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1 Goal and context

The project acronym is ALPAGE, which stands for ALgorithmique des Plates-formes À Grande Échelle and can
be translated by Algorithms for Large-Scale Platforms.

The project gathers several teams with different and complementary expertise, ranging from algorithm
design and scheduling techniques to macro-communication primitives and routing protocols, and to peer-
to-peer architectures and distributed systems.

1.1 General context

The recent evolutions in computer networks technology, as well as their diversification, yield a tremen-
dous change in the use of these networks: applications and systems can now be designed at a much larger
scale than they used to be. This scaling evolution conerns the amount of data, the number of computers, the
number of users, and the geographical diversity of theses users. This race towards large scale computing has
two major implications. First, new opportunities are offered to applications, in particular as far as scientific
computing, data bases, and file sharing are concerned. Second, a large number of parallel or distributed
algorithms developed for medium size systems cannot be run on large scale systems without a significant
degradation of their performances. In fact, one must probably relax the constraints that a system should sat-
isfy in order to run at a larger scale. For example, coherence protocols designed for distributed applications
are too demanding in term of both message and time complexity, and must therefore be adapted to run at
a larger scale. In addition, most distributed systems deployed today are characterized by a high dynamism
of their entities (participants can join and leave at will), a potential instability of the large scale networks (on
which concurrent applications are running), and the increasing probability of failure. Therefore, as the size
of the system increases, it becomes necessary that it adapts automatically to the changes of its components,
requiring a self-organization of the system when facing the arrival and departure of participants, data, or
resources.

As a consequence, it becomes crucial to be able to understand and model the behavior of large scale
systems, to efficiently exploit these infrastructures. More specifically, it is essential to design dedicated
algorithms handling a large amount of users and/or data.

1.2 Our project within ACI Grandes Masse de Données

The scientific community learnt a lot from parallel computation, in particular to handle heterogeneous
resources, both for computing time and communication bandwidth. The understanding of parallel compu-
tation was achieved thanks to a fine grained modeling of the physical network and of its communication
primitives. However, the experience acquired over the last decade is not sufficient to tackle new problems
occurring in large scale systems. Effectively, (1) it is unclear how the current models can be adapted to
large scale systems, and (2) the current methodology requires the use of (at least partially) centralized sub-
routines that cannot be considered in large scale systems. More specifically, these subroutines assume the
ability of gathering all the information regarding the network at a single node (topology, resource perfor-
mances, etc.). This assumption is unrealistic in a general purpose large size platform, in which the nodes are
unstable, and whose resource characteristics can vary abruptly over time. Basiacally, central control should
be avoided as much as possible in such systems. Moreover, the proposed solutions for small to medium
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size, stable, and dedicated environments do not satisfy the minimal requirements for self-organization and
fault-tolerance, two properties that are unavoidable in a large scale context.

The tremendous success of peer-to-peer (P2P) applications for file sharing [14, 13, 18] led to the design of
a large number of dedicated protocols, that run in a fully distributed environment. These protocols support
local decisions, and the P2P services (publication, search, node insertion, etc.) are supported by a (virtual)
overlay network connecting the peers over the Internet. Up to some extent, the current P2P protocols [22,
28, 23] are stable and fault-tolerant, as witnessed by their wide and intensive usage. Nevertheless, the
P2P protocols are been initially designed for file sharing applications [24] and also studied in the context
of general purpose distributed applications. Yet, such protocols have not been optimized for scientific
applications, neither they are adapted to sophisticated data-base applications.

The main objective of our project is to federate a group of partners who have the required skills to
build a bridge between, on the one hand, the world of parallel applications and grid computing, and, on
the other hand, the world of large scale decentralized systems and P2P applications. We aim at designing
algorithms grounded on realistic models for which it will be possible to control the performances of the
algorithms, and to maintain their stability under brutal changes of the platform. We will mostly focus on
the design of robust decentralized algorithms for problems that, although quite simple in essence, possess
a large applicative spectrum: broadcast and multicast of large data streams, distribution of independent
tasks over a large network, elementary scheduling problems, etc.

The aforementioned objectives naturally fits in ACI "Grandes Masses de Données". Effectively, our ob-
jectives envision large platforms for which the startup times induced by the deployment of the applications,
and the large latency of the long-distance communications, restrict their use to applications that manipulate
large volumes of data. Our project is therefore naturally fitting in Action "Efficient Algorithms" from the
2005 call, that stipulates:

Algorithmic has a crucial role to play for all that concerns the management of a large amount of data,
and a serious research effort has to be done to improve the current (slowly convergent) algorithms, and
to adapt them to multi-scale objects in the context of manipulating huge data depository. In particular, it
was observed that defining abstract objects out of the experience acquired while facing practical problems
enabled to design parallel and/or distributed algorithms, and an in-depth analysis of these objects should
open new directions for further improvements, especially in the field of parallel programming, and com-
putational grid. The study of distributed data structures, and the study of the communication costs, are
two examples of studies from which the management of large masses of data should take benefit.

1.3 Targeted platforms

This project is focussing on algorithms for large scale distributed systems, encompassing heterogeneous decen-
tralized platforms. Here are some definitions that we will use throughout this proposal:

Stable platforms: These platforms are characterized by their large size, but their limited heterogeneous-
ness (processor speed, bandwidth of the communication links, etc.). Moreover, the characteristics of
the platform are supposed to be static (or to change at very slow rate) over time.

A typical example of such platforms is a computational grid dedicated to one user, or to a small
group of well identified users, on which are running a small number of different applications, also
well identified. Another example is a set of resources provided by a team of users, and shared by these
users. These resources are assumed to be temporary dedicated to a specific application, or to a well
identified small set of applications. Obviously, these two examples differ in the sense that although
assuming a global knowledge of the platform characteristics is a reasonable assumption for a grid, it
is an unrealistic assumption in the case of shared resources that can potentially evolve over time, and
whose owner(s) can also potentially evolve as well.

Semi-stable platforms: These platforms are characterized by their large size, and their heterogeneousness.
The resources of these platforms (topology, message routes, etc.) and their characteristics are assumed
to be known even though they may change over time.
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A typical example of such platform is a general purpose computational grid, or a set of resources
provided by a team of users that can change significantly over time.

Unstable platform: These platforms are characterized by their large size, their high heterogeneousness,
and their characteristics that can evolve rapidly over time. In particular, resources and users can join
and leave at will. The size of an unstable platform is generally by one or two orders of magnitude
larger than those of stable or semi-stable platforms. It is therefore very difficult, and perhaps even
impossible, to get a correct view of the characteristics of an unstable platform at any time (topology,
performances of the computational units, etc.). As a consequence, centralized solutions should be
avoided as any central entity would immediately create a bottleneck in the system.

A typical example of such platforms are the ones on which Internet file sharing systems have been
deployed.

1.4 Targeted applications

As the design of algorithms dedicated to large scale platforms is still at its early days, it is unrealistic
to investigate this domain as a whole. Instead, it is preferable to start the investigation by considering
simple problems, at the core of the domain. This project will therefore focus on elementary procedures such
as data broadcasting and multicasting, the deployment of regular applications, the scheduling of these
applications’ tasks, etc. The applications concerned by this project are thus, mainly:

• Broadcasting and gathering. Specifically, we will investigate these problems to validate our platform
models.

• Applications consisting of a large set of independent tasks, of identical (or very similar) characteris-
tics: amount of computation, amount of data, etc. In particular, we will focus on image analysis and
particle collisions [29] that will be used as test applications for our models and solutions.

• Applications consisting of a large set of tasks sharing specific files, as parameter sweep applications or
data-base applications.

1.5 Objectives

In order to provide efficient solutions for large scale systems design, we will concentrate our efforts on the
following four complementary axes:

Topic 1: Large scale distributed platform modeling;

Topic 2: Overlay networks topologies;

Topic 3: Scheduling for regular parallel applications;

Topic 4: Scheduling for file-sharing applications.

Our priority will be to provide solutions that are valid and feasible in the framework of large scale
platforms (i.e., they must be scalable and free of any type of bottleneck). Of course, these solutions must be
adaptive, to react to the inherent dynamics of the considered systems.

The remaining of the document describes our main objectives regarding each of these four topics.
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2 Project description

2.1 Models

An important part of our work will be devoted to the modeling of target platforms defined above (stable,
semi-stable and unstable). More precisely, for each type of platform, our aim is to define a realistic, tractable
and instantiable model.

• Realistic: for each proposed model, we aim to provide experimental results proving that the model
corresponds to observed phenomena (contentions, bandwidths, interferences...)

• Tractable: in order to be considered as tractable, the model should enable to derive efficient polyno-
mial time (optimal or approximation) algorithms for a set of fundamental problems. More precisely,
Broadcast and Multicast will be considered as testbeds to validate the tractability of candidate models.

• Instantiable: one should be able to evaluate the different parameters of the model in real time. In
particular, this requires platform discovery mechanisms, for both platform topology and the actual
parameters (bandwidths, contentions) of the model. Real time means that the time needed to in-
stantiate the parameters of the models should be small with respect to the evolution speed of the
parameters of the platform (that will obviously not be the same for stable, semi-stable and unstable
platforms).

More generally, the models we will consider strongly depend on the characteristics of the platform.
On the one hand, in the case of stable platforms, costly mechanisms can be considered, since this cost
will be amortized over time. On the other hand, in the case of unstable platforms, where connections
and disconnections are frequent, and where communication links are not dedicated, it will be necessary to
rely on less sophisticated mechanisms. Proposed algorithms for broadcast and multicast operations will
strongly depend on the model, and therefore on the type of the considered platform.

2.1.1 Stable platforms

Task 1.1: Modeling and discovery mechanisms for stable platforms Recently, several models [9, 5, 6,
16, 7] have been proposed in the literature for modeling the topology and the resources of large scale dis-
tributed stable platforms. The important issues concern their ability to describe heterogeneous resources
(both processing and communication resources) and the interferences between simultaneous activities. In
particular, the following questions must be answered: is it possible, for a processor to be involved in more
than one incoming (and/or) one outgoing communication? is it important to take into account the interfer-
ences that can occur between several distinct point to point communications? Are processing performances
affected by simultaneous incoming (and/or) outgoing communications?

The second part of this task is devoted to platform discovery mechanisms. Recently, several toolboxes
(ENV [26, 25] or ALNEM [20]) have been developed to find out the topology (the map) of stable platforms.
It is worth noting that the aim of these toolboxes is not to discover the actual physical topology of a platform
at the network packet level (that would lead to huge maps that could hardly be used to derive efficient
algorithms), but rather to obtain a description of the topology of the platform at the application layer. Such
a map should nevertheless be able to model the interferences than can be observed at the application layer.
These maps, simple and compact, may be suitable to derive algorithms (for broadcast and multicast) and
may also be scalable. Nevertheless, algorithms for building such maps are still incomplete and too slow to
be considered for large scale platforms. Our aim is to make them suitable for finding the topology of large
scale distributed platforms, in reasonable time (since the platforms considered in this part are stable, the
running time of the discovery mechanism is not crucial, as far as it does not exceed a few hours for a large
platform).
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Task 1.2: Tractability analysis for the model of stable platforms In order to validate the tractability of
proposed model, we will consider the broadcast of a large message over a large scale distributed but stable
platform. Recently, several polynomial time algorithms have been developed for this problem [8]. These
algorithms are asymptotically optimal, when the size of the message (or equivalently the number of mes-
sages) becomes arbitrarily large (more precisely, they achieve optimal throughput for broadcast operation).
The first step will consist in adapting these algorithms to the platform model obtained in Task 1.1. More-
over, these algorithms require to store at a single point all topology and performance information in order
to compute the set of weighting trees that will be used to broadcast messages from any source. Since this
set of trees may be to large to be stored on each node for any source, algorithms for compacting routing
tables will also be required.

2.1.2 Semi-stable platforms

Task 1.3: Modeling and discovery mechanisms for semi-stable platforms. In the case of semi-stable
platforms, the topology of the platform does not change during the execution of an application, but the
network connecting participating nodes is not dedicated, and communications involved by other transfers
may affect link bandwidths. Automatic topology discovery mechanisms developed in Task 1.1 can therefore
still be used in the context of semi-stable platforms, but mechanisms used to determine the actual capacities
of network links (like NWS [31]) at runtime should be added. Moreover, since the topology determined
in Task 1.1 does not match the actual physical topology but rather a description of the topology at the
application layer, it is important to determine whether changes in link performances may affect the resulting
topology (and in this case, find out how to update the map).

Task 1.4: Tractability analysis for the model of semi-stable platforms. If mechanisms for platform dis-
covery do not require fundamental modifications when moving from stable to semi-stable platforms, algo-
rithms for broadcasting and multicasting must be strongly reconsidered. In particular, it is not reasonable
to assume that all the characteristics of the platform can be centralized at a given node to compute the
set of broadcast trees, since the characteristics of the platform (and therefore the set of trees) continuously
change. Therefore, it is necessary to build fully distributed algorithms for broadcasting, and these algo-
rithms should be robust against small perturbation in network links performances. To achieve this tasks,
decentralized algorithms for computing multi-flows [3, 4] and network coding [2] techniques may be used.

2.1.3 Unstable Platforms

Task 1.5: Modeling and discovery mechanisms for unstable platforms. In the case of unstable platforms,
due to frequent connections and disconnections, the topology of the platform may change dramatically. It
is therefore necessary to design platform discovery mechanisms that strongly differ from those proposed
in Tasks 1.1 and 1.3. In order to deal with hosts volatility, peer to peer networks rely on a logical topol-
ogy (overlay network) in order to ensure robustness, fault tolerance and efficient routing. In general, the
overlay network is not directly related to the underlying physical network although a few peer to peer
overlay have been optimized according to the physical topology (Pastry [23] and Land [1]). Ignoring the
physical topology may have a strong impact on the performance the applications running on the platform.
This is typically the case of the applications considered in Tasks 3.* and 4.*. Typically these applications
have predictable communication schemes that should be exploited. In this context, in order to ensure time
efficiency and to avoid communication resources waste, the logical and the physical topologies should be
closely related. Nevertheless, due to frequent changes in the topology, it will be necessary to rely on basic
and fast tools such as ping or traceroute. We may also take into account the presence in the unstable
platform of stable nodes, which are continuously connected, since more sophisticated and costly algorithm
may be used to determine precisely the underlying topology of induced sub-network.
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Task 1.6: Tractability analysis for the model of unstable platforms. Recently, several algorithms have
been proposed for collective communications on unstable platforms, such as SplitStream [10]. These al-
gorithms consist in using several broadcast trees both in order to balance the broadcasting load and to
introduce some redundancy in order to ensure fault tolerance. We propose to adapt the techniques devel-
oped in Task 1.4, based on distributed computations of multi-commodity flows [4] and network coding [2],
in order to ensure both fault tolerance and efficiency.

2.2 Peer to peer overlays: structures and functionalities

ALPAGE targets two main classes of applications: (i) data dissemination (or multicast) applications and
(ii) grid computing applications. We are considering large-size systems. We identified the peer to peer
communication paradigm as a suitable basis of our approach. Such a model is scalable and provides an
attractive support for the large-scale dimension of applications targeted in the context of dynamic systems.

2.2.1 Peer to peer overlays

For the past ten years, distributed systems have been continuously growing in size. They now involve
thousands, even millions of entities, scattered all over the Internet. To deal with this scalability shift, many
of traditional approaches designed for small to medium size systems are no longer appropriate. The peer to
peer communication paradigm has recently emerged as the key to fill this gap and provide a scalable sup-
port to the development of large-scale applications managing large amount of data. The inherent scalability
of peer to peer systems rely on the following properties:

(i) Self-organization: Peer to peer systems are able to automatically re-organize themselves as peers join
and leave the system.

(ii) Symmetry: As opposed to the traditional client-server approach, peers have a symmetric role in the
system: they may both act as server and client. As the number of clients increases, the number of
servers increases linearly so that no bottleneck is created in the system.

(iii) Fully decentralized control: Peer to peer systems do not rely on any central entity to control and man-
age the system. Instead, each node knows about a limited subset of the system.

Peer to peer overlays build a virtual network on top of a physical one according to a given structure (or
absence of structure). In unstructured peer to peer overlays, each peer is connected to a set of other peers
randomly chosen [17]. On the other side of the spectrum, structured peer to peer overlays organize peers ac-
cording to a virtual name-space [28, 23]. Such overlay provide distributed hash table functionalities. Other
hybrid and hierarchical overlays exist combining both approaches. Overall, such an architecture provides a
scalable and efficient platform to develop large-scale applications and has generated a lot of interest in both
academic and industrial worlds recently. Many applications might benefit from such architectures from
file sharing applications to distributed data bases, grid computing applications and sensor networks. Most
of these applications manage a large amount of data and/or resources and require efficient approaches to
store, search, replicate, update and disseminate them.

This part of the project will focus on the design of solutions relying of the peer to peer paradigm in the
context of the three system topologies considered in ALPAGE: stable, semi-stable and highly-dynamic. So
far, most of the works done in the area of peer to peer overlays have been taking place mostly in the context
of highly dynamic settings. In this project, we will also consider less dynamic systems. More specifically,
we aim at studying how to exploit those topologies to optimize existing approaches.

2.2.2 Resource discovery in large-scale systems

One of the main objective of this part of ALPAGE is to provide efficient mechanism to discover resources
(computing, storage and data) in large-scale systems. This functionality is crucial in the context of grid
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computing applications in particular. So far, such applications have mostly relied on parallel computing
programming model. They should today evolve towards distributed solutions to be able to exploit the full
potential of large-scale grid computing infrastructures.

Task 2.1: Resource discovery We identified the following basic functionalities for resource location and
discovery in grid computing applications: exact search, keyword-based search and range queries. In this
task, we will study the combination of various peer to peer infrastructures and/or technologies. For exam-
ple structured peer to peer overlays provide an efficient support for exact searches [24, 12] while unstruc-
tured networks are more adapted to keyword-based searches.

In addition, we plan to exploit the proximity potentially existing between peers (in the context of a given
application) in order to improve performance. This proximity metric should be defined on a per application
basis and might impact the logical links. For example we might consider topological proximity, semantic
or coupling proximity metrics.

• Topological proximity. We measure the topological proximity as the topological distance between
two peers. This can be measured for example by the number of physical links traversed to go from
one peer to the other or the latency (or bandwidth) of such a route. This type of proximity has been
one of the first one used to optimize peer to peer overlays [23, 21]. In fact, ignoring the topological in-
formation at the overlay level may lead to prohibitive latencies. For example, the good performances
of Scribe [11], a tree-based peer to peer application-level system, relies on the fact that the underly-
ing peer to peer overlay is optimized according to this metric. Exploiting this proximity has been
identified as crucial in Task 1.5.

• Semantic proximity. This metric reflects an interest-based proximity between two peers according to
a given application. This property has been exploited in a number of recent approaches [27, 15, 30],
more specifically in the context of peer to peer file sharing systems. The basic idea is that if a system
is able to cluster logically peers sharing the same interests (for example interested in the same files),
the performance of search might be increased significantly. Capturing such a proximity is a tedious
task that depends on the considered applications. We will consider the application of the recent
approaches proposed in the context of file sharing systems to grid computing applications.

• Coupling proximity. Coupling proximity can be defined as a privileged relationship between peers
involved in the same program which relates them either through data or code. For example, if a peer
B uses the data produced by a program running on peer A, they are considered as coupled. Capturing
such a proximity between peers could lead to great improvement on performance and have an impact
on the tasks scheduling.

In this project, we consider simple queries (exact or keyword-based) and more complex queries. Such
queries are used to discover resources and are expressed as logical expressions. The approach we plan to
follow in ALPAGE is to capture and leverage the various forms of proximity exhibited by an application,
taking into account the dynamics of the topology. For example topological proximity might be discovered
and exploited on a long term in a static platform.

Instantaneous searches assume that peers are reactive: if the search fails, the requester may need to re-
iterate his request. Persistent queries enable a user to specify a request that will remain valid over a given
period of time so that he will be notified later if the request could not be satisfied. Obviously, such requests
are particularly useful in the context of resource discovery where peers might be waiting for a given type of
resource or data to be available. We plan to extend the work done on instantaneous searches in this context.
This implies to take care of the following issues: publication of newly available resources and notification
to interested peers, and taking into account timing information related to validity.

Task 2.2: Small world peer to peer overlays Jon Kleinberg [19] modeled relationships in social networks
using a two-dimensional grid where peers are placed according to their geographical position. Each peer
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would know its direct neighbors in the grid as well as a few random long links. In [19] Kleinberg shows that
it is possible to chose these links such that a greedy routing algorithm provide as good routing performance
as the ones provided by a specific topology between peers. This result is actually a good starting point to
implement efficient search mechanisms.

To summarize, our project will explore various peer to peer structures in order to provide efficient search
functionalities on a grid computing infrastructure. More specifically we will focus on the following general
objectives:

• Figure out the functionalities that one can expect from a peer to peer network in the context of grid
computing. For example, connections through a firewall are not considered in file sharing applica-
tions.

• Design peer to peer overlay specifically for grid computing applications that will be more efficient
than currently deployed peer to peer systems. Exploiting the topology information when it is known
(geographical position, potential hierarchy) and use this information to improve performance.

2.3 Scheduling parallel applications

Scheduling applications on large scale platforms induces several problems. If a single application is exe-
cuted on the platform, we typically aim at balancing the load while minimizing the communication volume.
The problem is known to be hard for homogeneous parallel machines, and only gets worse for heteroge-
neous clusters, or even collections of such clusters. If several applications are run concurrently, and thus
compete for CPU and network resources, a fair sharing of the platform must be enforced in order to opti-
mize the execution time of each application.

The algorithms that can be designed to solve the previous problems heavily depend upon the context.
Mapping and scheduling techniques must take into account the available information on application and
platform parameters, or the lack thereof. Is there a master processor acting as a centralized scheduler?
does the master posses an accurate knowledge of the whole platform? is the platform stable, semi-stable
or unstable? The following tasks aim at providing different algorithmic techniques, depending upon the
answer to the previous questions.

Note that a particular instance of the problem involves applications that require the manipulation of
large files, which are initially distributed across the platform. This problem is dealt with in Section 2.4.

2.3.1 Centralized scheduling

Task 3.1: Centralized scheduling of a single application. In this task, we aim at executing a large set
of independent, same-size tasks. First we assume that there is a single master, that initially holds all the
(data needed for all) tasks. The problem is to determine an architecture for the execution. Which proces-
sors should the master enroll in the computation? How many tasks should be sent to each participating
processor? In turn, each processor involved in the execution must decide which fraction of the tasks must
be computed locally, and which fraction should be sent to which neighbor (these neighbors must be deter-
mined too).

Parallelizing the computation by spreading the execution across many processors may well be limited
by the induced communication volume. Rather than aiming at makespan minimization, a more relevant
objective is the optimization of the throughput in steady-state mode. There are three main reasons for fo-
cusing on the steady-state operation. First is simplicity, as the steady-state scheduling is really a relaxation of
the makespan minimization problem in which the initialization and clean-up phases are ignored. One only
needs to determine, for each participating resource, which fraction of time is spent computing for which
application, and which fraction of time is spent communicating with which neighbor; the actual schedule
then arises naturally from these quantities. Second is efficiency, as steady-state scheduling provides, by
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definition, a periodic schedule, which is described in compact form and is thus possible to implement effi-
ciently in practice. Third is adaptability: because the schedule is periodic, it is possible to dynamically record
the observed performance during the current period, and to inject this information into the algorithm that
will compute the optimal schedule for the next period. This makes it possible to react on the fly to resource
availability variations.

We have already designed some scheduling algorithms to optimize the steady-state throughput, but
these only apply to stable platforms so far. We have ideas on how to extend the solution to deal with semi-
stable platforms, e.g. adjusting the period length to cope with variations in resource performance, and
re-injecting the knowledge dynamically acquired by monitoring the current execution.

Unstable platforms would require a totally different approach, where task replication would have to
play a major role. How to choose the replication factor, and how to efficiently keep track of successfully
executed copies? Another important criterion to consider are the average response time (or delay in the
system), and maximal response time. In fact, designing multi-criteria algorithms capable of achieving a
wide range of throughput/response time trade-offs would be very valuable.

To design efficient solutions for semi-stable and unstable platforms, we will use the models built up in
the previous tasks. The proposed solutions will rely on a statistical vision of the platforms, and of their
expected evolution throughout time.

Task 3.2: Centralized scheduling of several applications. In this task, we target the concurrent execution
of several master-slave applications. As above, each application consists of a large collection of indepen-
dent, same-size tasks. The applications can be of very different nature, e.g. files to be processed, images
to be analyzed or matrices to be multiplied. Note that the size of the tasks, both in terms of commu-
nication volume or of computing demand, may well vary from one application to another. In fact, the
relative communication-to-computation ratio of the applications is likely to prove an important parameter in
the scheduling process.

Each application is initiated on and by a master processor, which is not necessarily the same for each
application. All applications compete for CPU and network resources. The scheduler must ensure a fair
management of these resources. For each application, define its throughput as the (fractional) number of
tasks executed every time-unit, in steady-state mode. The overall objective is to achieve the same weighted
throughput for each application. Indeed, if all applications were equally important, the scheduler would
ideally process the same number of tasks for each application every time-step, thereby realizing the same
throughput. However, some applications may be given more priority. For each application we define a
priority factor that quantifies its relative worth. For instance, computing two units of load per time unit
for an application with priority factor 2 is as worthwhile/profitable than computing one unit of load for
an application with priority factor 1. This concept makes it possible to implement notions of application
priorities for resource sharing.

The scheduling problem is more complex than the one defined in Task 3.1, because both the communication-
to-computation ratio and the priority factor differ among the applications. We have investigated preliminary
solutions for stable platforms, but everything is to be invented for the other two types of architectures.

2.3.2 Distributed scheduling

Task 3.3: Distributed scheduling of a single application. Even for stable platforms, it is not fully clear
that we can realistically assume a global, reliable and accurate knowledge of all the platform parameters.
The larger the platform, the less realistic the above assumption. In fact, for the largest platforms, it is likely
that only a hierarchical knowledge of the information is available: each node only possesses the partial
information related to its level in the hierarchy (see the tasks of Section 2.1 on how to acquire this local
information).

We have to tackle the design and evaluation of distributed scheduling mechanisms. Each participating
resource will take scheduling decisions based upon a precise information on its immediate neighborhood.
Ideally, the optimal scheduling will be reached after a series of iterations aimed at local refinements of the
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current solution. A first concept to investigate is that of decentralized multi-commodity flow algorithms
(variants of the Awerbuch and Leighton algorithm).

It may well be the case that a decentralized approach turns out to be the only realistic solution in several
applicative contexts. However, we insist that the deployment of decentralized scheduling algorithms must
be very conservative. It is mandatory to guarantee that all computations are correctly executed before
aiming at optimizing them by injecting local knowledge into the scheduler.

Task 3.4: Long-term extensions. Of course, we can target a distributed scheduling mechanism for the
concurrent execution of several master-slave applications, but it seems a very difficult goal. Instead, we
may try to deal with more complex applications, replacing the independent tasks by a series of identical
Directed Acyclic Graphs (e.g., solving a succession of finite-element problems, each of them being a task
graph).

Also, there are scenarios where all application tasks are not known a priori, but instead are submitted by
the users as the execution progresses. We have to provide on line schedulers capable of efficiently managing
such applications, most likely by extending traditional window-based strategies.

2.4 Scheduling applications sharing (large) files

We deal here with a particular instance of the previous scheduling problem. This instance involves appli-
cations that require the manipulation of large files, which are initially distributed across the platform. It
may well be the case that some files are replicated. Also, some application tasks may depend upon the
same files (e.g., if the files correspond to the same input data to which will be processed through different
computational kernels).

The target platform is composed of several servers, with different computing capabilities, and which are
linked through an interconnection network. To each server is associated a (local) data repository. Initially,
the files are stored in one or several of these repositories. We assume that a file may be duplicated, and
thus simultaneously stored on several data repositories. There may be restrictions on the possibility of
duplicating the files (typically, each repository is not large enough to hold a copy of all the files. After
having decided that server Si will execute task Tj , the input files for Tj that are not already available in the
local repository of Si will be sent through the network. Several file transfers may occur in parallel along
disjoint routes. Also, it may be possible for intermediate hosts to keep a copy of the files that they are
forwarding, provided they have enough storage space to do so; this would result in increasing the number
of source repositories for the corresponding files, thereby potentially speeding up the next request to access
them.

Task 4.1: Centralized approach. In the first version of the problem, we assume that there is a centralized
scheduler, which knows all platform and application parameters. The objective is to map each task to
a server, and to schedule all the communications induced by the mapping, so as to minimize the total
execution time.

There are several variants to consider. In a purely static context, the objective is to design bi-criteria
algorithms that aim both at minimizing the total volume of files that are being transferred, and at carefully
balancing the load of the servers. A first approach is to extend classical list heuristics, such as min-min
or sufferage, to take into account that files are shared between tasks. An other idea is to adapt Web cache
techniques, taking into account the fact that file accesses can be predicted more accurately than Web location
accesses.

An interesting extension is that of the steady-state execution, when several instances of the same prob-
lem are pipelined on the platform. We are then faced to the same questions as in Task 3.1. The new difficulty
is that we no longer deal with independent tasks but instead we have to manage tasks sharing files.

Task 4.2: Distributed approach. The framework is the same as for Task 3.3, but the fact that tasks depend
upon remote files (possibly shared) is a major complication. Indeed, local dynamic strategies, aimed at self-
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stabilizing the load, will be harder to design: it will likely be difficult to come up with a reliable estimation
of the cost related to communicating the files, because the information on the closest source will be neither
accurate nor up-to-date.

3 Intended results

In Sections 2 to 4, we already described expected results for the different tasks. Therefore, we concentrate in
this section on task allocation and schedule. We also detail the work that will be conducted by the engineers
hired by the project (named CDD 1 to 3, where CDD means Contrat à durée déterminée and can be translated
by Fixed-term position).

3.1 Task allocation

In the following, the three different sites are called West (Bordeaux and Rennes), East (Lyon, Grenoble and
Nancy), and Paris (LRI and LIX). We refer to tasks as:

• Tasks 1.*: platform discovery and collective communication schemes

• Tasks 2.*: peer to peer systems and resource discovery

• Tasks 3.*: scheduling

Task are assigned to sites as summarized in the table below:

EAST PARIS WEST
Tasks 1.* X X
Tasks 2.* X X
Tasks 3.* X X

3.2 Schedule

The expected schedule for the different tasks is the following:

0-6 months 6-12 months 12-18 months 18-24 months 24-30 months 30-36 months
Task 1.1 X X (CDD1) X (CDD1)
Task 1.2 X X X
Task 1.3 X X (CDD1) X (CDD1)
Task 1.4 X X (CDD2) X (CDD2)
Task 1.5 X X (CDD1) X (CDD1)
Task 1.6 X (CDD2) X X
Task 2.1 X X X (CDD2) X (CDD2)
Task 2.2 X (CDD2) X (CDD2) X X
Task 3.1 X (CDD1) X (CDD1)
Task 3.2 X X
Task 3.3 X X
Task 3.4 X X
Task 4.1 X X X X (CDD3) X (CDD3)
Task 4.2 X (CDD3) X(CDD3) X
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3.3 Expected results for CDDs

3.3.1 CDD1: Platform Discovery, Stable Platforms

Most algorithms to deploy efficiently a large set of independent tasks rely on an accurate knowledge of the
platform. However, as explained in section 2.1.1, most methods proposed in the network community are
not suited to discover an application-level network topology. Even though several toolboxes (ENV [26, 25]
or ALNEM [20]) have been developed to find the topology of stable platforms, algorithms for building such
maps are still incomplete and too slow to be considered for large scale platforms.

The main task of this CDD will be to first study the scalability of these toolboxes by evaluating their
performances on both real and simulated platforms. It should enable to improve these tools (by improving
the underlying algorithms and coupling them with NWS [31]) and then to use them to deploy large scale
applications. The hired person will start his/her work for 12 months in March 2006. He/She will spend 6
months at ID (Grenoble) and 6 months at LIP (Lyon).

3.3.2 CDD2: Collective Communications

The main task of this CDD will be to develop algorithms for collective communications. We schedule the
beginning of this CDD for September 2006, so that the question of collective communication on stable plat-
form should be solved. Therefore, his/her work will concentrate on the design of broadcast and multicast
algorithms on semi-stable and unstable platforms. For semi-stable platforms, the objective is to design dis-
tributed robust algorithms, based on multi commodity flow algorithms [4] and network coding [2]. We
propose to develop a prototype for broadcast and multicast onto semi stable platforms, and to validate it
either through simulations or direct experimentation. The work on unstable platform will consist in im-
proving the current version of SplitStream [10], in order to take the actual performances of the underlying
network into account. The hired person will start his/her work for 12 months in September 2006. He/She
will spend 6 months at LaBRI (Bordeaux) and 6 months at IRISA (Rennes).

3.3.3 CDD3: Scheduling applications sharing files

The main task of this CDD will be to develop algorithms for scheduling applications sharing files. We
schedule the beginning of this CDD in September 2007, i.e. at a later stage in the project. This is because
Tasks 4.1. and 4.2. build upon several results of former tasks. Task 4.1. requires input from the work on
modeling and discovering the platforms, while Task 4.2. will benefit from previous work on decentralized
scheduling for simpler applications. We propose to develop several heuristics and prototype software for
the centralized version of the problem, both for makespan minimization and throughput optimization in
steady-state mode. For the distributed approach, the objective is to design a robust distributed algorithm
that aims at minimizing the communication volume, but it is not clear yet which tools will turn out useful.
The hired person will start his/her work for 12 months in September 2007. He/She will spend 6 months at
LIX (Paris) and 6 months at LIP (Lyon).
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