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Motivations

On a methodological point of view :

Use statistical data and predictions based on a stochastic model to
propose an alternative to usual Grid brokering strategies.

Evaluate the impact of information.

Assess the robustness of index policies in the context of grid brokering.

On a technical point of view :

Propose an alternative algorithm allowing to compute indexes.

Extend the classical models to batch jobs, with or without
information on the size of the batches.
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Brokering

According to the state (the number of processes in every queue),
choose a destination for an incoming job.

If the size of a batch is known at the brokering time, this information
can be taken into account.

Using Index heuristics (Gittins, Whittle, Mitrani, Nino-Mora, . . .), we
send a job to the “cheapest” queue.
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Markovian Model

The jobs are made of several parallel processes, to be executed on the
same cluster. We do not model precisely the synchronizations and
communications between the processes belonging to the same job.

The state (x1, . . . , xN) in S is the number of processes in clusters
1, . . . ,N (xi ∈ {0, . . . ,Bi}).

An action (u in U) is either i (cluster i is chosen), or 0 (rejection of a
job). Rejection is only allowed when all queues are “full”.

The only possible events are job arrivals and process departures.

We look for a routing policy minimizing the expected discounted workload
in infinite horizon.
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Markov Decision Process
This can be seen as a Markov Decision Problem after uniformization by
Λ = λ+ maxi∈{1,...,N} siµi .

The cost under policy π = (u0, u1, . . .) with initial state

x (0) = (x
(0)
1 , . . . , x

(0)
N ) is

Jπ(x (0)) = limsup
n→∞

E
n−1∑
m=0

αmh(x (m), um(x (m))),

with discounting factor α and immediate cost

h
def
=

N∑
i=1

ci ((x
(m)
i + δ{arrival at step m}δ{um(x(m))=i})),

where ci is the cost in the i-th cluster per customer per time unit.
As the cost is uniformly bounded over the state space, we consider time
and initial state independent routing policies : u says which action to take
in each state (u : S → U).
This problem is P-space hard in general.

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 7



Markov Decision Process
This can be seen as a Markov Decision Problem after uniformization by
Λ = λ+ maxi∈{1,...,N} siµi .
The cost under policy π = (u0, u1, . . .) with initial state

x (0) = (x
(0)
1 , . . . , x

(0)
N ) is

Jπ(x (0)) = limsup
n→∞

E
n−1∑
m=0

αmh(x (m), um(x (m))),

with discounting factor α and immediate cost

h
def
=

N∑
i=1

ci ((x
(m)
i + δ{arrival at step m}δ{um(x(m))=i})),

where ci is the cost in the i-th cluster per customer per time unit.

As the cost is uniformly bounded over the state space, we consider time
and initial state independent routing policies : u says which action to take
in each state (u : S → U).
This problem is P-space hard in general.

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 7



Markov Decision Process
This can be seen as a Markov Decision Problem after uniformization by
Λ = λ+ maxi∈{1,...,N} siµi .
The cost under policy π = (u0, u1, . . .) with initial state

x (0) = (x
(0)
1 , . . . , x

(0)
N ) is

Jπ(x (0)) = limsup
n→∞

E
n−1∑
m=0

αmh(x (m), um(x (m))),

with discounting factor α and immediate cost

h
def
=

N∑
i=1

ci ((x
(m)
i + δ{arrival at step m}δ{um(x(m))=i})),

where ci is the cost in the i-th cluster per customer per time unit.
As the cost is uniformly bounded over the state space, we consider time
and initial state independent routing policies : u says which action to take
in each state (u : S → U).

This problem is P-space hard in general.

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 7



Markov Decision Process
This can be seen as a Markov Decision Problem after uniformization by
Λ = λ+ maxi∈{1,...,N} siµi .
The cost under policy π = (u0, u1, . . .) with initial state

x (0) = (x
(0)
1 , . . . , x

(0)
N ) is

Jπ(x (0)) = limsup
n→∞

E
n−1∑
m=0

αmh(x (m), um(x (m))),

with discounting factor α and immediate cost

h
def
=

N∑
i=1

ci ((x
(m)
i + δ{arrival at step m}δ{um(x(m))=i})),

where ci is the cost in the i-th cluster per customer per time unit.
As the cost is uniformly bounded over the state space, we consider time
and initial state independent routing policies : u says which action to take
in each state (u : S → U).
This problem is P-space hard in general.

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 7



Routing based on a Local Criterion

Routing policies based on a Local Criterion (LCR) are a subset of routing
policies. They are defined as follows :

Each queue has a Local index function : Li : {0, . . . ,Bi − 1} → R+.

The routing policy is the following :

u(x1, . . . , xN) = argmin
xi<Bi

{L1(x1), . . . , LN(xN)}

An arriving job is sent towards the queue with the smallest current
local index. If the results of the argmin is empty, the incoming job is
rejected.
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Index heuristics

s

B , c

λ

µ

µ

µ

R

We consider that the cost of accepting
a job on CEi only depends upon the
state of CEi .

The effect of routing a job to queue i is
rather intricate to measure in the long
term. The idea is to come up with a
real valued cost of this decision.

To do so, we concentrate on one queue,
other ones being considered as a black
box costing R (degree of freedom).
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Computing the Local Index
The cost in one queue under policy u is :

Ju(x0) = limsup
n→∞

E
n−1∑
m=0

αm(cx (m)

+kRδ{um=0}δ{arrival at step m of a job of size k}).

The optimal cost J∗ is the unique solution of the Bellman Equation,

J∗(x)

= α
(

λ′
∑

k Pkmin{kR + J∗(x), J∗(x + k)}
+µ′min{s, x}J∗(x − 1)

+(1− λ′ − µ′min{s, x})J∗(x)
)

+cx .

(1)

There is an optimal policy minimizing the α-discounted cost in infinite
horizon for one queue of threshold type : u∗(x) = 1 if x < Θ(R) and
u∗(x) = 0 otherwise.
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Algorithms

Under threshold θ, the cost verifies a matrix equation Jθ = (αFθJθ + Sθ).

The optimal threshold Θ(R) and its cost verify
J∗ = minθ∈{0,...,B}(αFθJ

∗ + Sθ).
Computing the cost can be done by using the cost equation and its
derivatives [Palmer, Mitrani 2005] or using polytope problems [Nio-Mora
2002]
We use an alternative approach, based on policy iteration.

Let Jθ,θ′
def
= (αFθ′Jθ + Sθ′) be the cost obtained by using values found for

Jθ under policy uθ′ .

1 choose θ

2 solve Jθ = (αFθJθ + Sθ).

3 find θ∗ such as θ∗ = argmaxθ′
∑B

x=0 Jθ(x)− Jθ,θ′(x).

4 restart in 2 with θ∗ as long as θ 6= θ∗.

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 11



Algorithms

Under threshold θ, the cost verifies a matrix equation Jθ = (αFθJθ + Sθ).
The optimal threshold Θ(R) and its cost verify
J∗ = minθ∈{0,...,B}(αFθJ

∗ + Sθ).

Computing the cost can be done by using the cost equation and its
derivatives [Palmer, Mitrani 2005] or using polytope problems [Nio-Mora
2002]
We use an alternative approach, based on policy iteration.

Let Jθ,θ′
def
= (αFθ′Jθ + Sθ′) be the cost obtained by using values found for

Jθ under policy uθ′ .

1 choose θ

2 solve Jθ = (αFθJθ + Sθ).

3 find θ∗ such as θ∗ = argmaxθ′
∑B

x=0 Jθ(x)− Jθ,θ′(x).

4 restart in 2 with θ∗ as long as θ 6= θ∗.

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 11



Algorithms

Under threshold θ, the cost verifies a matrix equation Jθ = (αFθJθ + Sθ).
The optimal threshold Θ(R) and its cost verify
J∗ = minθ∈{0,...,B}(αFθJ

∗ + Sθ).
Computing the cost can be done by using the cost equation and its
derivatives [Palmer, Mitrani 2005] or using polytope problems [Nio-Mora
2002]

We use an alternative approach, based on policy iteration.

Let Jθ,θ′
def
= (αFθ′Jθ + Sθ′) be the cost obtained by using values found for

Jθ under policy uθ′ .

1 choose θ

2 solve Jθ = (αFθJθ + Sθ).

3 find θ∗ such as θ∗ = argmaxθ′
∑B

x=0 Jθ(x)− Jθ,θ′(x).

4 restart in 2 with θ∗ as long as θ 6= θ∗.

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 11



Algorithms

Under threshold θ, the cost verifies a matrix equation Jθ = (αFθJθ + Sθ).
The optimal threshold Θ(R) and its cost verify
J∗ = minθ∈{0,...,B}(αFθJ

∗ + Sθ).
Computing the cost can be done by using the cost equation and its
derivatives [Palmer, Mitrani 2005] or using polytope problems [Nio-Mora
2002]
We use an alternative approach, based on policy iteration.

Let Jθ,θ′
def
= (αFθ′Jθ + Sθ′) be the cost obtained by using values found for

Jθ under policy uθ′ .

1 choose θ

2 solve Jθ = (αFθJθ + Sθ).

3 find θ∗ such as θ∗ = argmaxθ′
∑B

x=0 Jθ(x)− Jθ,θ′(x).

4 restart in 2 with θ∗ as long as θ 6= θ∗.

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 11



Index heuristics

The local index L is defined as follows (inverse of Θ) :
L(x) = {sup R|Θ(R) ≤ x}.

L(x) (index) represents the long run cost of accepting a job on the
queue if the state is x .

An incoming job is sent to the CE with the smallest expected cost,
min{L1(x1), . . . , LN(xN)}.
Computing L can be done in a few seconds in the mono-dimensional
case : O(eB(B + K )K + (B + K )K log B), where e = −log(ε), the
precision chosen in the previous algorithm.
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Threshold and Local Index
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The “best threshold” function Θ(R) (continuous line) and its “inverse”
L(x) (dots) which we use as Index function. We point out some
characteristics, such as the ceiling of Θ(R) in B reached before c

1−α , or
the first step at s.
The parameters are µ = 1, λ = 0.8, s = 4, c = 1, B = 30,
α = 0.95,P = {0, 0.6, 0.2, 0, 0.15, 0, 0, 0, 0.05}
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Strategies

Random : Bernoulli routing (weight µi si )

JSQ : Join the Smallest State (x)

JSQ2 : Join the Shortest Queue (max{0, x − si})
JSQ-mu : JSQ/(µi si )

JSQ2-mu : JSQ2/(µi si )

JSW : Join the Smallest Waiting time (min
{
µ−1

i , x+1
µi si

}
)

Batch : index without width knowledge.
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Impact of job width distribution (K=8)
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Impact of job width distribution (K=64)
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Robustness on load variations
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Robustness on job width distribution
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Robustness on job width distribution
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Index routing, conclusion

Very efficient strategy, especially with heterogeneous systems, and
when wk � 0 for large k

Easy to implement

Do not require too much computational power for index generation

Large robustness to parameters variation
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Batches are known by the broker

Job width must be taken into account by the resource broker, as any
additional information.

Index becomes bi-dimensional : they depend on the state and the job
size.

As seen later, computations will become much more complex.
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Index brokering of known batches
Once again, we focus on local index based policies.
The optimal policy is of threshold type, depending on k the size of the
incoming job : If x < θ(k) the job is rejected and accepted otherwise.

With unknown batches, the optimal cost is

J(x) = min
θ∈{0,...B}

α
(
λ′
∑
k

PkJ(x + kδx<θ) + µ′min{x , s}J(x − 1)

+(1− λ′ − µ′min{x , s})J(x)
)

+ cx + λ′RW δx≥θ,

Here the optimal cost is

J(x , k) = min
θ∈{B}{K}

α
(
λ′

K∑
k ′=1

Pk ′J(x + kδx<θ(k), k
′) + µ′min{x , s}J(x − 1, k)

+(1− λ′ − µ′min{x , s})J(x , k)
)

+ cx + λ′Rkδx≥θ(k)

This makes the computation of the optimal index possible (but much
harder than in the unknown case).
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Bi-dimensional index

Θ(R, k) is the optimal threshold given the rejection cost R, when the size
of an incoming job is k.

The local index is : ∀k , L(x , k) = sup{R|Θ(R, k) ≤ x}.
L(x , k) is the cost of accepting a job of size k in the queue if the state is x .
Now, the LCR policy is : an upcoming job of size k is sent to the queue
with the smallest index, Li (xi , k).
This new policy should improve on all policies discussed before. The
question is by how much. This is usually called the value of information.
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Bi-dimensional indexes
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Bi-dimensional indexes

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1.025

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
er

ag
e 

so
jo

u
rn

 t
im

e 
(r

at
io

 w
it

h
 B

at
ch

K
)

Load

µ :  1.6,2,1.2 - s :  16,8,8 
wk : (0:0.492:0.32...) - K : 16

Index
Batch

*BatchK*

V. Berten, B. Gaujal Grid Brokering of Batch Allocation using Indexes 26



Conclusions

Experimental validation of the usability of indexes to grid brokering

Extension of the classical index model to batch arrivals, and
bi-dimensional indexes

BatchK : more efficient if Pk � 0 for large k , similar to Batch
otherwise
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The End
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