Internet as a doubling metric

Laurent Viennot, Emmanuelle Lebhar, Pierre Fraigniaud

Équipe-projet GANG Inria - Liafa

Internet Graph

- AS graph, Routers graph
- Power laws : Faloutsos et al. [SIGCOMM'99]
- Connectivity : Broido and claffy [SPIE'01]
- Not exactly power laws : Chen et al. [INFOCOM'02]

Modeling and estimating internet delays

- Triangulation with landmarks : Francis et al. [INFOCOM'99]
- Euclidean space embedding (GNP) : Ng and Zhang [INFOCOM'02]
- Hyperbolic space embedding : Shavitt and Tankel [INFOCOM'04]
- Non metric model (min-plus) : Key et al. [INFOCOM'08]

Internet algorithms

Closest nodes

- Delays as distances.
- Nearest server, through distance estimation (landmarks, GNP, many others...).
- Nearest neighbor (distributed) : Karger and Ruhl [STOC'2002]
- Working testbed : Wong et al. [SIGCOMM'2005]

Routing

- Efficient overlay network : Abraham et al. [SODA'04]
- Routing scheme design : Krioukov et al. [INFOCOM'04], Thorup et Zwick [STOC'2001]
- Sparse spanner : Chan and Gupta [SODA'06]

Definition

Latency distance : d(u, v) = RTT(u, v).

(The Round Trip Time is the time to send a packet from u to v and to receive an acknowledgment back from u to v).

Algorithms assumptions

- *d* is a metric.
- Bounded growth (more general than euclidean spaces) [Plaxton et al. 99].
- Doubling metric (more general than bounded growth) [Gupta et al. 03, Kleinberg et al. 04, Slivkins 05].

Algorithmic Brick Example

Example of algorithmic use

Triangle inequality for low stretch overlay routing.

Skewed triangle

- $d(w,v) \leq \delta d(u,v)$.
- Triangle inequality : $d(u,w) \le d(u,v) + d(v,w) \le (1+\delta)d(u,v).$
- Routing from *u* to *v* through *w* results in a stretch $1 + 2\delta$.

Definition

Latency distance : d(u, v) = RTT(u, v).

(The Round Trip Time is the time to send a packet from u to v and to receive an acknowledgment back from v to u).

Is this a doubling metric?

- $d(u,u) \approx 0$
- should be symmetric (up to time variations),
- triangle inequality?
- ball growth ?
- doubling property (more general than ball growth)?

Questionable Fits for Internet latencies as a Metric

Metric

- Triangle inequality [Francis et al. 01, Zhang 06]
- Symmetry [Pathak et al. 07]

Bounded growth

On average [Zhang 06]

Doubling dimension

Next slides...

Ping

- Direct RTT measurements.
- Traceroutes from skitter data 20 × 400000 [CAIDA]
- All-sites-ping 200 × 200, every hour [Yoshikawa and Stribling]

King

- Inter-nameservers (DNS) delays through recursive requests [Gummadi et al. 02].
- P2PSim 1700 × 1700 [Gil et al.]
- Meridian project 2300 × 2300 [Wong et al. 05]

Acknowledgments

Ping

- Direct RTT measurements.
- Traceroutes from skitter data 20 × 400000 [CAIDA]
- All-sites-ping 200 × 200, every hour [Yoshikawa and Stribling]

King

- Inter-nameservers (DNS) delays through recursive requests [Gummadi et al. 02].
- P2PSim 1700 × 1700 [Gil et al.]
- Meridian project 2300 × 2300 [Wong et al. 05]

Acknowledgments

Ping

- Direct RTT measurements.
- Traceroutes from skitter data 20 × 400 000 [CAIDA]
- All-sites-ping 200 × 200, every hour [Yoshikawa and Stribling]

King

- Inter-nameservers (DNS) delays through recursive requests [Gummadi et al. 02].
- P2PSim 1700 × 1700 [Gil et al.]
- Meridian project 2300 × 2300 [Wong et al. 05]

Acknowledgments

Triangle inequality

Fraction of triangles u,v,w

Max triangle inequality

Max triangle inequality zoomed

Definition

d is an inframetric if it verifies metric axioms where triangle inequality is replaced by :

$$d(u,v) \le \rho \max\{d(u,w), d(w,v)\}$$

for some fixed p.

Skewed triangles

Skewed triangle

- $d(w,v) \leq \delta d(u,v)$.
- Triangle inequality : $d(u,w) \le d(u,v) + d(v,w) \le (1+\delta)d(u,v).$

Definition

An inframetric d is (ρ_s,δ) -skewed if for all δ -skewed triangle u, v, w,

$$d(u,v) \le \rho_s \max\{d(u,w), d(w,v)\}$$

Skewed triangles

max {RTT(u,w), RTT(w,u) RTT (u, v)

Definition

Let d be a distance function. The ball of radius r centered on a node u is

$$B_u(r) = \{v | d(u, v) \leq r\}$$

Definition

A distance function has growth γ if $|B_u(2r)| \leq \gamma |B_u(r)|$ for all u, r.

Some facts

- The size of $B_u(r)$ increases polynomially with r.
- Any metric of an euclidean space of dimension k has growth O(k).
- Same thing for the shortest path distance of a grid with dimension *k*.

Ping

- Direct RTT measurements.
- Traceroutes from skitter data 20 × 400000 [CAIDA]
- All-sites-ping 200 × 200, every hour [Yoshikawa and Stribling]

King

- Inter-nameservers (DNS) delays through recursive requests [Gummadi et al. 02].
- P2PSim 1700 × 1700 [Gil et al.]
- Meridian project 2300 × 2300 [Wong et al. 05]

Acknowledgments

Hops ball growth

RTT ball growth

RTT ball growth

- γ balls of radius *r* are sufficient to cover a ball of radius R = 2r.
- γ^[log₂ R/r] balls of radius r are sufficient to cover a ball of radius R > r.
- There exist compact routing schemes with $O(\gamma^{\log \frac{1}{\epsilon}} \log n)$ routing tables and stretch $1 + \epsilon$ [Slivkins 06, Abraham et al. 05].

- γ balls of radius *r* are sufficient to cover a ball of radius R = 2r.
- γ^[log₂ R/r] balls of radius r are sufficient to cover a ball of radius R > r.
- There exist compact routing schemes with $O(\gamma^{\log \frac{1}{\epsilon}} \log n)$ routing tables and stretch $1 + \epsilon$ [Slivkins 06, Abraham et al. 05].

- γ balls of radius r are sufficient to cover a ball of radius R = 2r.
- γ^[log₂ R/r] balls of radius r are sufficient to cover a ball of radius R > r.
- There exist compact routing schemes with $O(\gamma^{\log \frac{1}{\epsilon}} \log n)$ routing tables and stretch $1 + \epsilon$ [Slivkins 06, Abraham et al. 05].

- γ balls of radius r are sufficient to cover a ball of radius R = 2r.
- γ^[log₂ R/r] balls of radius r are sufficient to cover a ball of radius R > r.
- There exist compact routing schemes with $O(\gamma^{\log \frac{1}{\epsilon}} \log n)$ routing tables and stretch $1 + \epsilon$ [Slivkins 06, Abraham et al. 05].

- γ balls of radius r are sufficient to cover a ball of radius R = 2r.
- γ^[log₂ R/r] balls of radius r are sufficient to cover a ball of radius R > r.
- There exist compact routing schemes with $O(\gamma^{\log \frac{1}{\epsilon}} \log n)$ routing tables and stretch $1 + \epsilon$ [Slivkins 06, Abraham et al. 05].

- γ balls of radius r are sufficient to cover a ball of radius R = 2r.
- $\gamma^{\lceil \log_2 R/r \rceil}$ balls of radius *r* are sufficient to cover a ball of radius R > r.
- There exist compact routing schemes with $O(\gamma^{\log \frac{1}{\epsilon}} \log n)$ routing tables and stretch $1 + \epsilon$ [Slivkins 06, Abraham et al. 05].

- γ balls of radius r are sufficient to cover a ball of radius R = 2r.
- γ^[log₂ R/r] balls of radius r are sufficient to cover a ball of radius R > r.
- There exist compact routing schemes with $O(\gamma^{\log \frac{1}{\epsilon}} \log n)$ routing tables and stretch $1 + \epsilon$ [Slivkins 06, Abraham et al. 05].

Ping

- Direct RTT measurements.
- Traceroutes from skitter data 20 × 400 000 [CAIDA]
- All-sites-ping 200 × 200, every hour [Yoshikawa and Stribling]

King

- Inter-nameservers (DNS) delays through recursive requests [Gummadi et al. 02].
- P2PSim 1700 × 1700 [Gil et al.]
- Meridian project 2300 × 2300 [Wong et al. 05]

Acknowledgments

Classical

- γ balls of radius *r* are sufficient to cover a ball of radius R = 2r.
- γ^[log₂ R/r] balls of radius r are sufficient to cover a ball of radius R > r.

Definition

A ρ -inframetric is γ -doubling if γ balls of radius r are sufficient to cover a ball of radius $R = \rho r$.

Definition

A ρ -inframetric has bounded growth γ if $|B_u(2r)| \leq \gamma |B_u(r)|$ for all u,r.

Theorem

A γ -doubling ρ -inframetric has growth $O(\gamma)$.

Extended definition

For $r \ge \tau$ and $R \ge \rho r$, $\beta \alpha^{\log_{\rho} R/r}$ balls of radius r are sufficient to cover a ball of radius $R \ge \rho r$. (Equivalent for $\alpha = \gamma$, $\beta = 1$ and $\tau = 0$).

Definition

A ρ -inframetric has bounded growth γ if $|B_u(2r)| \leq \gamma |B_u(r)|$ for all u,r.

Theorem

A γ -doubling ρ -inframetric has growth $O(\gamma)$.

Extended definition

For $r \ge \tau$ and $R \ge \rho r$, $\beta \alpha^{\log_{\rho} R/r}$ balls of radius r are sufficient to cover a ball of radius $R \ge \rho r$. (Equivalent for $\alpha = \gamma$, $\beta = 1$ and $\tau = 0$).

Voir figure

Most of the points lie between $2 \cdot (2.35)^{\log_2 R/r}$ and $25 \cdot (2.35)^{\log_2 R/r}$.

Theorem

Consider a p-inframetric (ρ_s, δ)-skewed (α, β, τ)-doubling inframetric. For any positive $\varepsilon < \delta/\rho_s$, there exist a compact routing scheme with with stretch ($\rho_s/(1-\rho\varepsilon), \tau\rho^2 \log n$), table size $\beta \alpha^{3+\log_p(\frac{1}{\varepsilon})} \log_p(\Delta/\tau) \log n$ bits per node, and node label size $O(\log_p(\Delta/\tau) \log n)$ bits.

Corollary ((back to Slivkins 05))

For a classical metric, $\rho = 2$, $\rho_s = 1 + \epsilon$. For any positive $\epsilon < 1/2$, there exists a compact routing scheme with stretch $(\frac{1+\epsilon}{1-2\epsilon}, 4\tau \log n)$, table size $\beta \alpha^{3+\log_2(\frac{1}{\epsilon})} \log_2(\Delta/\tau) \log n$ bits per node, and node label size $O(\log_2(\Delta/\tau) \log n)$ bits.

• Dynamics?