Checking the Validity of the Augmented Graph Model

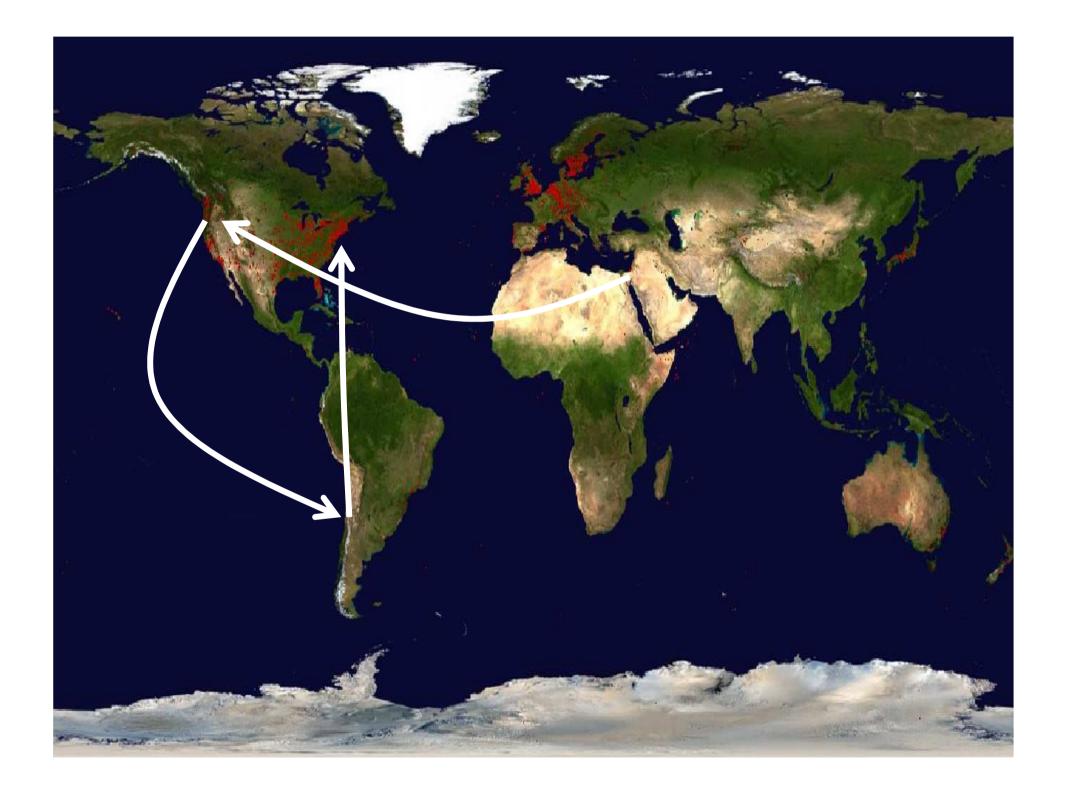
Pierre Fraigniaud
CNRS
University Paris Diderot

Milgram Experiment (60's)

Name: Paul Johnson

Professional occupation: Broker

Place of living: Boston, Massachusetts



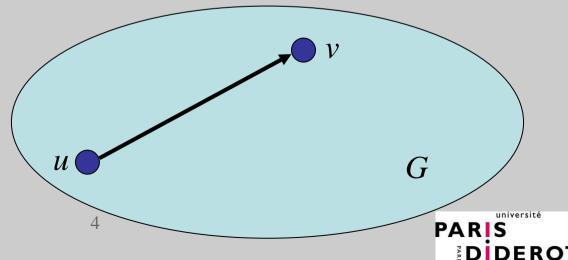
Model (G, φ)

- A graph G, called "base graph"
- A collection of probability distributions:

$$\varphi = \{\varphi_u : u \in V(G)\}$$

called "augmenting distribution"

$$\varphi_{u}(v) = Pr(u \rightarrow v)$$



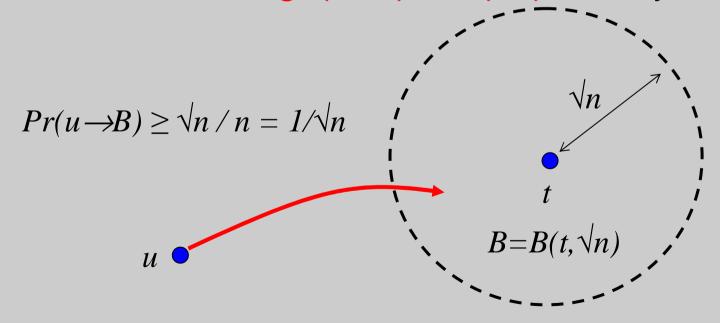
Greedy diameter of (G, φ)

- Greedy routing:
 - Every intermediate node selects its neighbor (possibly its long range contact) that is closer to the target in G, and forwards to it.
- Greedy diameter:
 - $-E_{\varphi}(s,t)$ = expected #steps of greedy routing from s to t in G augmented by φ
 - $-gd(G,\varphi) = max_{(s,t) \in V(G)\times V(G)} \mathbf{E}_{\varphi}(s,t)$
- Remark: $gd(G, \varphi) \ge diameter(G, \varphi)$

Upper bound

Theorem [Peleg 2005]

The uniform augmenting scheme U satisfies $gd(G,U) \leq O(\sqrt{n})$ for any G



Lower bound

Theorem [F., Lebhar, Lotker, 2006]

There are graphs G such that, for any augmenting distribution φ ,

 $gd(G,\varphi) \geq \Omega(n^{1/\sqrt{\log(n)}})$

Ball growth

Definition

A graph G has ball growth $\leq \rho$ if for any node x and any radius r, $|B(x,2r)| \leq \rho |B(x,r)|$

Theorem

[Duchon, Hanusse, Lebhar, Schabanel, 2005, 2006]

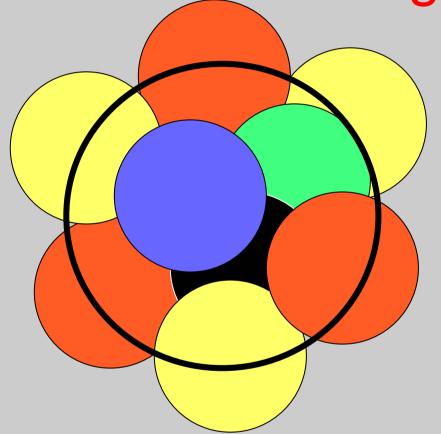
For any graph G of ball growth $\leq \rho$ there exists φ such that $gd(G,\varphi) \leq polylog n$

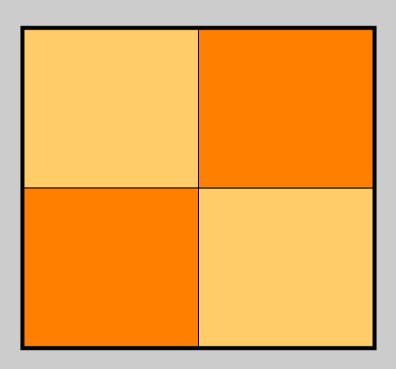
Proof.

Density-based distribution:

If $dist_G(u,v) = r$ then $\varphi_u(v) \approx 1/|B(u,r)|$

Doubling dimension





Doubling dimension

Definition

A graph G has doubling dimension $\leq d$ if every B(x,2r) can be covered by $\leq 2^d$ balls of radius r

Theorem [Slivkins, 2005]

For any graph G of doubling dimension O(loglog n) there exists φ such that $gd(G,\varphi) \leq polylog n$

Extracting the long range links

Let $H \in (G, \varphi)$, i.e., $E(H) = E(G) \cup F$

Objective: extracting *F* from *H*.

Maximum Likelihood Method (MLM)

Compute the edge-set $S \subseteq E(H)$ of cardinality n that maximizes

Pr(H | S is the set of long range links)

Difficulties

- Exponential number of sets S
- 2. Requires the knowledge of φ

Local Maximum Likelihood Method (LMLM)

• For $H \in (G, \varphi)$, with $E(H) = E(G) \cup F$, LMLM decides whether $e \in F$ depending on

- Augmenting distribution φ :
 - [Chung, Lu, 2004] [Andersen, Chung, Lu, 2006]

Power law distribution

[F., Lebhar, Lotker, 2007]

Density-based distribution

If $dist_G(u,v) = r$ then $\varphi_u(v) \approx 1/|B(u,r)|$

Difficulty: locality!

Clustering hypothesis on G

- For every e = (u,v) ∈ E(G), there exist at least k disjoint paths of length at most L between u and v [Chung, Lu, 2004]
- For every e = (u,v) ∈ E(G), there at least k units of flow can be pushed from u to v along paths of length at most L [Andersen, Chung, Lu, 2006]
- Every e ∈ E(G) belongs to at least
 Ω(log(n)/loglog(n)) triangles [F., Lebhar, Lotker, 2007]

Extraction algorithm

Given $H \in (G, \varphi)$, with $E(H) = E(G) \cup F$

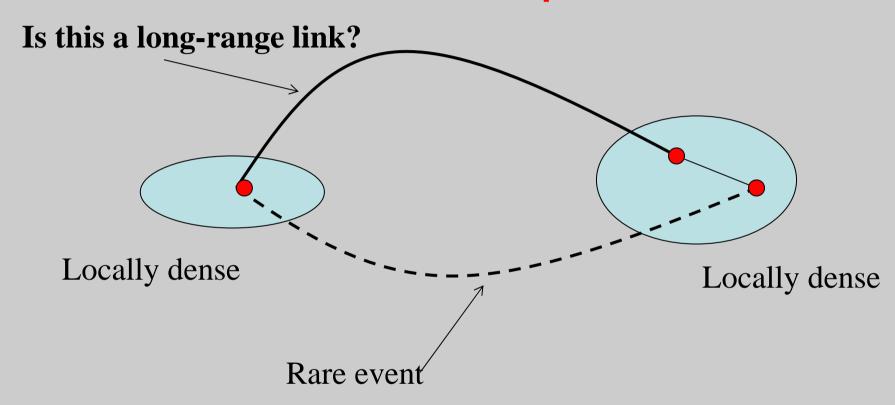
- Density based augmenting distribution \(\varphi \)
- Base graph G with
 - bounded ball growth or bounded doubling dimension
 - clustering $\Omega(\log(n)/\log\log(n))$

Theorem [F., Lebhar, Lotker, 2007]

There is a LMLM algorithm that returns $F' \subseteq F$ where:

- W.h.p., H-F' contains at most polylog n edges of stretch larger than polylog n, and
- Greedy routing using the map H-F' performs in polylog n expected number of steps

Idea of the proof



Clustering Coefficient Revisited

• Theorem [F., Lebhar, Lotker, 2007]
For any $0 < \varepsilon < 1/5$, any LMLM algorithm for recovering the base graph C_{2n+1} in $H \in (C_{2n+1}, h)$ fails in the detection of an expected number $\Omega(n^{5\varepsilon}/\log n)$ of long range links of stretch $\Omega(n^{1/5-\varepsilon})$.

