
Internet as a doubling metric

Laurent Viennot, Emmanuelle Lebhar, Pierre Fraigniaud

Équipe-projet GANG Inria – Liafa



Understanding Internet Structure

Internet Graph
AS graph, Routers graph
Power laws : Faloutsos et al. [SIGCOMM’99]
Connectivity : Broido and claffy [SPIE’01]
Not exactly power laws : Chen et al. [INFOCOM’02]

Modeling and estimating internet delays
Triangulation with landmarks : Francis et al. [INFOCOM’99]
Euclidean space embedding (GNP) : Ng and Zhang
[INFOCOM’02]
Hyperbolic space embedding : Shavitt and Tankel
[INFOCOM’04]
Non metric model (min-plus) : Key et al. [INFOCOM’08]
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Internet algorithms

Closest nodes
Delays as distances.
Nearest server, through distance estimation (landmarks,
GNP, many others...).
Nearest neighbor (distributed) : Karger and Ruhl
[STOC’2002]
Working testbed : Wong et al. [SIGCOMM’2005]

Routing
Efficient overlay network : Abraham et al. [SODA’04]
Routing scheme design : Krioukov et al. [INFOCOM’04],
Thorup et Zwick [STOC’2001]
Sparse spanner : Chan and Gupta [SODA’06]
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Internet Latencies as a Distance Function

Definition
Latency distance : d(u,v) = RTT (u,v).
(The Round Trip Time is the time to send a packet from u to v
and to receive an acknowledgment back from u to v).

Algorithms assumptions
d is a metric.
Bounded growth (more general than euclidean spaces)
[Plaxton et al. 99].
Doubling metric (more general than bounded growth)
[Gupta et al. 03, Kleinberg et al. 04, Slivkins 05].
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Algorithmic Brick Example

Example of algorithmic use
Triangle inequality for low stretch overlay routing.

w

u
v

Skewed triangle
d(w ,v)≤ δd(u,v).
Triangle inequality :
d(u,w)≤ d(u,v) + d(v ,w)≤ (1 + δ)d(u,v).
Routing from u to v through w results in a stretch 1 + 2δ.
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Internet Latencies as a Distance Function

Definition
Latency distance : d(u,v) = RTT (u,v).
(The Round Trip Time is the time to send a packet from u to v
and to receive an acknowledgment back from v to u).

Is this a doubling metric ?
d(u,u)≈ 0
should be symmetric (up to time variations),
triangle inequality ?
ball growth ?
doubling property (more general than ball growth) ?
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Questionable Fits for Internet latencies as a Metric

Metric
Triangle inequality [Francis et al. 01, Zhang 06]
Symmetry [Pathak et al. 07]

Bounded growth
On average [Zhang 06]

Doubling dimension
Next slides...
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Measurement Data

Ping
Direct RTT measurements.
Traceroutes from skitter data 20×400000 [CAIDA]
All-sites-ping 200×200, every hour [Yoshikawa and
Stribling]

King
Inter-nameservers (DNS) delays through recursive
requests [Gummadi et al. 02].
P2PSim 1700×1700 [Gil et al.]
Meridian project 2300×2300 [Wong et al. 05]

Acknowledgments
Thanks to all for providing their data.
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Max triangle inequality

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

Fr
ac

tio
n 

of
 tr

ia
ng

le
s 

u,
v,

w

RTT(u,v) / max{RTT(u,w), RTT(w,u)}

delta = infinity
delta = 1

delta = 0.5
delta = 0.1

Less than 1 + δ for a classical metric.
⇐ ?⇒ Alpage 2008 1 / 1 10 / 27



Max triangle inequality zoomed
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Inframetric

Definition
d is an inframetric if it verifies metric axioms where triangle
inequality is replaced by :

d(u,v)≤ ρmax{d(u,w),d(w ,v)}

for some fixed ρ.
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Triangles
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Skewed triangles

w

u
v

Skewed triangle
d(w ,v)≤ δd(u,v).
Triangle inequality :
d(u,w)≤ d(u,v) + d(v ,w)≤ (1 + δ)d(u,v).

Definition
An inframetric d is (ρs,δ)-skewed if for all δ-skewed triangle
u,v ,w,

d(u,v)≤ ρs max{d(u,w),d(w ,v)}
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Skewed triangles
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Ball growth

Definition
Let d be a distance function. The ball of radius r centered on a
node u is

Bu(r) = {v |d(u,v)≤ r}

Definition
A distance function has growth γ if |Bu(2r)| ≤ γ|Bu(r)| for all u, r .

Some facts
The size of Bu(r) increases polynomially with r .
Any metric of an euclidean space of dimension k has
growth O(k).
Same thing for the shortest path distance of a grid with
dimension k .
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Hops ball growth
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RTT ball growth
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RTT ball growth
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Doubling Metrics

r

R = 2r

r

r

r

r

r

γ balls of radius r are sufficient to cover a ball of radius
R = 2r .
γdlog2 R/re balls of radius r are sufficient to cover a ball of
radius R > r .
There exist compact routing schemes with O(γ

log 1
ε logn)

routing tables and stretch 1 + ε [Slivkins 06, Abraham et al.
05].
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Doubling property

Classical
γ balls of radius r are sufficient to cover a ball of radius
R = 2r .
γdlog2 R/re balls of radius r are sufficient to cover a ball of
radius R > r .

Definition
A ρ-inframetric is γ-doubling if γ balls of radius r are sufficient to
cover a ball of radius R = ρr .
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Doubling property versus growth

Definition
A ρ-inframetric has bounded growth γ if |Bu(2r)| ≤ γ|Bu(r)| for
all u, r .

Theorem
A γ-doubling ρ-inframetric has growth O(γ).

Extended definition

For r ≥ τ and R ≥ ρr , βα
logρ R/r balls of radius r are sufficient to

cover a ball of radius R ≥ ρr .
(Equivalent for α = γ, β = 1 and τ = 0).
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Doubling property

Voir figure

Most of the points lie between 2 · (2.35)log2 R/r and
25 · (2.35)log2 R/r .
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Compact routing scheme

Theorem
Consider a ρ-inframetric (ρs,δ)-skewed (α,β,τ)-doubling
inframetric. For any positive ε < δ/ρs, there exist a compact
routing scheme with with stretch (ρs/(1−ρε),τρ2 logn), table
size βα

3+logρ(
1
ε
) logρ(∆/τ) logn bits per node, and node label

size O(logρ(∆/τ) logn) bits.

Corollary ((back to Slivkins 05))
For a classical metric, ρ = 2, ρs = 1 + ε. For any positive
ε < 1/2, there exists a compact routing scheme with stretch
( 1+ε

1−2ε
,4τ logn), table size βα

3+log2(
1
ε
) log2(∆/τ) logn bits per

node, and node label size O(log2(∆/τ) logn) bits.
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Conclusion

Dynamics ?
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