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Classical Optimization Problems

NP-hard Problem U

Input: Output:

Input instances Input (i) Solutions Approx. SolutionsOpt. Solution



Limits of the Classical Problems

• Isolated instances

• Calculation from the scratch

• No use of prior knowledge
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Local Modifications

Scenario:

• Optimal (or very good) solution is given

• Now the input changes slightly (local modification)
• Realistic: e.g. railway schedules

• Good schedule exists
• Railway station closes down
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Problem lm-U

Input: Output:

Input (i) Input (ii) Opt. Solution for (i)



Reoptimization Problems

Problem lm-U

Input: Output:

Approx. Solutions for (ii) Opt. Solution for (ii)
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Prospects

• Question: Can we use the additional information for hard
problems?

• For faster algorithms?
• For achieving better approximation ratios?

• Answer:
• Sometimes we get a PTAS
• Sometimes we get a better constant approximation
• Sometimes the problem stays as hard as before
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Considered Problems I

Definition (IncEdge-∆TSP, DecEdge-∆TSP)
Given:

• Complete graph G
• Two metric cost functions cO , cN : E → Q+

• Both functions coincide in all edges but one edge e
• cO(e) < cN(e) (cO(e) > cN(e) resp.)

• A minimum-cost Hamiltonian tour according to cO

The Problem:

• Find a minimum-cost Hamiltonian tour according to cN
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Considered Problems II

Definition (IncTerm-STP, DecTerm-STP)
Given:

• A complete graph G

• A cost function c : E → Q+

• Terminal sets SO, SN ⊆ V
• SO ⊂ SN and |SO|+ 1 = |SN | (SN ⊂ SO and |SO| − 1 = |SN |

resp.)

• A minimum Steiner tree for (G, SO, c)

The Problem:

• Find a minimum Steiner tree for (G, SN , c)



Hardness of TSP Reoptimization

Theorem
The problem IncEdge-∆TSP is NP-hard.

• Reduction from restricted Hamiltonian cycle
• Use technique of standard reduction from HC to TSP

• Edge costs 1 and 2



General Framework for Hardness Proof

Lemma

• NP-hard problem U, instance I
• Local modification lm:

• Efficiently solvable instance I′

• I′ transformable to any instance I
• Polynomial number of reoptimizations

⇒ lm-U is NP-hard

I ′

I



Application of the Framework

Theorem
The problems IncTerm-STP and DecTerm-STP are strongly
NP-hard.

• Efficiently solvable: S = ∅ and S = V

• Successively add vertices to S (remove vertices from S
resp.)

• At most n reoptimizations



Application of the Framework

Theorem
The problems IncTerm-STP and DecTerm-STP are strongly
NP-hard.

• Efficiently solvable: S = ∅ and S = V

• Successively add vertices to S (remove vertices from S
resp.)

• At most n reoptimizations

• Strongly NP-hard:
Construction works for 2-IncTerm-STP and
2-DecTerm-STP



Approximation Algorithm for lm-TSP

Theorem

• Polynomal time approximation algorithm for
IncEdge-∆TSP,DecEdge-∆TSP

• Approximation ratio: 1.4

Observation:

• The modified edge e cannot be in both, the old and the
new optimal solution

• Edges adjacent to e are expensive (≥ 1/2 · |cO(e) − cN(e)|
due to triangle inequality)



Proof Idea for DecEdge-∆TSP
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Approximation Algorithm for DecTerm-STP

Theorem
There is a 1.5-approximation algorithm for DecTerm-STP.

• We can assume metric costs (construct metric closure)

• Degree of removed terminal is crucial



Main Idea

• Remove shortest paths to terminals in both subtrees

• Hight cost, length at most log2(n)

• Connect components by an optimal Steiner tree
• Possible due to small number of components
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PTAS for 2-DecTerm-STP

Theorem
There exists a polynomial time approximation scheme for
2-DecTerm-STP.
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PTAS for 2-DecTerm-STP

Theorem
There exists a polynomial time approximation scheme for
2-DecTerm-STP.

• Less than 2 · ⌈1/ε⌉ terminals: Calculate exact solution (e.g.
Dreyus-Wagner algorithm)

• Otherwise keep old solution
• Result costs at most 1 + ε OPT

Observations:
• Adding one edge to TN yields feasible solution for

(G, SO, c).
⇒ OptO ≤ OptN + r

Approximation ratio:

TA

OptN
≤

OptN + r
OptN

= 1 +
r

OptN
≤ 1 +

r
r · k

≤ 1 + ε.
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Conclusion

• Most reoptimization problems stay NP-hard

Question: Are there reoptimization problems that allow
subexponential algorithms?

• Some reoptimization problems allow improved
approximation algorithms

• Some reoptimization problems of APX-hard problems allow
PTAS

Question: Which type of problems becomes easier by reoptimization?



Thank you!
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