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Distributed bounded distance oracle

Problem
Assign a piece of information ( label) to each node of a graph
such that distance between any two nodes at distance no
more than k can be retrieved from the labels associated with
the two nodes, without any other source of information.

Goals
Minimize label length complexity, while maintaining a low
time complexity for distance query, and for label assignment.
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Bounded distance queries for trees

Definition
A pair (u, v) of nodes in a rooted tree is (k1, k2)-related if u
and v are respectively at distance k1 and k2 from their nca.

(u, v) is (3,2)-related
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k-relationship scheme

Definition
A k-relationship scheme is a labeling scheme that can
answer (from the labels) whether two nodes are
(k1, k2)-related or not, for each k1, k2 6 k.

E.g., 1-relationship schemes allow us to test:

identity: (0, 0)-related

parent: (0, 1)-related

sibling: (1, 1)-related
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k-relationship scheme v.s. distances

Two nodes u, v are at distance d 6 k iff there exists
i ∈ {0, . . . , k} such that u, v are (i, d− i)-related.

⇒ a k-relationship scheme can be viewed as a distance oracle
for distances 6 k in trees.



Motivation: XML files & data-bases

XML files used for DB have a tree global structure.
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XML search engine, and preprocessing

Wanted data-structures supporting structured queries like,
search for a book of a given category, author and price.

Solution [Abiteboule et al. - SODA ’01]

Add to the XML file a big hash table containing all items.

Associated with each entry w, the precomputed label(u)
of each node u of the tree containing item w.

Structured queries can be expressed as testing ancestry
relationship, like k-relationship.

Note: one byte saved in the label length does matter! each
item (∼ 108) of the DB has to store a label.
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Observation

Au[d] = ancestor of u at distance d

Fact
(u, v) is (k1, k2)-related iff Au[k1] = Av[k2] and
Au[k1 − 1] 6= Av[k2 − 1].



Trivial solution

Version 1.0: (k + 1) dlog ne-bit labels

Associated with each node of the tree an identifier, a
unique integer in [0, n), n = number of nodes.

The label of u is just the sequence of the identifiers of
Au[0], Au[1], · · · , Au[k].
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label(u) : (6,5,4,3)

label(v) : (8,7,3,2)



Best previous bounds

[Astrup, Bille, and Rauhe - SODA ’03]
1 There is a k-relationship scheme with labels of

log n + O(k2 · log(k log n)) bits.

2 Every 1-relationship scheme requires labels of
log n + log log n + Ω(1) bits in the worst-case.

Note: parent query can be done with log n + O(log∗ n) bit
labels [Alstrup et al. - FOCS ’01], so sibling query costs!
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Our results

Theorem
There is a k-relationship scheme using labels of
log n + O(k · log(k log(n/k))) bits.

Second order term : k2 · log(k log n) → k · log(k log(n/k))
For k = 1 : 5 log log n → 2 log log n

Remind: constants do matter!



Our scheme

Principle (similar to version 1.0): to store in the label of u
some identifiers of Au[0], Au[1], · · · , Au[k].

Difficulty is in the selection of the identifiers so that they
can be compressed. For that, we need a specific
decomposition of the tree.



Key lemma

Lemma (k-ancestry decomposition)

Every tree T with n nodes has a node partition such that:

parts of the partition are nodes of a rooted binary tree
B of depth 6 log(n/k);

each part contains 6 (k + 1) log(n/k) nodes of T ; and

for every u ∈ V (T ), the parts of its ancestors
Au[0], Au[1], · · · , Au[k] belongs to a path from the root
to a leaf of B.
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How to get such a decomposition?

Step 1: Connect each node of T to its k closest ancestors.

⇒ We get an augmented graph Tk that is k-tree.

Step 2: Cut Tk recursively in two components of equal size,
thanks to separators that cliques of size k + 1.

⇒ We get a node partition of T , and a binary tree B where
parts are composed of log(n/k) separators of size k + 1.
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... and the decomposition of the tree
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... and the decomposition of the tree

0

000 001 010 011 100 101 111110

100100 11

0

0 1 0 1

0
1

0

0

1

0 11

1

1



Identifiers and labels

Identifier of u: path from the root of B to the part of u, plus
the position of u in its part.

Label of u: path wu [6 log(n/k) bits] from the root of B to
the deepest part of an ancestor Au[0], Au[1], · · · , Au[k], PLUS
the depth of the part and the position of each of them
[O(k · log(k log(n/k)) bits].

From label(u) one can extract all the identifiers of the nodes
Au[0], Au[1], · · · , Au[k] because the path of the part
containing Au[i] is a prefix of wu of length the depth of the
part of Au[i]. �
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Open problems

Our scheme implies that distances in o(log n/ log log n) can be
computed with log n + o(log n) bits per node.
One may ask:

Design a labeling scheme with log n + o(log n)-bit labels
for larger distances, say up to c log n for small constant
c 6 1.

Design a labeling scheme with log n + o(log n)-bit labels
for bounded distance in bounded tree-width graphs.

Maintain dynamically our scheme with near optimal
labels, say O(log n), and with low (amortized) update
cost.
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