Reoptimization Problems: Hardness and Algorithms

Tobias Mömke

Department of Computer Science, ETH Zurich, Switzerland

Réunion Alpage 31 January 2008

Classical Optimization Problems

- Isolated instances
- Calculation from the scratch
- No use of prior knowledge

• Optimal (or very good) solution is given

- Optimal (or very good) solution is given
- Now the input changes slightly (local modification)

- Optimal (or very good) solution is given
- Now the input changes slightly (local modification)
- Realistic: e.g. railway schedules
 - Good schedule exists

- Optimal (or very good) solution is given
- Now the input changes slightly (local modification)
- Realistic: e.g. railway schedules
 - Good schedule exists
 - Railway station closes down

Reoptimization Problems

Reoptimization Problems

Problem Im-U Input: Output: Approx. Solutions for (*ii*) Opt. Solution for (ii) • Question: Can we use the additional information for hard problems?

- Question: Can we use the additional information for hard problems?
 - For faster algorithms?

- Question: Can we use the additional information for hard problems?
 - For faster algorithms?
 - For achieving better approximation ratios?

- Question: Can we use the additional information for hard problems?
 - For faster algorithms?
 - For achieving better approximation ratios?
- Answer:
 - Sometimes we get a PTAS
 - Sometimes we get a better constant approximation
 - Sometimes the problem stays as hard as before

Literature

TSP:

- C. Archetti, L. Bertazzi, M. Speranza: Reoptimizing the Travelling Salesman Problem.
- H.-J. Böckenhauer, L. Forlizzi, J. Hromkovič, J. Kneis, J. Kupke, G. Proietti, P. Widmayer: On the approximability of TSP on local modifications of optimally solved instances.
- G. Ausiello, B. Escoffier, J. Monnot, V. Th. Paschos: Reoptimization of minimum and maximum traveling salesman's tours.
- R. Královič, T. Mömke: Approximation hardness of the traveling salesman reoptimization problem.

Steiner tree problem:

• H.-J. Böckenhauer, J. Hromkovič, R. Královič, T. Mömke, P. Rossmanith:

Reoptimization of Steiner trees: changing the terminal set.

Considered Problems I

Definition (IncEdge- Δ TSP, DecEdge- Δ TSP)

Given:

Complete graph G

Definition (IncEdge- Δ TSP, DecEdge- Δ TSP)

Given:

- Complete graph G
- Two metric cost functions $c_O, c_N : E \to \mathbb{Q}^+$
 - Both functions coincide in all edges but one edge e
 - $c_{O}(e) < c_{N}(e) (c_{O}(e) > c_{N}(e) \text{ resp.})$

Definition (IncEdge- Δ TSP, DecEdge- Δ TSP)

Given:

- Complete graph G
- Two metric cost functions $c_O, c_N : E \to \mathbb{Q}^+$
 - Both functions coincide in all edges but one edge e
 - $c_{O}(e) < c_{N}(e) (c_{O}(e) > c_{N}(e) resp.)$
- A minimum-cost Hamiltonian tour according to c₀

Definition (IncEdge- Δ TSP, DecEdge- Δ TSP)

Given:

- Complete graph G
- Two metric cost functions $c_O, c_N : E \to \mathbb{Q}^+$
 - Both functions coincide in all edges but one edge e
 - $c_{O}(e) < c_{N}(e) (c_{O}(e) > c_{N}(e) resp.)$
- A minimum-cost Hamiltonian tour according to c₀

The Problem:

Find a minimum-cost Hamiltonian tour according to c_N

• A complete graph G

- A complete graph G
- A cost function $c : E \to \mathbb{Q}^+$

- A complete graph G
- A cost function $c: E \to \mathbb{Q}^+$
- Terminal sets $S_O, S_N \subseteq V$
 - $S_O \subset S_N$ and $|S_O| + 1 = |S_N|$ ($S_N \subset S_O$ and $|S_O| 1 = |S_N|$ resp.)

- A complete graph G
- A cost function $c: E \to \mathbb{Q}^+$
- Terminal sets $S_O, S_N \subseteq V$
 - $S_O \subset S_N$ and $|S_O| + 1 = |S_N|$ ($S_N \subset S_O$ and $|S_O| 1 = |S_N|$ resp.)
- A minimum Steiner tree for (G, S_O, c)

- A complete graph G
- A cost function $c: E \to \mathbb{Q}^+$
- Terminal sets $S_O, S_N \subseteq V$
 - $S_O \subset S_N$ and $|S_O| + 1 = |S_N|$ ($S_N \subset S_O$ and $|S_O| 1 = |S_N|$ resp.)
- A minimum Steiner tree for (G, S_O, c)

The Problem:

• Find a minimum Steiner tree for (G, S_N, c)

Theorem

The problem IncEdge- \triangle TSP is NP-hard.

- Reduction from restricted Hamiltonian cycle
- Use technique of standard reduction from HC to TSP
 - Edge costs 1 and 2

General Framework for Hardness Proof

Lemma

- NP-hard problem U, instance I
- Local modification Im:
 - Efficiently solvable instance I'
 - I' transformable to any instance I
 - Polynomial number of reoptimizations

m

 \Rightarrow Im-U is NP-hard

Theorem

The problems IncTerm-STP and DecTerm-STP are strongly NP-hard.

- Efficiently solvable: $S = \emptyset$ and S = V
- Successively add vertices to S (remove vertices from S resp.)
- At most *n* reoptimizations

Theorem

The problems IncTerm-STP and DecTerm-STP are strongly NP-hard.

- Efficiently solvable: $S = \emptyset$ and S = V
- Successively add vertices to S (remove vertices from S resp.)
- At most *n* reoptimizations
- Strongly NP-hard: Construction works for 2-IncTerm-STP and 2-DecTerm-STP

Approximation Algorithm for Im-TSP

Theorem

- Polynomal time approximation algorithm for IncEdge-∆TSP,DecEdge-∆TSP
- Approximation ratio: 1.4

Observation:

- The modified edge e cannot be in both, the old and the new optimal solution
- Edges adjacent to e are expensive (≥ 1/2 · |c₀(e) c_N(e)| due to triangle inequality)

Proof Idea for DecEdge- Δ TSP

Approximation Algorithm for DecTerm-STP

Theorem

There is a 1.5-approximation algorithm for DecTerm-STP.

- We can assume metric costs (construct metric closure)
- Degree of removed terminal is crucial

Main Idea

- · Remove shortest paths to terminals in both subtrees
- Hight cost, length at most log₂(*n*)
- · Connect components by an optimal Steiner tree
 - Possible due to small number of components

PTAS for 2-DecTerm-STP

Theorem

There exists a polynomial time approximation scheme for 2-DecTerm-STP.

PTAS for 2-DecTerm-STP

Theorem

There exists a polynomial time approximation scheme for 2-DecTerm-STP.

- Less than 2 · [1/ε] terminals: Calculate exact solution (e.g. Dreyus-Wagner algorithm)
- Otherwise keep old solution
- Result costs at most $1 + \varepsilon$ OPT

PTAS for 2-DecTerm-STP

Theorem

There exists a polynomial time approximation scheme for 2-DecTerm-STP.

- Less than 2 · [1/ε] terminals: Calculate exact solution (e.g. Dreyus-Wagner algorithm)
- Otherwise keep old solution
- Result costs at most $1 + \varepsilon$ OPT

Observations:

- Adding one edge to T_N yields feasible solution for (G, S_O, c).
- $\Rightarrow \operatorname{Opt}_{O} \leq \operatorname{Opt}_{N} + r$

Approximation ratio:

$$\frac{T_A}{\operatorname{Opt}_N} \leq \frac{\operatorname{Opt}_N + r}{\operatorname{Opt}_N} = 1 + \frac{r}{\operatorname{Opt}_N} \leq 1 + \frac{r}{r \cdot k} \leq 1 + \varepsilon.$$

 Most reoptimization problems stay NP-hard Question: Are there reoptimization problems that allow subexponential algorithms?

- Most reoptimization problems stay NP-hard
- Question: Are there reoptimization problems that allow subexponential algorithms?
 - Some reoptimization problems allow improved approximation algorithms
 - Some reoptimization problems of APX-hard problems allow PTAS

- Most reoptimization problems stay NP-hard
- Question: Are there reoptimization problems that allow subexponential algorithms?
 - Some reoptimization problems allow improved approximation algorithms
 - Some reoptimization problems of APX-hard problems allow PTAS
- Question: Which type of problems becomes easier by reoptimization?

Thank you!