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Motivation

Large-scale distributed platforms result from the collaboration of
many users:

I sharing resources amongst users should somehow be fair.

I Task regularity (SETI@home, BOINC, . . . ) ; steady-state
scheduling.

Designing a Fair and Distributed scheduling algorithm for this
framework.
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Application model

Multiple applications:

I A set A of K applications A1, . . . , AK

I Each consisting in a large number of same-size independent
tasks ; each application is defined by a communication cost
w(k) (in MFlops) and a communication cost b(k) (in MB).

I Different communication and computation demands for
different applications

A3A2A1
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Steady-state scheduling

I All tasks of a given application are identical and independant
; we do not really need to care about where and when (as
opposed to classical scheduling problems)

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by

processor i per time unit: α
(k)
i

I Throughput of application k : Dk =
∑
i∈P

α
(k)
i
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Platform Model
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I Target platform: master-worker
I Master Pmaster holds all tasks initially
I Workers: P1, . . . , Pp

I Father of Pu: Pf(u)

I Bandwidth of Pf(u) → Pu: Bu (in MB/s)

I Speed of Pu: Wu (in MFlops/s)

I Communications and computations can
be overlapped

I Multi-port communication model
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Steady-state constraints

I Constraint for computations by Pi:

∀i ∈ P :
∑
k∈A

α
(k)
i · w(k) 6 Wi

I Number of bytes sent on Pf(i) → Pi:

∀i ∈ P :
∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) 6 Bi

I Feasability constraints:

∀i ∈ P,∀k ∈ A : α
(k)
i > 0

We would like to maximize all throughputs Dk.

Defining fairness enables to go from a multi-criteria problem to a
more classical mono-criteria problem.
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Utility Function

In a general context, each application is characterized by a utility

function uk defined on (α(k)
n )16k6K,16n6N .

In our context, the utility is simply defined by

uk(α) =
∑

n

α(k)
n = Dk

But we could perfectly imagine other utility functions:

uk

Dk

uk

Dk

uk

Dk

uk

Dk

linear Voice over IP threshold price-accounting
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Multi-player Optimality

Our goal is to find scheduling strategies such that the utility of
each user is maximized.

Definition: Pareto-optimality.

A vector of strategy is said to be Pareto
optimal if it is impossible to strictly
increase the utility of a player without
strictly decreasing the one of another. In
other words, α̃ is Pareto optimal iff:

∀α, ∃i, ui(α) > ui(α̃) ⇒ ∃j, uj(α) < uj(α̃)
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Utility Set and Fairness

How can fair be defined? Does it always mean “give the same
thing to everyone”? How can efficiency be defined?

α(1) · c(1) + α(2) · c(2) 6 Wu
α(1) · b(1) + α(2) · b(2) 6 Bu
α(1) > 0
α(2) > 0

D1

D2

D1

D2

Conflict Synergy

D1

D2

D1

D2

Independancy Fairness

Fairness can be seen as the trade-off between individual
satisfaction and global satisfaction.
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Defining Fairness for our framework

I Types d’équité:

D1

D2

D1

D2

D1

D2

Max min Social welfare Proportional
mink Dk

∑
k Dk

∏
k Dk

I A few problems with max-min fairness:
I Not efficient when applications are very different
I Seems to be hard to reach on such platforms [rr2005-45]

I Let’s try proportional fairness!

maximize

(∑
k∈A

lnDk

)
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A new optimization problem

I

Maximize f(α) =
∑
k∈A

ln
(∑

i∈P

α
(k)
i

)
under the constraints

∀i ∈ P :
∑
k∈A

α
(k)
i · w(k) 6 Wi (Computations)

∀i ∈ P :
∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) 6 Bi (Communications)

∀i ∈ P,∀k ∈ A : α
(k)
i > 0 (Feasability)

I Can be solved in polynomial time with semi-definite
programming. It is very centralized though.

Can we solve it in a distributed way ?
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Lagrangian Optimisation: basics

I Designed to solve non linear optimization problems:
I Let α → f(α) be a function to maximize
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints:
I We wish to solve:

(P )

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α)

I The dual functionnal: d(λ) = max
α>0

L(α, λ)

I Under some weak hypothesis, solving (P ) is equivalent to
solve the dual problem:

(D)

{
minimize d(λ)
λ > 0
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λiCi(α)

I The dual functionnal: d(λ) = max
α>0

L(α, λ)

I Under some weak hypothesis, solving (P ) is equivalent to
solve the dual problem:

(D)

{
minimize d(λ)
λ > 0
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λiCi(α)

I The dual functionnal: d(λ) = max
α>0

L(α, λ)

I Under some weak hypothesis, solving (P ) is equivalent to
solve the dual problem:

(D)

{
minimize d(λ)
λ > 0

So what?..

I Two coupled problems with simple constraints.

I The structure of constraints is transposed to
(D).

I This technique has been used successfully for
network resource sharing.
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Trying to use Lagrangian optimization

I What does the Lagrangien function look like ?

L(α, λ, µ) = f(α)−
∑
i∈P

λi ·
(∑

k∈A

α
(k)
i · w(k) −Wi

)
−
∑
i∈P

µi ·
( ∑

j tel que
i∈M→j

∑
k∈A

α
(k)
j · b(k) −Bi

)

I Let’s compute the dual function d(λ, µ) = maxα>0 L(α, λ, µ):

∂L
∂α

(k)
i

= 0 ⇒ 1
Dk

= min
i∈P

(
w(k)λi+b(k)

∑
j tel que
j∈M→i

µj

)
= min

i∈P
Π(i, k)
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Trying to use Lagrangian optimization (cont’d)

λ4

µ4

P1

P2

P3

P6
P5

P4

Pmaster

µ2

I Π(i, k) = w(k)λi + b(k)
∑

j tel que
j∈M→i

µj

can be seen as the price application k has to
pay to access Pi. The best deal is thus:

Π(k) = min
i∈P

Π(i, k)

I What does the dual function look like?

d(λ, µ) =
∑
i∈P

(
λiWi + µiBi

)
−
∑
k∈A

ln
(
Π(k)

)
− cte

I d is convex. Distributed gradient methods can be used to
minimize d: each resource will update it’s price accordingly.

I Minimizing d can be seen as maximizing the global income of
resources.

I The whole process can hence be seen as a bargain between
applications and resources.
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Computing the prices

I Sketch of the algorithm:
I Each worker gives its best local deal (depending on its own λ

and µ and on the best deals of its own workers) to its master.
I Best deals are thus propagated to the root master along the

tree
I For each application, each master informs its workers that have

the best deal that he wishes to use them.
I Best workers are thus selected along the tree.
I Each worker updates its price depending on applications that

want to use its resource.

I Main difficulties:
I The Lagrangian function is not C2 ⇒ there are oscillations

around angles.
I ln is not defined in 0. Step-size should thus be carefully

chosen. . .
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Coming back to our original problem

I We found the optimal deal (Π(k)) and prices (λ’s and µ’s)

but we still don’t have the optimal values of the α
(k)
i ’s.

I However, we have the throughput of each application:
Dk = Π(k)

I Given feasible values for the Dk’s, how can we find valid
values for the α

(k)
i ’s ?. . .

I . . . Using Olivier’s adaptation of the Awerbuch Leighton
algorithm (originally designed for the multi-commodity flow
problem)!

I Our original problem is decomposed in 2 sub-problems:
I Solving the dual problem: determining optimal prices (λ, µ)
I Finding valid rates α

(k)
i from the prices.

I Both problems are optimally solved (or approximated) with a
distributed algorithm!
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SimGrid, MSG, plates-formes tiers

I The simulator is SimGrid.

I The platform generator is Tiers, but very simple trees here.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite
programming.
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Convergence

I 6 processors, 2 applications

I Trajectories merge
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Oscillations: choosing the right step
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(a) σ = 1.5.10−2
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(b) σ = 3.10−3
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(c) σ = 1.0.10−5
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Perpectives

I Speeding up the bargain
I Trying asynchronous steps.
I Smoothing the min.
I Studying the ability to react to platform changes.

I Extending to general platforms with tree deployments is trivial.

I Trying other fairness measures.

I Implementing the Awerbuch Leighton algorithm and coupling
with the bargain ; will it work in practice ?
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