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Understanding Internet Structure

Internet Graph

@ AS graph, Routers graph

@ Power laws : Faloutsos et al. [SIGCOMM 99]

@ Connectivity : Broido and claffy [SPIE’01]

@ Not exactly power laws : Chen et al. [INFOCOM’'02]

v

Modeling and estimating internet delays

@ Triangulation with landmarks : Francis et al. INFOCOM'99]

@ Euclidean space embedding (GNP) : Ng and Zhang
[INFOCOM'02]

@ Hyperbolic space embedding : Shavitt and Tankel
[INFOCOM'04]

@ Non metric model (min-plus) : Key et al. INFOCOM’08]
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Internet algorithms

@ Delays as distances.

@ Nearest server, through distance estimation (landmarks,
GNP, many others...).

@ Nearest neighbor (distributed) : Karger and Ruhl
[STOC’2002]

@ Working testbed : Wong et al. [SIGCOMM’2005]

@ Efficient overlay network : Abraham et al. [SODA’04]

@ Routing scheme design : Krioukov et al. [INFOCOM'04],
Thorup et Zwick [STOC’2001]

@ Sparse spanner : Chan and Gupta [SODA’06]

A
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Internet Latencies as a Distance Function

Definition

Latency distance : d(u,v) = RTT(u,v).
(The Round Trip Time is the time to send a packet from u to v
and to receive an acknowledgment back from u to v).

Algorithms assumptions
@ dis a metric.
@ Bounded growth (more general than euclidean spaces)
[Plaxton et al. 99].
@ Doubling metric (more general than bounded growth)
[Gupta et al. 03, Kleinberg et al. 04, Slivkins 05].
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Algorithmic Brick Example

Example of algorithmic use
@ Triangle inequality for low stretch overlay routing.

w

Skewed triangle

@ d(w,v) <dd(u,v).
@ Triangle inequality :
d(u,w) <d(u,v)+d(v,w) < (1+8)d(u,v).
@ Routing from u to v through w results in a stretch 1+ 24.
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Internet Latencies as a Distance Function

Definition

Latency distance : d(u,v) = RTT(u,v).
(The Round Trip Time is the time to send a packet from u to v
and to receive an acknowledgment back from v to u).

Is this a doubling metric ?
@ d(u,u)=~0
@ should be symmetric (up to time variations),

@ triangle inequality ?
@ ball growth ?
@ doubling property (more general than ball growth) ?
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Questionable Fits for Internet latencies as a Metfie

@ Triangle inequality [Francis et al. 01, Zhang 06]
@ Symmetry [Pathak et al. 07]

Bounded growth

@ On average [Zhang 06]
Doubling dimension

@ Next slides...
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Measurement Data

@ Direct RTT measurements.

@ Traceroutes from skitter data 20 x 400000 [CAIDA]

@ All-sites-ping 200 x 200, every hour [Yoshikawa and
Stribling]

@ Inter-nameservers (DNS) delays through recursive
requests [Gummadi et al. 02].

@ P2PSim 1700 x 1700 [Gil et al.]
@ Meridian project 2300 x 2300 [Wong et al. 05]
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Triangle inequality
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Max triangle inequality
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@ Less than 1 + 8 for a classical metric.
=7= Alpage 2008 1/1 10/ 27



Max triangle inequality zoomed
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Inframetric

Definition
d is an inframetric if it verifies metric axioms where triangle
inequality is replaced by :

d(u,v) <pmax{d(u,w),d(w,v)}

for some fixed p.
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Skewed triangles

Skewed triangle

@ d(w,v) <dd(u,v).
@ Triangle inequality :
du,w) <d(u,v)+d(v,w) <(1+38)d(u,v).

4

An inframetric d is (ps,d)-skewed if for all 5-skewed triangle
u,v,w,

d(u,v) <psmax{d(u,w),d(w,v)}

A\
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Skewed triangles
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Ball growth

Definition
Let d be a distance function. The ball of radius r centered on a
node u is

Bu(r)={v|d(u,v) <r}

Definition
A distance function has growth vy if |By(2r)| <v|By(r)| for all u,r.

@ The size of By(r) increases polynomially with r.

@ Any metric of an euclidean space of dimension k has
growth O(Kk).

@ Same thing for the shortest path distance of a grid with
dimension k.
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Measurement Data

@ Traceroutes from skitter data 20 x 400000 [CAIDA]
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Hops ball growth
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RTT ball growth
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RTT ball growth
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Doubling Metrics

@ v balls of ra are sufficient to cover a ball of radius
R=2r.

@ /9% A/r1 palls of radius r are sufficient to cover a ball of
radius R > r.

@ There exist compact routing schemes with O(y“’g% log n)
routing tables and stretch 1+ ¢ [Slivkins 06, Abraham et al.
05].
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Measurement Data

@ Inter-nameservers (DNS) delays through recursive
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Doubling property

@ v balls of radius r are sufficient to cover a ball of radius
R=2r.

@ y/°%2F/1 palls of radius r are sufficient to cover a ball of
radius R > r.

Definition

A p-inframetric is y-doubling ify balls of radius r are sufficient to
cover a ball of radius R = pr.
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Doubling property versus growth

Definition

A p-inframetric has bounded growth v if |By(2r)| <v|Bu(r)| for
allu,r.

A y-doubling p-inframetric has growth O(Y).

Extended definition

For r > tand R > pr, pol®% 7/" balls of radius r are sufficient to
cover a ball of radius R > pr.
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Doubling property versus growth

Definition
A p-inframetric has bounded growth v if |By(2r)| <v|Bu(r)| for
allu,r.

A y-doubling p-inframetric has growth O(Y).

Extended definition

For r > tand R > pr, pol®% 7/" balls of radius r are sufficient to
cover a ball of radius R > pr.
(Equivalent forao=v, =1 and t=0).
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Doubling property

Most of the points lie between 2-(2.35)"°% 7/ and
25.-(2.35)092F/r,
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Compact routing scheme

Theorem

Consider a p-inframetric (ps,d)-skewed (a., B, t)-doubling
inframetric. For any positive € < 3/ps, there exist a compact
routing scheme with with stretch (ps/(1 — pe),tp?log n), table
size po+°9%(2) log (A /7)log n bits per node, and node label
size O(log,(A/t)logn) bits.

=7 =

Corollary ((back to Slivkins 05))

For a classical metric, p =2, ps = 1+¢€. For any positive

€ < 1/2, there exists a compact routing scheme with stretch
(122, 4tlog n), table size Po3+°%(:) log,(A /t)log n bits per
node, and node label size O(log,(A/t)logn) bits.

Alpage 2008 1/1 26 /27



Conclusion

@ Dynamics ?
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