
1/ 27

Distributed Scheduling of Multiple
Bag-Of-Task Applications:

Proportionnal Fairness

R. Vannier, A. Legrand

Laboratoire ID-IMAG, CNRS-INRIA Grenoble, France

ALPAGE Working Group, October 19, 2006

2/ 27

Motivation

Large-scale distributed platforms result from the collaboration of
many users:

I sharing resources amongst users should somehow be fair.

I Task regularity (SETI@home, BOINC, . . .) ; steady-state
scheduling.

Designing a Fair and Distributed scheduling algorithm for this
framework.

2/ 27

Motivation

Large-scale distributed platforms result from the collaboration of
many users:

I sharing resources amongst users should somehow be fair.

I Task regularity (SETI@home, BOINC, . . .) ; steady-state
scheduling.

Designing a Fair and Distributed scheduling algorithm for this
framework.

2/ 27

Motivation

Large-scale distributed platforms result from the collaboration of
many users:

I sharing resources amongst users should somehow be fair.

I Task regularity (SETI@home, BOINC, . . .) ; steady-state
scheduling.

Designing a Fair and Distributed scheduling algorithm for this
framework.

3/ 27

Plan

1 Platform and Application Model

2 Lagrangian Optimisation

3 Back to our Problem

4 Simulations: early “results”

5 Perspectives

4/ 27

Plan

1 Platform and Application Model

2 Lagrangian Optimisation

3 Back to our Problem

4 Simulations: early “results”

5 Perspectives

5/ 27

Application model

Multiple applications:

I A set A of K applications A1, . . . , AK

I Each consisting in a large number of same-size independent
tasks ; each application is defined by a communication cost
w(k) (in MFlops) and a communication cost b(k) (in MB).

I Different communication and computation demands for
different applications

A3A2A1

5/ 27

Application model

Multiple applications:

I A set A of K applications A1, . . . , AK

I Each consisting in a large number of same-size independent
tasks ; each application is defined by a communication cost
w(k) (in MFlops) and a communication cost b(k) (in MB).

I Different communication and computation demands for
different applications

A3A2A1

5/ 27

Application model

Multiple applications:

I A set A of K applications A1, . . . , AK

I Each consisting in a large number of same-size independent
tasks ; each application is defined by a communication cost
w(k) (in MFlops) and a communication cost b(k) (in MB).

I Different communication and computation demands for
different applications

A3A2A1

6/ 27

Steady-state scheduling

I All tasks of a given application are identical and independant
; we do not really need to care about where and when (as
opposed to classical scheduling problems)

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by

processor i per time unit: α
(k)
i

I Throughput of application k : Dk =
∑
i∈P

α
(k)
i

6/ 27

Steady-state scheduling

I All tasks of a given application are identical and independant
; we do not really need to care about where and when (as
opposed to classical scheduling problems)

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by

processor i per time unit: α
(k)
i

I Throughput of application k : Dk =
∑
i∈P

α
(k)
i

6/ 27

Steady-state scheduling

I All tasks of a given application are identical and independant
; we do not really need to care about where and when (as
opposed to classical scheduling problems)

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by

processor i per time unit: α
(k)
i

I Throughput of application k : Dk =
∑
i∈P

α
(k)
i

6/ 27

Steady-state scheduling

I All tasks of a given application are identical and independant
; we do not really need to care about where and when (as
opposed to classical scheduling problems)

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by

processor i per time unit: α
(k)
i

I Throughput of application k : Dk =
∑
i∈P

α
(k)
i

6/ 27

Steady-state scheduling

I All tasks of a given application are identical and independant
; we do not really need to care about where and when (as
opposed to classical scheduling problems)

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by

processor i per time unit: α
(k)
i

I Throughput of application k : Dk =
∑
i∈P

α
(k)
i

7/ 27

Platform Model

Pmaster

P1

P2

P4 P5
P6

B4
B5

B6

P3

B3B1

W4
W5

W6

B2

W2 W3W1

I Target platform: master-worker
I Master Pmaster holds all tasks initially
I Workers: P1, . . . , Pp

I Father of Pu: Pf(u)

I Bandwidth of Pf(u) → Pu: Bu (in MB/s)

I Speed of Pu: Wu (in MFlops/s)

I Communications and computations can
be overlapped

I Multi-port communication model

7/ 27

Platform Model

Pmaster

P1

P2

P4 P5
P6

B4
B5

B6

P3

B3B1

W4
W5

W6

B2

W2 W3W1

I Target platform: master-worker
I Master Pmaster holds all tasks initially
I Workers: P1, . . . , Pp

I Father of Pu: Pf(u)

I Bandwidth of Pf(u) → Pu: Bu (in MB/s)

I Speed of Pu: Wu (in MFlops/s)

I Communications and computations can
be overlapped

I Multi-port communication model

7/ 27

Platform Model

Pmaster

P1

P2

P4 P5
P6

B4
B5

B6

P3

B3B1

W4
W5

W6

B2

W2 W3W1

I Target platform: master-worker
I Master Pmaster holds all tasks initially
I Workers: P1, . . . , Pp

I Father of Pu: Pf(u)

I Bandwidth of Pf(u) → Pu: Bu (in MB/s)

I Speed of Pu: Wu (in MFlops/s)

I Communications and computations can
be overlapped

I Multi-port communication model

7/ 27

Platform Model

Pmaster

P1

P2

P4 P5
P6

B4
B5

B6

P3

B3B1

W4
W5

W6

B2

W2 W3W1

I Target platform: master-worker
I Master Pmaster holds all tasks initially
I Workers: P1, . . . , Pp

I Father of Pu: Pf(u)

I Bandwidth of Pf(u) → Pu: Bu (in MB/s)

I Speed of Pu: Wu (in MFlops/s)

I Communications and computations can
be overlapped

I Multi-port communication model

7/ 27

Platform Model

Pmaster

P1

P2

P4 P5
P6

B4
B5

B6

P3

B3B1

W4
W5

W6

B2

W2 W3W1

I Target platform: master-worker
I Master Pmaster holds all tasks initially
I Workers: P1, . . . , Pp

I Father of Pu: Pf(u)

I Bandwidth of Pf(u) → Pu: Bu (in MB/s)

I Speed of Pu: Wu (in MFlops/s)

I Communications and computations can
be overlapped

I Multi-port communication model

8/ 27

Steady-state constraints

I Constraint for computations by Pi:

∀i ∈ P :
∑
k∈A

α
(k)
i · w(k) 6 Wi

I Number of bytes sent on Pf(i) → Pi:

∀i ∈ P :
∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) 6 Bi

I Feasability constraints:

∀i ∈ P,∀k ∈ A : α
(k)
i > 0

We would like to maximize all throughputs Dk.

Defining fairness enables to go from a multi-criteria problem to a
more classical mono-criteria problem.

8/ 27

Steady-state constraints

I Constraint for computations by Pi:

∀i ∈ P :
∑
k∈A

α
(k)
i · w(k) 6 Wi

I Number of bytes sent on Pf(i) → Pi:

∀i ∈ P :
∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) 6 Bi

I Feasability constraints:

∀i ∈ P,∀k ∈ A : α
(k)
i > 0

We would like to maximize all throughputs Dk.

Defining fairness enables to go from a multi-criteria problem to a
more classical mono-criteria problem.

8/ 27

Steady-state constraints

I Constraint for computations by Pi:

∀i ∈ P :
∑
k∈A

α
(k)
i · w(k) 6 Wi

I Number of bytes sent on Pf(i) → Pi:

∀i ∈ P :
∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) 6 Bi

I Feasability constraints:

∀i ∈ P,∀k ∈ A : α
(k)
i > 0

We would like to maximize all throughputs Dk.

Defining fairness enables to go from a multi-criteria problem to a
more classical mono-criteria problem.

8/ 27

Steady-state constraints

I Constraint for computations by Pi:

∀i ∈ P :
∑
k∈A

α
(k)
i · w(k) 6 Wi

I Number of bytes sent on Pf(i) → Pi:

∀i ∈ P :
∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) 6 Bi

I Feasability constraints:

∀i ∈ P,∀k ∈ A : α
(k)
i > 0

We would like to maximize all throughputs Dk.

Defining fairness enables to go from a multi-criteria problem to a
more classical mono-criteria problem.

8/ 27

Steady-state constraints

I Constraint for computations by Pi:

∀i ∈ P :
∑
k∈A

α
(k)
i · w(k) 6 Wi

I Number of bytes sent on Pf(i) → Pi:

∀i ∈ P :
∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) 6 Bi

I Feasability constraints:

∀i ∈ P,∀k ∈ A : α
(k)
i > 0

We would like to maximize all throughputs Dk.

Defining fairness enables to go from a multi-criteria problem to a
more classical mono-criteria problem.

9/ 27

Utility Function

In a general context, each application is characterized by a utility

function uk defined on (α(k)
n)16k6K,16n6N .

In our context, the utility is simply defined by

uk(α) =
∑

n

α(k)
n = Dk

But we could perfectly imagine other utility functions:

uk

Dk

uk

Dk

uk

Dk

uk

Dk

linear Voice over IP threshold price-accounting

10/ 27

Multi-player Optimality

Our goal is to find scheduling strategies such that the utility of
each user is maximized.

Definition: Pareto-optimality.

A vector of strategy is said to be Pareto
optimal if it is impossible to strictly
increase the utility of a player without
strictly decreasing the one of another. In
other words, α̃ is Pareto optimal iff:

∀α, ∃i, ui(α) > ui(α̃) ⇒ ∃j, uj(α) < uj(α̃)

10/ 27

Multi-player Optimality

Our goal is to find scheduling strategies such that the utility of
each user is maximized.

Definition: Pareto-optimality.

A vector of strategy is said to be Pareto
optimal if it is impossible to strictly
increase the utility of a player without
strictly decreasing the one of another. In
other words, α̃ is Pareto optimal iff:

∀α, ∃i, ui(α) > ui(α̃) ⇒ ∃j, uj(α) < uj(α̃)

u2

u1

10/ 27

Multi-player Optimality

Our goal is to find scheduling strategies such that the utility of
each user is maximized.

Definition: Pareto-optimality.

A vector of strategy is said to be Pareto
optimal if it is impossible to strictly
increase the utility of a player without
strictly decreasing the one of another. In
other words, α̃ is Pareto optimal iff:

∀α, ∃i, ui(α) > ui(α̃) ⇒ ∃j, uj(α) < uj(α̃)

u2

u1

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

α(1) · c(1) + α(2) · c(2) 6 Wu
α(1) · b(1) + α(2) · b(2) 6 Bu
α(1) > 0
α(2) > 0

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

11/ 27

Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

D1

D2

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.

12/ 27

Defining Fairness for our framework

I Types d’équité:

D1

D2

D1

D2

D1

D2

Max min Social welfare Proportional
mink Dk

∑
k Dk

∏
k Dk

I A few problems with max-min fairness:
I Not efficient when applications are very different
I Seems to be hard to reach on such platforms [rr2005-45]

I Let’s try proportional fairness!

maximize

(∑
k∈A

lnDk

)

12/ 27

Defining Fairness for our framework

I Types d’équité:

D1

D2

D1

D2

D1

D2

Max min Social welfare Proportional
mink Dk

∑
k Dk

∏
k Dk

I A few problems with max-min fairness:
I Not efficient when applications are very different
I Seems to be hard to reach on such platforms [rr2005-45]

I Let’s try proportional fairness!

maximize

(∑
k∈A

lnDk

)

12/ 27

Defining Fairness for our framework

I Types d’équité:

D1

D2

D1

D2

D1

D2

Max min Social welfare Proportional
mink Dk

∑
k Dk

∏
k Dk

I A few problems with max-min fairness:
I Not efficient when applications are very different
I Seems to be hard to reach on such platforms [rr2005-45]

I Let’s try proportional fairness!

maximize

(∑
k∈A

lnDk

)

12/ 27

Defining Fairness for our framework

I Types d’équité:

D1

D2

D1

D2

D1

D2

Max min Social welfare Proportional
mink Dk

∑
k Dk

∏
k Dk

I A few problems with max-min fairness:
I Not efficient when applications are very different
I Seems to be hard to reach on such platforms [rr2005-45]

I Let’s try proportional fairness!

maximize

(∑
k∈A

lnDk

)

12/ 27

Defining Fairness for our framework

I Types d’équité:

D1

D2

D1

D2

D1

D2

Max min Social welfare Proportional
mink Dk

∑
k Dk

∏
k Dk

I A few problems with max-min fairness:
I Not efficient when applications are very different
I Seems to be hard to reach on such platforms [rr2005-45]

I Let’s try proportional fairness!

maximize

(∑
k∈A

lnDk

)

13/ 27

A new optimization problem

I

Maximize f(α) =
∑
k∈A

ln
(∑

i∈P

α
(k)
i

)
under the constraints

∀i ∈ P :
∑
k∈A

α
(k)
i · w(k) 6 Wi (Computations)

∀i ∈ P :
∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) 6 Bi (Communications)

∀i ∈ P,∀k ∈ A : α
(k)
i > 0 (Feasability)

I Can be solved in polynomial time with semi-definite
programming. It is very centralized though.

Can we solve it in a distributed way ?

14/ 27

Plan

1 Platform and Application Model

2 Lagrangian Optimisation

3 Back to our Problem

4 Simulations: early “results”

5 Perspectives

15/ 27

Lagrangian Optimisation: basics

I Designed to solve non linear optimization problems:
I Let α → f(α) be a function to maximize
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints:
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α)

I The dual functionnal: d(λ) = max
α>0

L(α, λ)

I Under some weak hypothesis, solving (P) is equivalent to
solve the dual problem:

(D)

{
minimize d(λ)
λ > 0

15/ 27

Lagrangian Optimisation: basics

I Designed to solve non linear optimization problems:
I Let α → f(α) be a function to maximize
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints:
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α)

I The dual functionnal: d(λ) = max
α>0

L(α, λ)

I Under some weak hypothesis, solving (P) is equivalent to
solve the dual problem:

(D)

{
minimize d(λ)
λ > 0

15/ 27

Lagrangian Optimisation: basics

I Designed to solve non linear optimization problems:
I Let α → f(α) be a function to maximize
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints:
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α)

I The dual functionnal: d(λ) = max
α>0

L(α, λ)

I Under some weak hypothesis, solving (P) is equivalent to
solve the dual problem:

(D)

{
minimize d(λ)
λ > 0

15/ 27

Lagrangian Optimisation: basics

I Designed to solve non linear optimization problems:
I Let α → f(α) be a function to maximize
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints:
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α)

I The dual functionnal: d(λ) = max
α>0

L(α, λ)

I Under some weak hypothesis, solving (P) is equivalent to
solve the dual problem:

(D)

{
minimize d(λ)
λ > 0

15/ 27

Lagrangian Optimisation: basics

I Designed to solve non linear optimization problems:
I Let α → f(α) be a function to maximize
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints:
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α)

I The dual functionnal: d(λ) = max
α>0

L(α, λ)

I Under some weak hypothesis, solving (P) is equivalent to
solve the dual problem:

(D)

{
minimize d(λ)
λ > 0

So what?..

I Two coupled problems with simple constraints.

I The structure of constraints is transposed to
(D).

I This technique has been used successfully for
network resource sharing.

16/ 27

Plan

1 Platform and Application Model

2 Lagrangian Optimisation

3 Back to our Problem

4 Simulations: early “results”

5 Perspectives

17/ 27

Trying to use Lagrangian optimization

I What does the Lagrangien function look like ?

L(α, λ, µ) = f(α)−
∑
i∈P

λi ·
(∑

k∈A

α
(k)
i · w(k) −Wi

)
−
∑
i∈P

µi ·
(∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) −Bi

)

I Let’s compute the dual function d(λ, µ) = maxα>0 L(α, λ, µ):

∂L
∂α

(k)
i

= 0 ⇒ 1
Dk

= min
i∈P

(
w(k)λi+b(k)

∑
j tel que
j∈M→i

µj

)
= min

i∈P
Π(i, k)

17/ 27

Trying to use Lagrangian optimization

I What does the Lagrangien function look like ?

L(α, λ, µ) = f(α)−
∑
i∈P

λi ·
(∑

k∈A

α
(k)
i · w(k) −Wi

)
−
∑
i∈P

µi ·
(∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) −Bi

)

I Let’s compute the dual function d(λ, µ) = maxα>0 L(α, λ, µ):

∂L
∂α

(k)
i

= 0 ⇒ 1
Dk

= min
i∈P

(
w(k)λi+b(k)

∑
j tel que
j∈M→i

µj

)
= min

i∈P
Π(i, k)

18/ 27

Trying to use Lagrangian optimization (cont’d)

λ4

µ4

P1

P2

P3

P6
P5

P4

Pmaster

µ2

I Π(i, k) = w(k)λi + b(k)
∑

j tel que
j∈M→i

µj

can be seen as the price application k has to
pay to access Pi. The best deal is thus:

Π(k) = min
i∈P

Π(i, k)

I What does the dual function look like?

d(λ, µ) =
∑
i∈P

(
λiWi + µiBi

)
−
∑
k∈A

ln
(
Π(k)

)
− cte

I d is convex. Distributed gradient methods can be used to
minimize d: each resource will update it’s price accordingly.

I Minimizing d can be seen as maximizing the global income of
resources.

I The whole process can hence be seen as a bargain between
applications and resources.

18/ 27

Trying to use Lagrangian optimization (cont’d)

λ4

µ4

P1

P2

P3

P6
P5

P4

Pmaster

µ2

I Π(i, k) = w(k)λi + b(k)
∑

j tel que
j∈M→i

µj

can be seen as the price application k has to
pay to access Pi. The best deal is thus:

Π(k) = min
i∈P

Π(i, k)

I What does the dual function look like?

d(λ, µ) =
∑
i∈P

(
λiWi + µiBi

)
−
∑
k∈A

ln
(
Π(k)

)
− cte

I d is convex. Distributed gradient methods can be used to
minimize d: each resource will update it’s price accordingly.

I Minimizing d can be seen as maximizing the global income of
resources.

I The whole process can hence be seen as a bargain between
applications and resources.

18/ 27

Trying to use Lagrangian optimization (cont’d)

λ4

µ4

P1

P2

P3

P6
P5

P4

Pmaster

µ2

I Π(i, k) = w(k)λi + b(k)
∑

j tel que
j∈M→i

µj

can be seen as the price application k has to
pay to access Pi. The best deal is thus:

Π(k) = min
i∈P

Π(i, k)

I What does the dual function look like?

d(λ, µ) =
∑
i∈P

(
λiWi + µiBi

)
−
∑
k∈A

ln
(
Π(k)

)
− cte

I d is convex. Distributed gradient methods can be used to
minimize d: each resource will update it’s price accordingly.

I Minimizing d can be seen as maximizing the global income of
resources.

I The whole process can hence be seen as a bargain between
applications and resources.

18/ 27

Trying to use Lagrangian optimization (cont’d)

λ4

µ4

P1

P2

P3

P6
P5

P4

Pmaster

µ2

I Π(i, k) = w(k)λi + b(k)
∑

j tel que
j∈M→i

µj

can be seen as the price application k has to
pay to access Pi. The best deal is thus:

Π(k) = min
i∈P

Π(i, k)

I What does the dual function look like?

d(λ, µ) =
∑
i∈P

(
λiWi + µiBi

)
−
∑
k∈A

ln
(
Π(k)

)
− cte

I d is convex. Distributed gradient methods can be used to
minimize d: each resource will update it’s price accordingly.

I Minimizing d can be seen as maximizing the global income of
resources.

I The whole process can hence be seen as a bargain between
applications and resources.

18/ 27

Trying to use Lagrangian optimization (cont’d)

λ4

µ4

P1

P2

P3

P6
P5

P4

Pmaster

µ2

I Π(i, k) = w(k)λi + b(k)
∑

j tel que
j∈M→i

µj

can be seen as the price application k has to
pay to access Pi. The best deal is thus:

Π(k) = min
i∈P

Π(i, k)

I What does the dual function look like?

d(λ, µ) =
∑
i∈P

(
λiWi + µiBi

)
−
∑
k∈A

ln
(
Π(k)

)
− cte

I d is convex. Distributed gradient methods can be used to
minimize d: each resource will update it’s price accordingly.

I Minimizing d can be seen as maximizing the global income of
resources.

I The whole process can hence be seen as a bargain between
applications and resources.

18/ 27

Trying to use Lagrangian optimization (cont’d)

λ4

µ4

P1

P2

P3

P6
P5

P4

Pmaster

µ2

I Π(i, k) = w(k)λi + b(k)
∑

j tel que
j∈M→i

µj

can be seen as the price application k has to
pay to access Pi. The best deal is thus:

Π(k) = min
i∈P

Π(i, k)

I What does the dual function look like?

d(λ, µ) =
∑
i∈P

(
λiWi + µiBi

)
−
∑
k∈A

ln
(
Π(k)

)
− cte

I d is convex. Distributed gradient methods can be used to
minimize d: each resource will update it’s price accordingly.

I Minimizing d can be seen as maximizing the global income of
resources.

I The whole process can hence be seen as a bargain between
applications and resources.

19/ 27

Computing the prices

I Sketch of the algorithm:
I Each worker gives its best local deal (depending on its own λ

and µ and on the best deals of its own workers) to its master.
I Best deals are thus propagated to the root master along the

tree
I For each application, each master informs its workers that have

the best deal that he wishes to use them.
I Best workers are thus selected along the tree.
I Each worker updates its price depending on applications that

want to use its resource.

I Main difficulties:
I The Lagrangian function is not C2 ⇒ there are oscillations

around angles.
I ln is not defined in 0. Step-size should thus be carefully

chosen. . .

19/ 27

Computing the prices

I Sketch of the algorithm:
I Each worker gives its best local deal (depending on its own λ

and µ and on the best deals of its own workers) to its master.
I Best deals are thus propagated to the root master along the

tree
I For each application, each master informs its workers that have

the best deal that he wishes to use them.
I Best workers are thus selected along the tree.
I Each worker updates its price depending on applications that

want to use its resource.

I Main difficulties:
I The Lagrangian function is not C2 ⇒ there are oscillations

around angles.
I ln is not defined in 0. Step-size should thus be carefully

chosen. . .

19/ 27

Computing the prices

I Sketch of the algorithm:
I Each worker gives its best local deal (depending on its own λ

and µ and on the best deals of its own workers) to its master.
I Best deals are thus propagated to the root master along the

tree
I For each application, each master informs its workers that have

the best deal that he wishes to use them.
I Best workers are thus selected along the tree.
I Each worker updates its price depending on applications that

want to use its resource.

I Main difficulties:
I The Lagrangian function is not C2 ⇒ there are oscillations

around angles.
I ln is not defined in 0. Step-size should thus be carefully

chosen. . .

19/ 27

Computing the prices

I Sketch of the algorithm:
I Each worker gives its best local deal (depending on its own λ

and µ and on the best deals of its own workers) to its master.
I Best deals are thus propagated to the root master along the

tree
I For each application, each master informs its workers that have

the best deal that he wishes to use them.
I Best workers are thus selected along the tree.
I Each worker updates its price depending on applications that

want to use its resource.

I Main difficulties:
I The Lagrangian function is not C2 ⇒ there are oscillations

around angles.
I ln is not defined in 0. Step-size should thus be carefully

chosen. . .

20/ 27

Coming back to our original problem

I We found the optimal deal (Π(k)) and prices (λ’s and µ’s)

but we still don’t have the optimal values of the α
(k)
i ’s.

I However, we have the throughput of each application:
Dk = Π(k)

I Given feasible values for the Dk’s, how can we find valid
values for the α

(k)
i ’s ?. . .

I . . . Using Olivier’s adaptation of the Awerbuch Leighton
algorithm (originally designed for the multi-commodity flow
problem)!

I Our original problem is decomposed in 2 sub-problems:
I Solving the dual problem: determining optimal prices (λ, µ)
I Finding valid rates α

(k)
i from the prices.

I Both problems are optimally solved (or approximated) with a
distributed algorithm!

20/ 27

Coming back to our original problem

I We found the optimal deal (Π(k)) and prices (λ’s and µ’s)

but we still don’t have the optimal values of the α
(k)
i ’s.

I However, we have the throughput of each application:
Dk = Π(k)

I Given feasible values for the Dk’s, how can we find valid
values for the α

(k)
i ’s ?. . .

I . . . Using Olivier’s adaptation of the Awerbuch Leighton
algorithm (originally designed for the multi-commodity flow
problem)!

I Our original problem is decomposed in 2 sub-problems:
I Solving the dual problem: determining optimal prices (λ, µ)
I Finding valid rates α

(k)
i from the prices.

I Both problems are optimally solved (or approximated) with a
distributed algorithm!

20/ 27

Coming back to our original problem

I We found the optimal deal (Π(k)) and prices (λ’s and µ’s)

but we still don’t have the optimal values of the α
(k)
i ’s.

I However, we have the throughput of each application:
Dk = Π(k)

I Given feasible values for the Dk’s, how can we find valid
values for the α

(k)
i ’s ?. . .

I . . . Using Olivier’s adaptation of the Awerbuch Leighton
algorithm (originally designed for the multi-commodity flow
problem)!

I Our original problem is decomposed in 2 sub-problems:
I Solving the dual problem: determining optimal prices (λ, µ)
I Finding valid rates α

(k)
i from the prices.

I Both problems are optimally solved (or approximated) with a
distributed algorithm!

20/ 27

Coming back to our original problem

I We found the optimal deal (Π(k)) and prices (λ’s and µ’s)

but we still don’t have the optimal values of the α
(k)
i ’s.

I However, we have the throughput of each application:
Dk = Π(k)

I Given feasible values for the Dk’s, how can we find valid
values for the α

(k)
i ’s ?. . .

I . . . Using Olivier’s adaptation of the Awerbuch Leighton
algorithm (originally designed for the multi-commodity flow
problem)!

I Our original problem is decomposed in 2 sub-problems:
I Solving the dual problem: determining optimal prices (λ, µ)
I Finding valid rates α

(k)
i from the prices.

I Both problems are optimally solved (or approximated) with a
distributed algorithm!

20/ 27

Coming back to our original problem

I We found the optimal deal (Π(k)) and prices (λ’s and µ’s)

but we still don’t have the optimal values of the α
(k)
i ’s.

I However, we have the throughput of each application:
Dk = Π(k)

I Given feasible values for the Dk’s, how can we find valid
values for the α

(k)
i ’s ?. . .

I . . . Using Olivier’s adaptation of the Awerbuch Leighton
algorithm (originally designed for the multi-commodity flow
problem)!

I Our original problem is decomposed in 2 sub-problems:
I Solving the dual problem: determining optimal prices (λ, µ)
I Finding valid rates α

(k)
i from the prices.

I Both problems are optimally solved (or approximated) with a
distributed algorithm!

20/ 27

Coming back to our original problem

I We found the optimal deal (Π(k)) and prices (λ’s and µ’s)

but we still don’t have the optimal values of the α
(k)
i ’s.

I However, we have the throughput of each application:
Dk = Π(k)

I Given feasible values for the Dk’s, how can we find valid
values for the α

(k)
i ’s ?. . .

I . . . Using Olivier’s adaptation of the Awerbuch Leighton
algorithm (originally designed for the multi-commodity flow
problem)!

I Our original problem is decomposed in 2 sub-problems:
I Solving the dual problem: determining optimal prices (λ, µ)
I Finding valid rates α

(k)
i from the prices.

I Both problems are optimally solved (or approximated) with a
distributed algorithm!

21/ 27

Plan

1 Platform and Application Model

2 Lagrangian Optimisation

3 Back to our Problem

4 Simulations: early “results”

5 Perspectives

22/ 27

SimGrid, MSG, plates-formes tiers

I The simulator is SimGrid.

I The platform generator is Tiers, but very simple trees here.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite
programming.

22/ 27

SimGrid, MSG, plates-formes tiers

I The simulator is SimGrid.

I The platform generator is Tiers, but very simple trees here.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite
programming.

22/ 27

SimGrid, MSG, plates-formes tiers

I The simulator is SimGrid.

I The platform generator is Tiers, but very simple trees here.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite
programming.

22/ 27

SimGrid, MSG, plates-formes tiers

I The simulator is SimGrid.

I The platform generator is Tiers, but very simple trees here.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite
programming.

23/ 27

Convergence

I 6 processors, 2 applications

I Trajectories merge

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 25 30 35 40 45 50

V
a
lu

e

Time (s)

Bacchus.M
Artemis.L

Chronos.M
Chronos.L

Demeter.M
Hera.M
Eros.L

Demeter.L
Hera.L

Artemis.M
Bacchus.L

Eros.M

23/ 27

Convergence

I 6 processors, 2 applications

I Trajectories merge

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 25 30 35 40 45 50

V
a
lu

e

Time (s)

Bacchus.M
Artemis.L

Chronos.M
Chronos.L

Demeter.M
Hera.M
Eros.L

Demeter.L
Hera.L

Artemis.M
Bacchus.L

Eros.M

24/ 27

Oscillations: choosing the right step

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 30 40 50 60 70 80 90 100 110

V
a
lu

e

Time (s)

Bacchus.M
Artemis.L

Chronos.M
Chronos.L

Demeter.M
Hera.M
Eros.L

Demeter.L
Hera.L

Artemis.M
Bacchus.L

Eros.M

(a) σ = 1.5.10−2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 30 40 50 60 70 80 90 100 110

V
a
lu

e

Time (s)

Bacchus.M
Artemis.L

Chronos.M
Chronos.L

Demeter.M
Hera.M
Eros.L

Demeter.L
Hera.L

Artemis.M
Bacchus.L

Eros.M

(b) σ = 3.10−3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 30 40 50 60 70 80 90 100 110

V
a
lu

e

Time (s)

Bacchus.M
Artemis.L

Chronos.M
Chronos.L

Demeter.M
Hera.M
Eros.L

Demeter.L
Hera.L

Artemis.M
Bacchus.L

Eros.M

(c) σ = 1.0.10−5

25/ 27

Plan

1 Platform and Application Model

2 Lagrangian Optimisation

3 Back to our Problem

4 Simulations: early “results”

5 Perspectives

26/ 27

Perpectives

I Speeding up the bargain
I Trying asynchronous steps.
I Smoothing the min.
I Studying the ability to react to platform changes.

I Extending to general platforms with tree deployments is trivial.

I Trying other fairness measures.

I Implementing the Awerbuch Leighton algorithm and coupling
with the bargain ; will it work in practice ?

26/ 27

Perpectives

I Speeding up the bargain
I Trying asynchronous steps.
I Smoothing the min.
I Studying the ability to react to platform changes.

I Extending to general platforms with tree deployments is trivial.

I Trying other fairness measures.

I Implementing the Awerbuch Leighton algorithm and coupling
with the bargain ; will it work in practice ?

26/ 27

Perpectives

I Speeding up the bargain
I Trying asynchronous steps.
I Smoothing the min.
I Studying the ability to react to platform changes.

I Extending to general platforms with tree deployments is trivial.

I Trying other fairness measures.

I Implementing the Awerbuch Leighton algorithm and coupling
with the bargain ; will it work in practice ?

26/ 27

Perpectives

I Speeding up the bargain
I Trying asynchronous steps.
I Smoothing the min.
I Studying the ability to react to platform changes.

I Extending to general platforms with tree deployments is trivial.

I Trying other fairness measures.

I Implementing the Awerbuch Leighton algorithm and coupling
with the bargain ; will it work in practice ?

27/ 27

Bibliographie

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal,
and Y. Robert.
Scheduling multiple bags of tasks on heterogeneous
master-worker platforms: centralized versus distributed
solutions.
Research Report 2005-45, LIP, ENS Lyon, France, Sept. 2005.
Available at graal.ens-lyon.fr/∼yrobert/rr2005-45.ps.

graal.ens-lyon.fr/~yrobert/rr2005-45.ps

	Platform and Application Model
	Lagrangian Optimisation
	Back to our Problem
	Simulations: early ``results''
	Perspectives

