Distributed Relationship Schemes for Trees

Cyril Gavoille Arnaud Labourel

University of Bordeaux, France

December 17-21, 2007, Sendai

Distributed bounded distance oracle

Problem

Assign a piece of information (label) to each node of a graph such that distance between any two nodes at distance no more than \mathbf{k} can be retrieved from the labels associated with the two nodes, without any other source of information.

Distributed bounded distance oracle

Problem

Assign a piece of information (label) to each node of a graph such that distance between any two nodes at distance no more than \mathbf{k} can be retrieved from the labels associated with the two nodes, without any other source of information.

Goals

Minimize **label length** complexity, while maintaining a low time complexity for distance query, and for label assignment.

Bounded distance queries for trees

Definition

A pair (u, v) of nodes in a rooted tree is (k_1, k_2) -related if u and v are respectively at distance k_1 and k_2 from their nca.

Definition

A *k*-relationship scheme is a labeling scheme that can answer (from the labels) whether two nodes are (k_1, k_2) -related or not, for each $k_1, k_2 \leq k$.

E.g., 1-relationship schemes allow us to test:

Definition

A *k*-relationship scheme is a labeling scheme that can answer (from the labels) whether two nodes are (k_1, k_2) -related or not, for each $k_1, k_2 \leq k$.

E.g., 1-relationship schemes allow us to test:

• identity: (0,0)-related

Definition

A *k*-relationship scheme is a labeling scheme that can answer (from the labels) whether two nodes are (k_1, k_2) -related or not, for each $k_1, k_2 \leq k$.

E.g., 1-relationship schemes allow us to test:

- identity: (0,0)-related
- parent: (0, 1)-related

Definition

A *k*-relationship scheme is a labeling scheme that can answer (from the labels) whether two nodes are (k_1, k_2) -related or not, for each $k_1, k_2 \leq k$.

E.g., 1-relationship schemes allow us to test:

- identity: (0,0)-related
- parent: (0,1)-related
- sibling: (1, 1)-related

k-relationship scheme v.s. distances

Two nodes u, v are at **distance** $d \leq k$ iff there exists $i \in \{0, ..., k\}$ such that u, v are (i, d - i)-related.

 \Rightarrow a k-relationship scheme can be viewed as a distance oracle for distances $\leqslant k$ in trees.

Motivation: XML files & data-bases

XML files used for DB have a tree global structure.

XML search engine, and preprocessing

Wanted data-structures supporting structured queries like, search for a book of a given category, author and price.

XML search engine, and preprocessing

Wanted data-structures supporting structured queries like, search for a book of a given category, author and price.

Solution [Abiteboule et al. - SODA '01]

- Add to the XML file a big hash table containing all items.
- Associated with each entry w, the precomputed label(u) of each node u of the tree containing item w.
- Structured queries can be expressed as testing ancestry relationship, like *k*-relationship.

XML search engine, and preprocessing

Wanted data-structures supporting structured queries like, search for a book of a given category, author and price.

Solution [Abiteboule et al. - SODA '01]

- Add to the XML file a big hash table containing all items.
- Associated with each entry w, the precomputed label(u) of each node u of the tree containing item w.
- Structured queries can be expressed as testing ancestry relationship, like *k*-relationship.

Note: **one** byte saved in the label length does matter! each item ($\sim 10^8$) of the DB has to store a label.

Observation

$A_u[d] =$ ancestor of u at distance d

Fact (u, v) is (k_1, k_2) -related iff $A_u[k_1] = A_v[k_2]$ and $A_u[k_1 - 1] \neq A_v[k_2 - 1].$

Trivial solution

Version 1.0: $(k+1) \lceil \log n \rceil$ -bit labels

- Associated with each node of the tree an **identifier**, a unique integer in [0, n), n = number of nodes.
- The **label** of u is just the sequence of the identifiers of $A_u[0], A_u[1], \dots, A_u[k]$.

Best previous bounds

[Astrup, Bille, and Rauhe - SODA '03]

There is a k-relationship scheme with labels of log n + O(k² · log(k log n)) bits.

Best previous bounds

[Astrup, Bille, and Rauhe - SODA '03]

- There is a k-relationship scheme with labels of log n + O(k² · log(k log n)) bits.
- Every 1-relationship scheme requires labels of log n + log log n + Ω(1) bits in the worst-case.

Best previous bounds

[Astrup, Bille, and Rauhe - SODA '03]

- There is a k-relationship scheme with labels of log n + O(k² · log(k log n)) bits.
- Every 1-relationship scheme requires labels of log n + log log n + Ω(1) bits in the worst-case.

Note: parent query can be done with $\log n + O(\log^* n)$ bit labels [Alstrup et al. - FOCS '01], so sibling query costs!

Our results

Theorem

There is a k-relationship scheme using labels of $\log n + O(k \cdot \log(k \log(n/k)))$ bits.

Second order term	:	$k^2 \cdot \log(k \log n)$	\rightarrow	$k \cdot \log(k \log(n/k))$
For $k = 1$:	$5 \log \log n$	\rightarrow	$2\log\log n$

Remind: constants do matter!

Our scheme

- Principle (similar to version 1.0): to store in the label of u some identifiers of A_u[0], A_u[1], · · · , A_u[k].
- Difficulty is in the selection of the identifiers so that they can be compressed. For that, we need a **specific** decomposition of the tree.

Key lemma

Lemma (*k*-ancestry decomposition)

Every tree T with n nodes has a node partition such that:

- parts of the partition are nodes of a rooted binary tree B of depth ≤ log(n/k);
- each part contains $\leqslant (k+1)\log(n/k)$ nodes of T; and
- for every u ∈ V(T), the parts of its ancestors A_u[0], A_u[1], · · · , A_u[k] belongs to a path from the root to a leaf of B.

Step 1: Connect each node of T to its k closest ancestors. \Rightarrow We get an augmented graph T_k that is k-tree.

Step 2: Cut T_k recursively in two components of equal size, thanks to separators that cliques of size k + 1.

 \Rightarrow We get a node partition of T, and a binary tree B where parts are composed of $\log(n/k)$ separators of size k + 1.

... and the decomposition of the tree

... and the decomposition of the tree

... and the decomposition of the tree

Identifiers and labels

Identifier of u: path from the root of B to the part of u, plus the position of u in its part.

Label of u: path w_u [$\leq \log(n/k)$ bits] from the root of B to the deepest part of an ancestor $A_u[0], A_u[1], \dots, A_u[k]$, PLUS the depth of the part and the position of each of them $[O(k \cdot \log(k \log(n/k)))$ bits].

Identifiers and labels

Identifier of u: path from the root of B to the part of u, plus the position of u in its part.

Label of u: path $w_u [\leq \log(n/k) \text{ bits}]$ from the root of B to the deepest part of an ancestor $A_u[0], A_u[1], \dots, A_u[k]$, PLUS the depth of the part and the position of each of them $[O(k \cdot \log(k \log(n/k)) \text{ bits}].$

From label(u) one can extract **all** the identifiers of the nodes $A_u[0], A_u[1], \dots, A_u[k]$ because the path of the part containing $A_u[i]$ is a prefix of w_u of length the depth of the part of $A_u[i]$.

Open problems

Our scheme implies that distances in $o(\log n / \log \log n)$ can be computed with $\log n + o(\log n)$ bits per node. One may ask:

- Design a labeling scheme with log n + o(log n)-bit labels for larger distances, say up to c log n for small constant c ≤ 1.
- Design a labeling scheme with log $n + o(\log n)$ -bit labels for bounded distance in bounded **tree-width** graphs.
- Maintain dynamically our scheme with near optimal labels, say $O(\log n)$, and with low (amortized) update cost.

Thank You for your attention