Offline and online master-worker scheduling of concurrent bags-of-tasks on heterogeneous platforms

Anne BENOIT, Loris MARCHAL, Jean-François PINEAU Yves ROBERT and Frédéric VIVIEN

Laboratoire de l'Informatique du Parallélisme École Normale Supérieure de Lyon, France

Jean-Francois.Pineau@ens-lyon.fr

http://graal.ens-lyon.fr/~jfpineau

Alpage, February 1, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Outline

Framework Theoretical study

Outline

2 Theoretical study

3 Experiments and simulations

Bag-of-tasks Applications

Bag of tasks

described by:

- the number of independent identical tasks
- the amount of computation of a task
- the amount of communication of a task
- their release date

Online scheduling.

4/38

Bag-of-tasks Applications

Bag of tasks

described by:

- the number of independent identical tasks
- the amount of computation of a task
- the amount of communication of a task
- their release date

Online scheduling.

Platform model

э

Master-slaves platform

The master

- Receive the bags of tasks
- Send the tasks to the processors
- Bounded multi-port model

The processors

- Parallels
 - Identical
 - Uniform
- Related

= 200

Master-slaves platform

The master

- Receive the bags of tasks
- Send the tasks to the processors
- Bounded multi-port model

The processors

- Parallels
 - Identical
 - Uniform
- Related

= 200

Framework heoretical study

Theoretical study periments and simulations Conclusion

Notations

Tasks

- *n* bags-of-tasks applications \mathcal{A}_k
- \mathcal{A}_i is composed of $\Pi^{(i)}$ tasks.
- $\omega^{(i)}$: amount of computation of a task of \mathcal{A}_i
- $\delta^{(i)}$: amount of communication of a task of \mathcal{A}_i
- $r^{(i)}$: release date of A_i
- $C^{(i)}$: completion date of A_i

Framework Theoretical study

Conclusion

Notations

Platform

- p processors,
- \mathcal{B} : bound of the multi-port model.
- b_u : bandwidth of the link between the master and P_u ,
- s_u : computational speed of worker P_u ,

Framework Theoretical study

nents and simulations Conclusion

Notations

Platform

- p processors,
- $\bullet~\mathcal{B}:$ bound of the multi-port model.
- b_u: bandwidth of the link between the master and P_u,
 s^(k)_u: computational speed of related worker P_u with tasks of A_k,

Objective function

Objective function

• Makespan

max $C^{(i)}$ or $C^{(max)}$

< □ > < 同 >

Objective function

Objective function

• Makespan

max $C^{(i)}$ or $C^{(max)}$

Problem of satisfaction of the clients

< 一型

Objective function

Objective function

- Makespan
- Sum flow

$$\sum \{ \mathcal{C}^{(i)} - r^{(i)} \}$$

三日 のへの

< 17 ▶

Objective function

Objective function

- Makespan
- Sum flow

$$\sum \{ \mathcal{C}^{(i)} - r^{(i)} \}$$

Problem of starvation

< 一型

Objective function

Objective function

- Makespan
- Sum flow
- Max flow

$$\max \{ \mathcal{C}^{(i)} - r^{(i)} \}$$

三日 のへの

< 17 ▶

Objective function

Objective function

- Makespan
- Sum flow
- Max flow

$$\max \{ \mathcal{C}^{(i)} - r^{(i)} \}$$

Small applications can wait a long time

Objective function

Objective function

- Makespan
- Sum flow
- Max flow
- Max Stretch

 $\max \frac{\mathcal{C}^{(i)} - r^{(i)}}{\text{Size of } \mathcal{A}_i}$

< 17 ▶

ELE DQA

Objective function

Objective function

- Makespan
- Sum flow
- Max flow
- Max Stretch

 $\max \frac{\mathcal{C}^{(i)} - r^{(i)}}{\text{Size of } \mathcal{A}_i}$

Size of
$$A_i = \Pi^{(i)}$$
 ?

< 同 ▶

ELE DQA

Objective function

Objective function

- Makespan
- Sum flow
- Max flow
- Max Stretch

 $\max \frac{\mathcal{C}^{(i)} - r^{(i)}}{\text{Size of } \mathcal{A}_i}$

Size of
$$A_i = \omega^{(i)}$$
 ?

< 同 ▶

ELE DQA

Objective function

Objective function

- Makespan
- Sum flow
- Max flow
- Max Stretch

 $\max \frac{\mathcal{C}^{(i)} - r^{(i)}}{\text{Size of } \mathcal{A}_i}$

Size of $A_i = \Pi^{(i)} \times \omega^{(i)}$?

3

< 1 → <

= 200

Objective function

Objective function

- Makespan
- Sum flow
- Max flow
- Max Stretch

 $\max \frac{\mathcal{C}^{(i)} - r^{(i)}}{\text{Size of } \mathcal{A}_i}$

Size of $A_i = Makespan MS^{*(i)}$ of A_i if alone

< 17 > <

= 200

Problem

- \bullet Unique bag-of-tasks \mathcal{A}_0
- Large $\Pi^{(0)}$

<□>●●> < 目

三日 のへの

э

Problem

- \bullet Unique bag-of-tasks \mathcal{A}_0
- Large $\Pi^{(0)}$

Objective

• Minimizing the makespan

< 同 ▶

Problem

- \bullet Unique bag-of-tasks \mathcal{A}_0
- Large Π⁽⁰⁾

Objective

- Minimizing the makespan
- Maximizing the throughput

Problem

- \bullet Unique bag-of-tasks \mathcal{A}_0
- Large Π⁽⁰⁾

Objective

- Minimizing the makespan
- Maximizing the throughput
- Throughput of worker P_u : $\rho_u^{*(0)}$

• Total throughput
$$\rho^{*(0)} = \sum_{u=1}^{p} \rho_{u}^{*(0)}$$

= 200

Linear program

$$\int MAXIMIZE \ \rho^{*(0)} = \sum_{u=1}^{p} \rho_{u}^{*(0)}$$
SUBJECT TO
$$\rho_{u}^{*(0)} \frac{\omega^{(0)}}{s_{u}^{(0)}} \leq 1$$

$$\rho_{u}^{*(0)} \frac{\delta^{(0)}}{b_{u}} \leq 1$$

$$\sum_{u=1}^{p} \rho_{u}^{*(0)} \frac{\delta^{(0)}}{\mathcal{B}} \leq 1$$
(1)

Rational solution

$$\rho^{*(0)} = \min\left\{\frac{\mathcal{B}}{\delta^{(0)}}, \sum_{u=1}^{p} \min\left\{\frac{s_u^{(0)}}{\omega^{(0)}}, \frac{b_u}{\delta^{(0)}}\right\}\right\}.$$

Image: A math a math

三日 のへの

э

Linear program

$$\int MAXIMIZE \ \rho^{*(0)} = \sum_{u=1}^{p} \rho_{u}^{*(0)}$$

$$SUBJECT \ TO \\ \rho_{u}^{*(0)} \frac{\omega^{(0)}}{s_{u}^{(0)}} \leq 1 \\ \rho_{u}^{*(0)} \frac{\delta^{(0)}}{b_{u}} \leq 1 \\ \sum_{u=1}^{p} \rho_{u}^{*(0)} \frac{\delta^{(0)}}{\mathcal{B}} \leq 1$$
(1)

Rational solution

$$\rho^{*(0)} = \min\left\{\frac{\mathcal{B}}{\delta^{(0)}}, \sum_{u=1}^{p} \min\left\{\frac{s_u^{(0)}}{\omega^{(0)}}, \frac{b_u}{\delta^{(0)}}\right\}\right\}.$$

・ロット (日) (日) (日) (日)

三日 のへの

э

Feasible schedule

Resource selection $(\rho_u^{*(0)} = 0)$

< 17 > <

Feasible schedule

Resource selection
$$(\rho_u^{*(0)} = 0)$$

In theory:

- While there are tasks to process on the master, send tasks to processor P_u with rate $\rho_u^{*(0)}$.
- As soon as processor P_u starts receiving a task it processes at the rate $\rho_u^{*(0)}$.

Feasible schedule

Resource selection
$$(\rho_u^{*(0)} = 0)$$

In theory:

- While there are tasks to process on the master, send tasks to processor P_u with rate $\rho_u^{*(0)}$.
- As soon as processor P_u starts receiving a task it processes at the rate $\rho_u^{*(0)}$.

Feasible schedule

Resource selection
$$(\rho_u^{*(0)} = 0)$$

In practice, master uses the 1D-load balancing algorithm:

- the first worker to receive a task is the one with largest throughput
- each participating worker P_u has already received n_u tasks, the next worker to receive a task is chosen as the one minimizing

$$\frac{n_u+1}{\rho_u^{*(0)}}$$

Back on multi-applications problem

Approximation of the best execution time:

$$MS^{*(k)} = \frac{\Pi^{(k)}}{\rho^{*(k)}}.$$

Real execution time:

$$\mathcal{C}^{(k)} = r^{(k)} + MS^{(k)}$$

In general:

$$MS^{(k)} \ge MS^{*(k)}$$

ъ

Back on multi-applications problem

Approximation of the best execution time:

$$MS^{*(k)} = \frac{\Pi^{(k)}}{\rho^{*(k)}}.$$

Real execution time:

$$\mathcal{C}^{(k)} = r^{(k)} + MS^{(k)}$$

In general:

$$MS^{(k)} \ge MS^{*(k)}$$

ъ

Back on multi-applications problem

Approximation of the best execution time:

$$MS^{*(k)} = \frac{\Pi^{(k)}}{\rho^{*(k)}}.$$

Real execution time:

$$\mathcal{C}^{(k)} = r^{(k)} + MS^{(k)}$$

In general:

$$MS^{(k)} \ge MS^{*(k)}$$

ъ

Stretch

Stretch:

$$\mathcal{S}^k = \frac{MS^{(k)}}{MS^{*(k)}}$$

Throughput $\rho^{(k)}$ defined by:

$$MS^{(k)} = \frac{\Pi^{(k)}}{\rho^{(k)}}.$$

Objective: max-stretch:

$$S = \max_{1 \le k \le n} S^k$$

・ロト ・日下・ ・日下

= 990

∃ **)** 3
Stretch

Stretch:

$$S^{k} = \frac{MS^{(k)}}{MS^{*(k)}} = \frac{\rho^{*(k)}}{\rho^{(k)}}$$

Throughput $\rho^{(k)}$ defined by:

$$MS^{(k)} = \frac{\Pi^{(k)}}{\rho^{(k)}}.$$

Objective: max-stretch:

$$\mathcal{S} = \max_{1 \le k \le n} \mathcal{S}^k$$

▲ 🗇 🕨 🔺

1= 9QC

-

Stretch

Stretch:

$$S^{k} = \frac{MS^{(k)}}{MS^{*(k)}} = \frac{\rho^{*(k)}}{\rho^{(k)}}$$

Throughput $\rho^{(k)}$ defined by:

$$MS^{(k)} = \frac{\Pi^{(k)}}{\rho^{(k)}}.$$

Objective: max-stretch:

$$\mathcal{S} = \max_{1 \leq k \leq n} \mathcal{S}^k$$

< 17 > <

三日 のへの

Outline

2 Theoretical study

3 Experiments and simulations

4 Conclusion

Offline

• Computing all the $MS^{*(k)}$, $\forall \ 1 \le k \le n$

Binary search on the max-stretch

 \bullet For each candidate value $\mathcal{S}^{'},$ we know that:

$$\forall \ 1 \le k \le n, \ \frac{MS^{(k)}}{MS^{*(k)}} \le S'$$

 $\forall \ 1 \le k \le n, \ \mathcal{C}^{(k)} = r^{(k)} + MS^{(k)} \le r^{(k)} + S' \times MS^{*(k)}$

Offline

- Computing all the $MS^{*(k)}, \forall 1 \le k \le n$
- Binary search on the max-stretch
- \bullet For each candidate value $\mathcal{S}^{'},$ we know that:

$$\forall \ 1 \le k \le n, \ \frac{MS^{(k)}}{MS^{*(k)}} \le S'$$

$$\forall 1 \le k \le n, \ C^{(k)} = r^{(k)} + MS^{(k)} \le r^{(k)} + S' \times MS^{*(k)}$$

ъ

Offline

- Computing all the $MS^{*(k)}, \ \forall \ 1 \leq k \leq n$
- Binary search on the max-stretch
- \bullet For each candidate value $\mathcal{S}^{'},$ we know that:

$$\forall \ 1 \leq k \leq n, \ \frac{MS^{(k)}}{MS^{*(k)}} \leq S'$$

 $\forall 1 \le k \le n, \ C^{(k)} = r^{(k)} + MS^{(k)} \le r^{(k)} + S' \times MS^{*(k)}$

Offline

- Computing all the $MS^{*(k)}, \ \forall \ 1 \leq k \leq n$
- Binary search on the max-stretch
- \bullet For each candidate value $\mathcal{S}^{'},$ we know that:

$$\forall \ 1 \leq k \leq n, \ \frac{MS^{(k)}}{MS^{*(k)}} \leq S'$$

$$\forall \ 1 \leq k \leq n, \ \mathcal{C}^{(k)} = r^{(k)} + MS^{(k)} \leq r^{(k)} + \mathcal{S}' \times MS^{*(k)}$$

ъ

Deadlines

We set:

$$d^{(k)} = r^{(k)} + \mathcal{S}' \times MS^{*(k)}$$
⁽²⁾

Definition: Epochal times

$$t_j \in \{r^{(1)}, ..., r^{(n)}\} \cup \{d^{(1)}, ..., d^{(n)}\}$$

such that

$$t_j \leq t_{j+1}, \ 1 \leq j \leq 2n-1$$

Divide the total execution time into intervals whose bounds are epochal times.

17 ▶

ъ

Deadlines

We set:

$$d^{(k)} = r^{(k)} + S' \times MS^{*(k)}$$
(2)

Definition: Epochal times

$$t_j \in \{r^{(1)}, ..., r^{(n)}\} \cup \{d^{(1)}, ..., d^{(n)}\}$$

such that

$$t_j \leq t_{j+1}, \ 1 \leq j \leq 2n-1$$

Divide the total execution time into intervals whose bounds are epochal times.

< 同 ▶

Deadlines

We set:

$$d^{(k)} = r^{(k)} + \mathcal{S}' \times MS^{*(k)}$$
⁽²⁾

Definition: Epochal times

$$t_j \in \{r^{(1)}, ..., r^{(n)}\} \cup \{d^{(1)}, ..., d^{(n)}\}$$

such that

$$t_j \leq t_{j+1}, \ 1 \leq j \leq 2n-1$$

Divide the total execution time into intervals whose bounds are epochal times.

ELE DOG

Intervals

- run each application A_k during its whole execution window $[r^{(k)}, d^{(k)}]$,
- use a different throughput on each interval $[t_j, t_{j+1}]$, $r^{(k)} \leq t_j$ and $t_{j+1} \leq d^{(k)}$.
- for communication
- for computation

< 17 > <

-

Intervals

- run each application A_k during its whole execution window $[r^{(k)}, d^{(k)}]$,
- use a different throughput on each interval $[t_j, t_{j+1}]$, $r^{(k)} \leq t_j$ and $t_{j+1} \leq d^{(k)}$.
- for communication
- for computation

▲ 🗇 🕨 🔺

= 9QQ

Intervals

- run each application A_k during its whole execution window $[r^{(k)}, d^{(k)}]$,
- use a different throughput on each interval $[t_j, t_{j+1}]$, $r^{(k)} \leq t_j$ and $t_{j+1} \leq d^{(k)}$.
- for communication
- for computation

Intervals

- run each application \mathcal{A}_k during its whole execution window $[r^{(k)}, d^{(k)}]$,
- use a different throughput on each interval $[t_j, t_{j+1}]$, $r^{(k)} \leq t_j$ and $t_{j+1} \leq d^{(k)}$.
- for communication
- for computation

Intervals

- run each application \mathcal{A}_k during its whole execution window $[r^{(k)}, d^{(k)}]$,
- use a different throughput on each interval $[t_j, t_{j+1}]$, $r^{(k)} \leq t_j$ and $t_{j+1} \leq d^{(k)}$.
- for communication
- for computation
- state of buffers

Intervals

- run each application A_k during its whole execution window $[r^{(k)}, d^{(k)}]$,
- use a different throughput on each interval $[t_j, t_{j+1}]$, $r^{(k)} \leq t_j$ and $t_{j+1} \leq d^{(k)}$.
- for communication : $ho_{M \to u}^{(k)}(t_j, t_{j+1})$
- for computation : $ho_u^{(k)}(t_j,t_{j+1})$
- state of buffers at time t_j : $B_u^{(k)}(t_j)$

Short version

Positive values

• Non-negative throughputs.

$$\begin{aligned} \forall 1 \leq u \leq p, \forall 1 \leq k \leq n, \forall 1 \leq j \leq 2n-1, \\ \rho_{M \rightarrow u}^{(k)}(t_j, t_{j+1}) \geq 0 \text{ and } \rho_u^{(k)}(t_j, t_{j+1}) \geq 0. \end{aligned}$$
(3)

• Non-negative buffers.

$$\forall \ 1 \leq k \leq n, \forall 1 \leq u \leq p, \forall 1 \leq j \leq 2n,$$

 $B_u^{(k)}(t_j) \geq 0. \quad (4)$

三日 わへで

- 4 同 6 4 日 6 4 日 6

Physical constraints

• Bounded link capacity.

 $\forall 1 \leq j \leq 2n-1, \forall 1 \leq u \leq p,$

$$\sum_{k=1}^{n} \rho_{M \to u}^{(k)}(t_{j}, t_{j+1}) \frac{\delta^{(k)}}{b_{u}} \leq 1.$$
 (5)

• Limited sending capacity of master.

$$\forall 1 \leq j \leq 2n-1,$$

$$\sum_{u=1}^{p}\sum_{k=1}^{n}\rho_{M\to u}^{(k)}(t_{j},t_{j+1})\frac{\delta^{(k)}}{\mathcal{B}}\leq 1.$$
 (6)

• Bounded computing capacity.

$$\forall 1 \leq j \leq 2n - 1, \forall 1 \leq u \leq p,$$

$$\sum_{k=1}^{n} \rho_{u}^{(k)}(t_{j}, t_{j+1}) \frac{\omega^{(k)}}{s_{u}^{(k)}} \leq 1. \quad (7)$$

Buffer constraints

• Buffer initialization.

$$\forall \ 1 \leq k \leq n, \forall 1 \leq u \leq p,$$

$$B_u^{(k)}(r^{(k)}) = 0.$$
 (8)

• Emptying Buffer.

 $\forall \ 1 \leq k \leq n, \forall 1 \leq u \leq p,$

$$B_u^{(k)}(d^{(k)}) = 0.$$
 (9)

Bounded size

 $\forall 1 \leq u \leq p, \forall 1 \leq j \leq 2n,$

$$\sum_{k=1}^{n} B_{u}^{(k)}(t_{j}) \delta^{(k)} \leq M_{u}.$$
 (10)

▲冊 ▶ ▲ ∃ ▶ ▲ ∃ ▶ 三 目 = り へ ()

Tasks constraints

• Task conservation.

$$\forall 1 \le k \le n, \forall 1 \le j \le 2n - 1, \forall 1 \le u \le p, \\ B_u^{(k)}(t_{j+1}) = B_u^{(k)}(t_j) + \left(\rho_{M \to u}^{(k)}(t_j, t_{j+1}) - \rho_u^{(k)}(t_j, t_{j+1})\right) \times \left(t_{j+1} - t_j\right).$$
(11)

• Total number of tasks.

$$\forall \ 1 \le k \le n,$$

$$\sum_{\substack{1 \le j \le 2n-1 \\ t_j \ge r^{(k)} \\ t_{j+1} \le d^{(k)}}} \sum_{u=1}^p \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) = \Pi^{(k)}.$$
(12)

(日)

三日 のへで

э

Polyhedron

$$\begin{cases} \text{find } \rho_{M \to u}^{(k)}(t_j, t_{j+1}), \rho_u^{(k)}(t_j, t_{j+1}), \\ \forall k, u, j \text{ such that } 1 \le k \le n, 1 \le u \le p, 1 \le j \le 2n - 1 \\ \text{under the constraints (3), (4), (5), (6), (7), (8), (9), (10), (11) and (12) \\ (K) \end{cases}$$

A given max-stretch \mathcal{S}' is achievable if and only if the Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function.

Polyhedron

$$\begin{cases} \text{find } \rho_{M \to u}^{(k)}(t_j, t_{j+1}), \rho_u^{(k)}(t_j, t_{j+1}), \\ \forall k, u, j \text{ such that } 1 \le k \le n, 1 \le u \le p, 1 \le j \le 2n - 1 \\ \text{under the constraints (3), (4), (5), (6), (7), (8), (9), (10), (11) and (12) \\ (K) \end{cases}$$

A given max-stretch S' is achievable if and only if the Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function.

Polyhedron

$$\begin{cases} \text{find } \rho_{M \to u}^{(k)}(t_j, t_{j+1}), \rho_u^{(k)}(t_j, t_{j+1}), \\ \forall k, u, j \text{ such that } 1 \le k \le n, 1 \le u \le p, 1 \le j \le 2n - 1 \\ \text{under the constraints (3), (4), (5), (6), (7), (8), (9), (10), (11) and (12) \\ (K) \end{cases}$$

A given max-stretch S' is achievable if and only if the Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function.

Algorithm

- 1: Computing all the $MS^{*(k)}$, $\forall \ 1 \le k \le n$
- 2: $\mathcal{S}_{\mathsf{inf}} \leftarrow 1$
- 3: $\mathcal{S}_{\mathsf{sup}} \leftarrow \mathcal{S}_{\mathsf{max}}$
- 4: while $S_{sup} S_{inf} > \epsilon$ do
- 5: $\mathcal{S} \leftarrow (\mathcal{S}_{\mathsf{sup}} + \mathcal{S}_{\mathsf{inf}})/2$
- 6: **if** Polyhedron (K) is empty **then**
- 7: $\mathcal{S}_{inf} \leftarrow \mathcal{S}$
- 8: **else**
- 9: $\mathcal{S}_{\mathsf{sup}} \leftarrow \mathcal{S}$
- 10: Return $\mathcal{S}_{\mathsf{sup}}$

Theorem

The previous algorithm finds the optimal max-stretch in polynomial time.

시대가 시문가 시문가 문(목

Algorithm

- 1: Computing all the $MS^{*(k)}$, $\forall \ 1 \le k \le n$
- 2: $\mathcal{S}_{\mathsf{inf}} \leftarrow 1$
- 3: $\mathcal{S}_{\mathsf{sup}} \leftarrow \mathcal{S}_{\mathsf{max}}$
- 4: while $S_{sup} S_{inf} > \epsilon$ do
- 5: $\mathcal{S} \leftarrow (\mathcal{S}_{\mathsf{sup}} + \mathcal{S}_{\mathsf{inf}})/2$
- 6: **if** Polyhedron (K) is empty **then**
- 7: $\mathcal{S}_{inf} \leftarrow \mathcal{S}$
- 8: **else**
- 9: $\mathcal{S}_{sup} \leftarrow \mathcal{S}$
- 10: Return $\mathcal{S}_{\mathsf{sup}}$

Theorem

The previous algorithm finds the optimal max-stretch in polynomial time.

Stretch-intervals

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$

・ロト ・日下・ ・ ヨト

三日 のへで

Stretch-intervals

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$

Figure: Relation between stretch and deadlines

ъ

Notations

Problem: Quadratic constraints!

New notations:

$$\begin{array}{lll} \mathcal{A}_{M \to u}^{(k)}(t_j, t_{j+1}) & = & \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) \\ \mathcal{A}_{u}^{(k)}(t_j, t_{j+1}) & = & \rho_{u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) \end{array}$$

▲ 🗇 🕨 🔺

三日 のへの

Notations

Problem: Quadratic constraints!

New notations:

$$egin{array}{rcl} {\cal A}^{(k)}_{M
ightarrow u}(t_j,t_{j+1})&=&
ho^{(k)}_{M
ightarrow u}(t_j,t_{j+1}) imes(t_{j+1}-t_j)\ {\cal A}^{(k)}_{u}(t_j,t_{j+1})&=&
ho^{(k)}_u(t_j,t_{j+1}) imes(t_{j+1}-t_j) \end{array}$$

▲ 🗇 🕨 🔺

三日 のへの

New constraints

• Bounded link capacity.

$$\forall 1 \leq j \leq 2n-1, \forall 1 \leq u \leq p, \\ \sum_{k=1}^{n} A_{M \to u}^{(k)}(t_j, t_{j+1}) \frac{\delta^{(k)}}{b_u} \leq (\alpha_{j+1} - \alpha_j) \mathcal{S} + (\beta_{j+1} - \beta_j)$$

< 4 ₽ > < 3

三日 のへの

э

New constraints

- Bounded link capacity.
- Limited sending capacity of master.

$$\forall 1 \leq j \leq 2n-1,$$

$$\sum_{u=1}^{p} \sum_{k=1}^{n} A_{M \to u}^{(k)}(t_j, t_{j+1}) \delta^{(k)} \leq \mathcal{B} \times \left((\alpha_{j+1} - \alpha_j) \mathcal{S} + (\beta_{j+1} - \beta_j) \right)$$

三日 のへの

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.

$$\forall 1 \leq j \leq 2n - 1, \forall 1 \leq u \leq p, \ \sum_{k=1}^{n} A_{u}^{(k)}(t_{j}, t_{j+1}) rac{\omega^{(k)}}{s_{u}^{(k)}} \leq (lpha_{j+1} - lpha_{j}) \mathcal{S} + (eta_{j+1} - eta_{j})$$

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.

,

• Total number of tasks.

$$\forall \ 1 \leq k \leq n$$

$$\sum_{\substack{1 \le j \le 2n-1 \\ t_j \ge r^{(k)} \\ t_{j+1} \le d^{(k)}}} \sum_{u=1}^{p} A_{M \to u}^{(k)}(t_j, t_{j+1}) = \Pi^{(k)}$$

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.

$$egin{aligned} &orall\,\, 1\leq k\leq n, orall 1\leq j\leq 2n-1, orall 1\leq u\leq
ho, \ &B_u^{(k)}(t_{j+1})=B_u^{(k)}(t_j)+A_{M
ightarrow u}^{(k)}(t_j,t_{j+1})-A_u^{(k)}(t_j,t_{j+1}) \end{aligned}$$

-

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.
- Non-negative buffer.
- Buffer initialization.
- Emptying Buffer.

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.
- Non-negative buffer.
- Buffer initialization.
- Emptying Buffer.
- Bounded stretch

$$S_a \le S \le S_b \tag{13}$$
Linear programm

$$(\mathsf{LP}) \begin{cases} \text{MINIMIZE } \mathcal{S}, \\ \text{UNDER ALL CONSTRAINTS} \end{cases}$$

At most n(n-1) stretch intervals

・ロト ・日下・ ・日下

三日 のへの

э

Linear programm

$$(\mathsf{LP}) \begin{cases} \text{MINIMIZE } \mathcal{S}, \\ \text{UNDER ALL CONSTRAINTS} \end{cases}$$

At most n(n-1) stretch intervals

(日)

三日 のへの

э

Algorithm offline

1: $L \leftarrow 1$ and $U \leftarrow \max$ 2: while U - L > 1 do $M \leftarrow \left| \frac{L+U}{2} \right|$ 3: Solve the linear program (LP) for interval $[S_M, S_{M+1}]$ 4: if there is a solution with objective value \mathcal{S}_{opt} then 5: if $S_{opt} > S_M$ then 6: Return S_{opt} 7: 8: else $U \leftarrow M$ 9: 10: else $I \leftarrow M$ 11: 12: Solve the linear program (LP) for interval $[S_L, S_U]$ 13: Return the objective value S_{opt} of the solution

Online

Offline algorithm at each release dates. For each application A_k :

- update Π^(k)
- update $MS^{*(k)}$
- determine the new optimal stretch that can be achieved as in the offline case

Outline

2 Theoretical study

3 Experiments and simulations

4 Conclusion

三日 のへの

Experiments

Hardware

- 1 master SuperMicro servers 6013PI, with processors P4 Xeon 2.4 GHz;
- 8 workers SuperMicro servers 5013-GM, with processors P4 2.4 GHz;
- 100Mbps Fast-Ethernet switch

Software

- MPI communications
- Modification of slave parameters

The linear programs are solved using glpk.

Experiments

Hardware

- 1 master SuperMicro servers 6013PI, with processors P4 Xeon 2.4 GHz;
- 8 workers SuperMicro servers 5013-GM, with processors P4 2.4 GHz;
- 100Mbps Fast-Ethernet switch

Software

- MPI communications
- Modification of slave parameters

The linear programs are solved using glpk.

Experiments

Hardware

- 1 master SuperMicro servers 6013PI, with processors P4 Xeon 2.4 GHz;
- 8 workers SuperMicro servers 5013-GM, with processors P4 2.4 GHz;
- 100Mbps Fast-Ethernet switch

Software

- MPI communications
- Modification of slave parameters

The linear programs are solved using glpk.

- Simulated platforms as close as possible to actual experimental framework
- Experiments in 2 steps:
 - use of the same platform configuration and application scenario than during MPI experiments,
 - launch extensive set of simulations with larger applications

- Simulated platforms as close as possible to actual experimental framework
- Experiments in 2 steps:
 - use of the same platform configuration and application
 - launch extensive set of simulations with larger applications

- Simulated platforms as close as possible to actual experimental framework
- Experiments in 2 steps:
 - use of the same platform configuration and application scenario than during MPI experiments,
 - launch extensive set of simulations with larger applications

- Simulated platforms as close as possible to actual experimental framework
- Experiments in 2 steps:
 - use of the same platform configuration and application scenario than during MPI experiments,
 - launch extensive set of simulations with larger applications

Heuristics

FIFO SPT SRPT SWRPT

三日 のへで

Heuristics

FIFO	RR
SPT	МСТ
SRPT	NIC I
SWRPT	DD

Heuristics

 Steady-state MWMA (Master Worker Multi-applications) on each time interval

CBS3M (Clever Burst Steady-State Stretch Minimizing)

Heuristics

• Steady-state MWMA (Master Worker Multi-applications) on each time interval

CBS3M (Clever Burst Steady-State Stretch Minimizing)

Heuristics

- Steady-state MWMA (Master Worker Multi-applications) on each time interval
- CBS3M (Clever Burst Steady-State Stretch Minimizing)

MPI experiment results

Figure: Relative max-stretch of best four heuristics.

- Resource selection
- CBS3M online competitive agains CBS3M offline

A ►

-

MPI experiments vs simulations

Comparison of relative max-stretch

- average difference around 16%
- standard deviation of 14% (maximum of 72%).

Simulation results

Max-stretch

3 5

Simulation results

Sum-stretch

Jean-François Pineau

Bag-of-tasks

三日 のへの

Simulation results

Makespan

Jean-François Pineau

Bag-of-tasks

Simulation results

Max-flow

Jean-François Pineau

三日 のへの

Simulation results

Sum-flow

Jean-François Pineau

三日 のへの

Conclusion

Outline

P

| = 𝒫𝔄𝔄

э

Conclusion

- Key points:
 - Realistic platform model
 - Optimal offline algorithm
 - Efficient online algorithm based on offline study

• Extensions:

- Extend the simulation to larger platform
- Bicriteria

Conclusion

- Key points:
 - Realistic platform model
 - Optimal offline algorithm
 - Efficient online algorithm based on offline study
- Extensions:
 - Extend the simulation to larger platform
 - Bicriteria

Conclusion

- Key points:
 - Realistic platform model
 - Optimal offline algorithm
 - Efficient online algorithm based on offline study
- Extensions:
 - Extend the simulation to larger platform
 - Bicriteria

Questions

For any questions...

• Platform parameters

▲□ ▶ ▲ 三

三日 のへの

э

Parameters

general	number of workers	8
	number of applications	12
arrival dates	mean of the distribution in the log space	4.0
	standard deviation in the log space	1.2
computations	maximum amount of work application	76.8 Gflops
	minimum amount of work per task	3.1 Gflops
communications	maximum amount of communication per application	800 MB
	minimum amount of communication per task	40 MB
number of tasks	minimum number of tasks per application	10

Table: Parameters for the MPI experiments

< □ > <

1= 9QC

-

Parameters

general	number of workers	10
	number of applications	20
arrival dates	mean of the distribution in the log space	4.0
	standard deviation in the log space	1.2
computations	maximum amount of work application	409 Gflops
	minimum amount of work per task	3.1 Gflops
communications	maximum amount of communication per application	6 GB
	minimum amount of communication per task	40 MB
number of tasks	minimum number of tasks per application	10

Table: Parameters for the SimGrid simulations

三日 のへの

Questions

Detailled results

Algorithm	Exp1	Exp2	Exp3	Exp4	Exp5	Exp6	Exp7	Exp8	Exp9	Exp10	Average
CBS3M EDF OFFLINE	1.20	1.21	1.27	1.32	1.18	1.16	1.34	1.68	1.28	1.13	1.28
CBS3M EDF ONLINE	1.28	1.25	1.35	1.45	1.37	1.14	1.27	1.45	1.45	1.09	1.31
CBS3M FIFO OFFLINE	1.38	1.25	1.28	1.37	1.34	1.22	1.35	1.64	1.27	1.37	1.35
CBS3M FIFO ONLINE	1.42	1.26	1.48	1.43	1.47	1.15	1.54	1.55	1.36	1.16	1.38
FIFO MCT	1.71	2.46	1.87	2.54	1.53	1.28	2.77	1.66	2.27	1.37	1.95
FIFO RR	5.06	3.03	2.88	3.58	4.31	4.42	3.75	9.37	3.70	2.55	4.26
MWMA MS	1.66	1.99	2.42	1.80	2.17	2.18	1.80	2.98	2.28	3.18	2.24
MWMA NBT	1.22	1.45	1.43	1.53	1.53	1.63	1.36	1.67	1.48	1.49	1.48
SPT DD	4.27	3.06	2.36	2.74	5.00	9.20	4.18	11.17	3.33	2.32	4.76
SPT MCT	1.89	2.48	1.71	1.99	2.17	1.74	2.78	1.28	2.30	1.37	1.97
SRPT MCT	1.91	2.41	1.72	2.00	2.17	1.76	2.79	1.64	2.27	1.38	2.00
SWRPT MCT	1.92	2.44	1.72	1.99	2.17	1.76	2.97	1.63	2.28	1.38	2.03

Table: Results of the MPI experiments.

A ►

1= 9QC

э

Algorithm	minimum	average	$(\pm \text{ stddev})$	maximum	(fraction of best result)
FIFO_RR	4.550	16.689	(± 7.897)	62.6	(the best in 0.0 %)
FIFO_MCT	1.857	6.912	(± 2.404)	17.9	(the best in 0.0 %)
FIFO_DD	4.550	16.689	(± 7.897)	62.6	(the best in 0.0 %)
SPT_RR	1.348	4.274	(± 1.771)	13.8	(the best in 0.0 %)
SPT_MCT	1.007	1.928	(± 0.610)	5.99	(the best in 1.3 %)
SPT_DD	1.348	4.274	(± 1.771)	13.8	(the best in 0.0 %)
SRPT_RR	1.348	4.121	(± 1.737)	13.8	(the best in 0.0 %)
SRPT_MCT	1.007	1.861	(± 0.601)	6.87	(the best in 2.2 %)
SRPT_DD	1.348	4.121	(± 1.737)	13.8	(the best in 0.0 %)
SWRPT_RR	1.344	4.119	(± 1.739)	13.8	(the best in 0.0 %)
SWRPT_MCT	1.007	1.857	(± 0.601)	6.87	(the best in 1.9 %)
SWRPT_DD	1.344	4.119	(± 1.739)	13.8	(the best in 0.0 %)
MWMA_NBT	1.477	3.433	(± 1.044)	8.49	(the best in 0.0 %)
MWMA_MS	2.435	8.619	(± 2.420)	20.4	(the best in 0.0 %)
CBS3M_FIFO_ONLINE	1.003	1.322	(± 0.208)	2.83	(the best in 6.9 %)
CBS3M_EDF_ONLINE	1.003	1.163	(± 0.118)	1.93	(the best in 64.0 %)
CBS3M_FIFO_OFFLINE	1.022	1.379	(± 0.276)	3.74	(the best in 3.8 %)
CBS3M_EDF_OFFLINE	1.011	1.213	(± 0.125)	2.06	(the best in 26.2 %)

Table: Max-stretch of all heuristics in the simulations.

Algorithm	minimum	average	$(\pm \text{ stddev})$	maximum	(fraction of best result)
FIFO_RR	2.064	6.783	(± 3.210)	30.7	(the best in 0.0 %)
FIFO_MCT	1.322	2.754	(± 0.670)	6.45	(the best in 0.0 %)
FIFO_DD	2.064	6.783	(± 3.210)	30.7	(the best in 0.0 %)
SPT_RR	1.019	2.942	(± 1.221)	10.1	(the best in 0.0 %)
SPT_MCT	1.000	1.182	(± 0.183)	2.53	(the best in 2.4 %)
SPT_DD	1.019	2.942	(± 1.221)	10.1	(the best in 0.0 %)
SRPT_RR	1.007	2.607	(± 1.071)	8.93	(the best in 0.0 %)
SRPT_MCT	1.000	1.045	(± 0.098)	1.92	(the best in 25.5 %)
SRPT_DD	1.007	2.607	(± 1.071)	8.93	(the best in 0.0 %)
SWRPT_RR	1.000	2.596	(± 1.068)	8.96	(the best in 0.1 %)
SWRPT_MCT	1.000	1.038	(± 0.098)	1.92	(the best in 60.1 %)
SWRPT_DD	1.000	2.596	(± 1.068)	8.96	(the best in 0.1 %)
MWMA_NBT	1.051	2.013	(± 0.644)	5.41	(the best in 0.0 %)
MWMA_MS	1.663	4.183	(± 1.269)	11.5	(the best in 0.0 %)
CBS3M_FIFO_ONLINE	1.000	1.294	(± 0.208)	2.16	(the best in 0.4 %)
CBS3M_EDF_ONLINE	1.000	1.201	(± 0.190)	2.08	(the best in 20.2 %)
CBS3M_FIFO_OFFLINE	1.000	1.332	(± 0.227)	2.57	(the best in 0.1 %)
CBS3M_EDF_OFFLINE	1.000	1.272	(± 0.214)	2.49	(the best in 3.8 %)

Table: Sum-stretch of all heuristics in the simulations.

Algorithm	minimum	average	$(\pm \text{ stddev})$	maximum	(fraction of best result)
FIFO_RR	1.343	2.716	(± 0.684)	5.31	(the best in 0.0 %)
FIFO_MCT	1.000	1.329	(± 0.202)	2.11	(the best in 0.1 %)
FIFO_DD	1.343	2.716	(± 0.684)	5.31	(the best in 0.0 %)
SPT_RR	1.325	2.714	(± 0.685)	5.33	(the best in 0.0 %)
SPT_MCT	1.000	1.329	(± 0.202)	2.1	(the best in 0.0 %)
SPT_DD	1.325	2.714	(± 0.685)	5.33	(the best in 0.0 %)
SRPT_RR	1.325	2.714	(± 0.686)	5.32	(the best in 0.0 %)
SRPT_MCT	1.000	1.328	(± 0.202)	2.1	(the best in 0.0 %)
SRPT_DD	1.325	2.714	(± 0.686)	5.32	(the best in 0.0 %)
SWRPT_RR	1.322	2.715	(± 0.686)	5.32	(the best in 0.0 %)
SWRPT_MCT	1.000	1.328	(± 0.202)	2.1	(the best in 0.0 %)
SWRPT_DD	1.322	2.715	(± 0.686)	5.32	(the best in 0.0 %)
MWMA_NBT	1.000	1.079	(± 0.070)	1.45	(the best in 4.6 %)
MWMA_MS	1.000	1.078	(± 0.067)	1.42	(the best in 2.1 %)
CBS3M_FIFO_ONLINE	1.000	1.029	(± 0.029)	1.17	(the best in 7.5 %)
CBS3M_EDF_ONLINE	1.000	1.004	(± 0.006)	1.05	(the best in 35.0 %)
CBS3M_FIFO_OFFLINE	1.000	1.018	(± 0.023)	1.22	(the best in 17.6 %)
CBS3M_EDF_OFFLINE	1.000	1.003	(± 0.006)	1.07	(the best in 53.0 %)

Table: Makespan of all heuristics in the simulations.

Algorithm	minimum	average	$(\pm \text{ stddev})$	maximum	(fraction of best result)
FIFO_RR	1.146	3.097	(± 1.135)	10.2	(the best in 0.0 %)
FIFO_MCT	1.000	1.281	(± 0.258)	2.83	(the best in 14.4 %)
FIFO_DD	1.146	3.097	(± 1.135)	10.2	(the best in 0.0 %)
SPT_RR	1.386	3.282	(± 1.222)	10.9	(the best in 0.0 %)
SPT_MCT	1.002	1.460	(± 0.287)	3.09	(the best in 0.0 %)
SPT_DD	1.386	3.282	(± 1.222)	10.9	(the best in 0.0 %)
SRPT_RR	1.386	3.289	(± 1.225)	10.9	(the best in 0.0 %)
SRPT_MCT	1.003	1.473	(± 0.306)	4.28	(the best in 0.0 %)
SRPT_DD	1.386	3.289	(± 1.225)	10.9	(the best in 0.0 %)
SWRPT_RR	1.382	3.291	(± 1.225)	10.9	(the best in 0.0 %)
SWRPT_MCT	1.000	1.477	(± 0.309)	4.28	(the best in 0.1 %)
SWRPT_DD	1.382	3.291	(± 1.225)	10.9	(the best in 0.0 %)
MWMA_NBT	1.000	1.181	(± 0.153)	1.99	(the best in 7.0 %)
MWMA_MS	1.000	1.261	(± 0.189)	2.32	(the best in 1.1 %)
CBS3M_FIFO_ONLINE	1.000	1.054	(± 0.061)	1.52	(the best in 5.8 %)
CBS3M_EDF_ONLINE	1.000	1.031	(± 0.057)	1.48	(the best in 23.2 %)
CBS3M_FIFO_OFFLINE	1.000	1.037	(± 0.058)	1.48	(the best in 21.6 %)
CB\$3M_EDF_OFFLINE	1.000	1.023	(± 0.055)	1.48	(the best in 48.7 %)

Table: Max-flow of all heuristics in the simulations.
Detailled results

Algorithm	minimum	average	$(\pm \text{ stddev})$	maximum	(fraction of best result)
FIFO_RR	1.644	4.020	(± 1.567)	16.3	(the best in 0.0 %)
FIFO_MCT	1.134	1.652	(± 0.264)	3.33	(the best in 0.0 %)
FIFO_DD	1.644	4.020	(± 1.567)	16.3	(the best in 0.0 %)
SPT_RR	1.196	2.811	(± 1.081)	9.21	(the best in 0.0 %)
SPT_MCT	1.000	1.149	(± 0.171)	2.32	(the best in 3.5 %)
SPT_DD	1.196	2.811	(± 1.081)	9.21	(the best in 0.0 %)
SRPT_RR	1.079	2.704	(± 1.048)	9.03	(the best in 0.0 %)
SRPT_MCT	1.000	1.105	(± 0.151)	2.23	(the best in 32.1 %)
SRPT_DD	1.079	2.704	(± 1.048)	9.03	(the best in 0.0 %)
SWRPT_RR	1.079	2.706	(± 1.049)	9.03	(the best in 0.0 %)
SWRPT_MCT	1.000	1.108	(± 0.152)	2.23	(the best in 15.4 %)
SWRPT_DD	1.079	2.706	(± 1.049)	9.03	(the best in 0.0 %)
MWMA_NBT	1.000	1.404	(± 0.217)	2.29	(the best in 0.1 %)
MWMA_MS	1.359	2.333	(± 0.355)	3.7	(the best in 0.0 %)
CBS3M_FIFO_ONLINE	1.000	1.122	(± 0.101)	1.62	(the best in 1.4 %)
CBS3M_EDF_ONLINE	1.000	1.065	(± 0.090)	1.53	(the best in 35.6 %)
CBS3M_FIFO_OFFLINE	1.000	1.120	(± 0.103)	1.67	(the best in 0.3 %)
CBS3M_EDF_OFFLINE	1.000	1.087	(± 0.101)	1.66	(the best in 18.7 %)

Table: Sum-flow of all heuristics in the simulations.

