network monitoring, avoiding hot spot on the requester

- Focus on generic algorithms:
 - fully distributed
 - topology independant (connected graph)
 - no need for extra structure / node state

Outline

- Main counting algorithm classes
- Random Tour and Sample&Collide
- Comparisons in static and dymanic networks
- Discussion on improvement
- Summary / Conclusion

Main counting algorithm classes #1: Probabilistic polling class

- init message spread, and probabilistic response to avoid message implosion
- Ex: Hops Sampling (minHopsReporting)
- D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, A. Demers: Decentralized

Schemes for Size Estimation in Large and Dynamic Groups. NCA 2005.

- gossip based broadcast (to reduce overhead) carrying a distance information from the initiator
- probabilistic response based on this distance («far» nodes have lower chance to reply back)

Main counting algorithm classes #1: Probabilistic polling class

In more details:

- Initiator spreads a message initialised with hopCount=0 and its IP address
- A receiver forwards it to gossipTo neighbors (hopCount++) for gossipFor rounds or until gossipUntil messages have been received
- Once a peer stops gossiping, it sends back a HELLO message to the initiator:
 - with proba. 1 if *hopCount < minHopsReporting*
 - with proba. $\frac{1}{gossipTo^{(hopCount-minHopsReporting)}}$ otherwise
- The size estimation is computed by the initiator based on the number of peer responses and their distance from the initiator

Main counting algorithm classes #2: Gossip-based aggregation

- M. Jelasity and A. Montresor: Epidemic-Style Proactive Aggregation in Large Overlay Networks. ICDCS 2004.
- Idea: «If exactly one node of the system holds a value equal to 1, and all the other values are equal to 0, the average is $\frac{1}{N}$ » 1^{T_0}
- In more details:
 - The initiator takes the value 1 and starts gossiping (reached peers start with 0)
 - At each time interval each peer chooses a random neighbor and swaps it's local value (push/pull) $_{newValue} = \frac{(localValue + neighbor'sValue)}{(localValue + neighbor'sValue)}$
 - At each peer, after an sufficient propagation time $\hat{N} = \frac{1}{value}$

Main counting algorithm classes #3: Random walk based

• Random increasing walk [Bawa et al.]:

Estimating aggregates on a peer-to-peer network. Tech. Rep. 2003.

Here complete graph:

- start from the smallest node ID
- pass to its randomly selected neighbor with a greater ID
- expected path length *l* is $O(\ln N)$ (thus $\hat{N} = e^{l}$)

But knowledge of the topology needed!

We now introduce 2 other random walk based techniques

Randour Tour and Sample&Collide

 L. Massoulié, E. Le Merrer, A.-M. Kermarrec, A. Ganesh: Peer counting and sampling in overlay networks: random walks methods. PODC 2006.

 Random Tour: new system size estimation with a random walk based algorithm

 Sample&Collide: random walk based peer sampling and birthday paradox reversal

Random Tour

Algorithm:

- Initiator *i* initialises a counter value *X* with $\frac{1}{d_i}$
- until the return to *i*, the counter is forwarded to a neighbor *j* chosen uniformly at random, $X \leftarrow X + \frac{1}{-}$
- At counter return on *i*, $\hat{N} = d_i * X$
- Average overhead O(N)

Sample&Collide

Based on the birthday paradox:

- For \sqrt{N} independant samples from a population of size N, the probability that a pair of samples will have the same value is at least $\frac{1}{N}$
- Probability 1 is concentrated around $\sqrt{2N}$

Inverted paradox:

- sample uniformly at random until a collision is found
- the system size is computed from the number of used samples

Sample&Collide

In more details:

- Unbiased sampling emulates continuous time random walks:
 - T>0 is set by the initiator and sent to a random neighbor
 - The receiver chooses U [0,1] and decrements T by $\frac{-(\log(U))}{d}$;
 - if T>0 it then forwards T to a random uniformly selected neighbor
 - otherwise, the current node is the sample (HELLO to the initiator)
- The number of samples X drawn till the collision is used for the estimate $\hat{N} = \frac{X^2}{2}$
- The control parameter I (accuracy/overhead) refines the estimation based on the number of collisions observed ($\hat{N} = \frac{X^2}{21}$)

Randour Tour and Sample&Collide

Counting only a fraction of nodes with certain capacities?

(degree>100, bandwith<100Mb/s, functions, ...)

- Random Tour: only increment x if the node verifies the condition
- Sample&Collide:
 - Samples are added to the sample list only they owns the property
 - System size estimation, and extrapolation from the percentage of sampled nodes with the property

Randour Tour and Sample&Collide

RT vs S&C, accuracy and cost

(100000 nodes, average node degree = 7)

Simulations

Considered metrics

- accuracy
- reactivity
- overhead

Algorithms settings

- HopsSampling: gossipTo=2, gossipFor=gossipUntil=1, minHopsReporting=5
- S&C: T=10, I=200

Network settings

- Simulator based results, no message loss
- Heterogeneous wiring: 1 to 10 neighbors per peer (7.2 average)

Simulations

Static networks

1,000,000 nodes

Simulations Hops Sampling (minHopsReporting)

Simulations Sample&Collide

Simulations

Gossip-based aggregation

Simulations

Dynamic networks

100,000 nodes

HopsSampling is averaged with the last 10 results S&C is used non averaged, 1=200
Aggregation results after 50 rounds, and continuously restarted

Simulations Hops Sampling (minHopsReporting)

Simulations Sample&Collide

SimulationsGossip-based aggregation

Simulations

• 100,000 nodes scale free topology $P(k)=k^{-3}$

Simulations Overhead

Algorithm	S&C	HopsSampling	Aggregation	
Parameters	1=200	averaged (last 10 runs)	50 rounds	
Accuracy	+/- 10%	- 20%	- 1%	
Overhead	0,5 M	2,5 M	10 M	
Prediction	$[sampling cost]*\sqrt{21N}$	Depends of the spreading algo $+$ its param $O(N)$	neters $N*nbRounds*2$ $O(N\log(N))$ for expanders	

 Exemple of accuracy/overhead tradeoff on the 100,000 nodes static network

Discussionsuggested improvements

HopsSampling inaccuracy:

Unbiased algorithm: underestimate factor is due to a non optimal gossip message spread

Well tuned parameters: accurate non averaged results, but needs an idea of the system size!

Use of more generic broadcast techniques? (higher overhead!)

gossipFor=gossipUntil=5

Aggregation, number of rounds to wait:

Instead of using a fix number (how to predict it?), a solution could be to observe the local estimation stabilisation to decide when the estimate is correct

Summary

Tradeoffs capabilities

Sample&Collide is the most flexible algorithm considering accuracy/overhead, with its tuning parameter I that refines the estimations

E.G for I=10: ~+/-40% accuracy & 100,000 messages

Accuracy

Aggregation provides a perfect estimate at the time were the process is launched, if a sufficient number of rounds is awaited

Reaction to dynamicity

Sample&Collide, Aggregation (with stabilisation observation) cope well with dynamicity.

HopsSampling needs a little more time to converge due to averaging

Summary

Practical considerations

 HopsSampling is likely to be the fastest algorithm (broadcast + direct responses)

- HopsSampling, even if lowered by the probabilistic responses, has the drawback of creating a message flood towards the initiator
- Aggregation has the advantage of permitting the system size estimation on each node of the network, not only on the initiator

Conclusion

- New counting approaches, new sampling algorithm
- Suggestions for the use of Aggregation and HopsSampling
- The best algorithm? Once again, no definite answer!

Application needs dependant:

Algorithm	Tradeoff	Accuracy	Dynamicity	Speed	Esimate availability	Hot Spot
HopsSampling				+	-	-
S&C	+		+		-	
Aggregation	-	+	+		+	

Thank you!