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Abstract 

In this pape6 we deal with n ~ o  geometric problems 
arising froin heterogeneous parallel computing: how to 
partition the unit square irito p rectangles of given area 
SI, sa, . . . sp (such that E:='=, s, = l), so as to mini- 
mize (i) either the sum of the p perimeters of the rect- 
angles (i i)  or the largest perimeter of the p rectangles. 
For both problems, we prove NP-completeness and we 
introduce approximation algorithms. 

1 Introduction 

In this paper, we deal with two simple geometric 
problems: how to partition the unit square into p rectan- 
gles of given area s1 s21 . . . , sp (such that c:='=, si = 
l ) ,  so as to minimize 

0 either the sum of the p half perimeters of the rect- 
angles, 

0 or the largest half perimeter of the p rectangles. 

Note that there always exist solutions to these problems: 
e.g. tile the unit square into p horizontal slices of height 
SI sa,  . . . , sp.  The difficulty is to minimize the objec- 
tive function. 

Consider the following example with p = 5 rect- 
angles R I ,  . . . R5 of areas SI = 0.36, s2 = 0.25, 
s3 = s4 = s5 = 0.13. A possible partition is shown 
in Figure 1. The size of each rectangle is the following: 
0.61 x for R I ,  0.61 x 25 for Rz, and 0.39 x 5 for 

6.1 
R3, Rs, and R5. The maximum half-perimeter is that 
of R I ,  approximately 1.2002, which is very close to the 
absolute lower bound 1.2 obtained when the largest rect- 
angle is a square (this is not achievable in this example). 
As for the second objective function, we compute that 
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the sum of the half-perimeters is 4.39, while the abso- 
lute lower bound is E:='=, 2 6  M 4.36 (obtained when 
all rectangles are squares, which is not achievable in this 
example either). Hence the partition turns out to be very 
satisfactory for both objective functions. The geometric 
interpretation for the sum of the half-perimeters is nice: 
i t  is the length of the lines drawn to make the partition. 
plus 2 corresponding to the right and bottom edge of the 
unit square. 

0.61 11.3Y 

I I  I s 3  I I ln  

Figure 1. A simple example with 5 rectan- 
gles. 

The main results of the paper are the proof of NP- 
completeness and approximation algorithms for both 
optimization problems. Beforehand, we explain the ini- 
tial motivation for this work, which arises from mini- 
mizing communications in the design of parallel algo- 
rithms targeted to heterogeneous platforms. The rest 
of the paper is organized as follows. In Section 2 
we explain the motivation from heterogeneous paral- 
lel computing. In Section 3 we formally state the op- 
timization problems PERI-SUM (minimize the sum of 
the perimeters of the rectangles) and PERI-MAX (min- 
imize the largest perimeter), and we establish their NP- 
completeness. Section 4 is devoted to the design of ap- 
proximation algorithms for PERI-SUM; Section 5 is its 
counterpart for PERI-MAX. To demonstrate the prac- 
tical usefulness of these heuristics, some MPI experi- 
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ments are reported in Section 6. In Section 7 we briefly 
survey related optimization problems. We give some fi- 
nal remarks and conclusions in Section 8. 

2 Problem Motivation 

The motivation for this work is the design of par- 
allel Matrix Multiplication (MM for short) algorithms 
targeted to heterogeneous platforms, such as heteroge- 
neous clusters of workstations, or collections of such 
clusters. Parallel MM algorithms work as follows: let 
C = A x B the product to be computed, where A and 
B are square matrices of size n x n. First, granularity is 
increased: matrix blocks rather than elementary matrix 
coefficients are allocated to processors, as in the ScaLA- 
PACK library [4]. Hence, each “element” in A, B and 
C is a square T x T block, and the unit of computation 
is the updating of one block, i.e. a matrix-matrix multi- 
plication of size T .  Assume there are p processors. The 
three matrices A, B and C are partitioned into p (super- 
posed) rectangles. There is a one-to-one mapping be- 
tween these rectangles and the processors. Each proces- 
sor is responsible for updating its rectangle: at each step, 
one pivot column and one pivot row are communicated 
to all processors, and independent updates take place; 
more precisely, each processor updates each block in 
its rectangle with one block from the pivot row and one 
block from the column row, as illustrated in Figure 2. 

I v  
Figure 2. The MM algorithm on a heteroge- 
neous platform. 

Using different-speed processors, we want to balance 
the computing load so that each processor receives an 
amount of work in accordance to its computing power. 
Because all C blocks require the same amount of arith- 
metic operations, each processor executes an amount of 
work which is proportional to the number of blocks that 
are allocated to it, hence proportional to the area of its 
rectangle. In Figure 2 ,  we have 13 different-speed com- 
puting resources. We let si the fraction of the total com- 

puting power represented by processor Pi, 1 _< i _< p .  
Normalizing processor speeds, we have cy=’=, si = 1. 
Normalizing the computing workload accordingly, we 
have to tile the unit square into p rectangles Ri of pre- 
scribed area si, 1 5 i 5 p.  The question is: how to 
compute the shape of these p rectangles so as to mini- 
mize the total execution time? 

Let hi x vi be the size of rectangle Ri, where 
hiui = s i .  At each step of the M M  algorithm, com- 
munications take place between processors: the total 
volume of data exchanged is proportional to the sum 
C = x:=’=l(hi + vi) of the half perimeters of the p 
rectangles Ri. In fact, this is not exactly true: because 
the pivot row and columns are not sent to the-processors 
that own them, we should subtract 2 from C ,  1 for the 
horizontal communjcations and 1 for the vertical ones. 
Since minimi$ng C or C - 2 is equivalent, we keep 
the value of C as stated. Minimizing C seems to be a 
very natural goal, because i t  represents the total volume 
of communications. For instance it is natural to assume 
that communications will be mostly sequential on a het- 
erogeneous network of workstations where processors 
are linked by a simple Ethernet network; also, there will 
be little or none computationkommunication overlap on 
such a platform. In that context, minimizing the total 
communication volume is the main objective. 

Conversely, some communications can occur in par- 
allel, if the computing resources are linked through a 
dedicated high-speed network, and if parallel communi- 
cation links are provided. In that context, we may want 
to minimize the maximal amount of communications to 
be performed by each processor, so that the objective 
function becomes A4 = maxl<i<,(h, _ _  + vi).  

Once a solution to either optimization problem has 
been found, we derive the allocation of data elements 
to processor Pi by rounding up the values n x hi and 
n x wi. Finally, note that both optimization problems 
have a wide potential applicability. Forgetting about 
MM algorithms, consider the implementation of any ap- 
plication (such as a finite-difference scheme) where het- 
erogeneous processors communicate boundary elements 
at each step (the communication scheme need not be 
nearest-neighbor, it can be anything): minimizing the 
total communication volume, or the maximal amount 
of communications performed by one processor, while 
load-balancing the work, amounts to solving exactly the 
same optimization problems. 

3 NP-Completeness 

We formally state both optimization problems. We 
have to determine p rectangles RZ, of prescribed area s t ,  
1 5 i 5 p where Cy=‘=, s, = 1. The shape of each R, is 
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the degree of freedom: we want to tile the unit square so 
as to solve the following optimization problems: 

Definition 1 
- PERI-SUM(s): Given p real positive numbers 
s1 . . . , s p  s.t. E:='=, si = 1, find a partition of the unit 
square into p rectangles Ri of area si and of size hi x vi, 
so that C = E:''=, (hi + vi) is minimized. 
- PERI-MAX(s): Given p real positive numbers 
SI, . . . , s p  s.t. E:='=, si = 1, find a partition of the unit 
square into p rectangles Ri of area si and of size hi x vi, 
so that $I = maxl<ilp (hi + vi) is minimized. 

There is an obvious lower bound for PERI-SUM(s) 
and for PERI-MAX(s): 

Lemma 1 For all solutions of PERI-SUM(s), 6' 2 
2 cf, 6. For a11 solutions of PERI-MAX(s), $I >_ 
2 maxl<,<, 6. 

The decision problems associated to the optimization 
problems PERI-SUM and PERI-MAX are the follow- 
ing: 

Definition 2 
- PERI-SUM(s,K): Given p real positive numbers 
SI . . . , sp  s.t. c:='=, si = 1 and a positive real bound 
K ,  is there a partition of the unit square into p rectan- 
gles Ri of area si and of size hi x wi, so that Cy"=, (hi + 
- PERI-MAX(s,K): Given p real positive numbers 
SI,. . . sp  s.t. E:==, si = 1 and a positive real bound 
K ,  is there a partition of the unit square into p rect- 
angles Ri of area si and of size hi x vi, so that 
maxiii<p(hi + vi) 5 K ?  

U<) 5 K ?  

Our main result states the intrinsic difficulty of the 
PERI-SUM and PERI-MAX optimization problems: 

Theorem 1 PERI-SUM(s, K )  and PERI-MAX(s,K) are 
NP-complete. 

The proof is provided in [3, 1.51. More important 
than the proof, the theorem itself clearly demonstrates 

with a column-based heuristic, very simple to imple- 
ment, and which appears very efficient through exten- 
sive experimental comparisons. However, we have not 
been able to give a tight approximation bound: the 
bound of Section 4.1.3 depends on the relative size of 
the rectangles to be used in the tiling. In Section 4.2 we 
move to a recursive heuristic, much more complicated 
to describe, but for which a nice approximation bound is 
provided. 

4.1 Column-Based Heuristic 

, c 1  c2  c3 

1 

Figure 3. Column-based partitioning of the 
unit square: C = 3, kl = 5, k2 = 3 and 
ks = 4. 

4.1.1 Description 

Since PERI-SUM(s) is NP-complete, we consider the 
more constrained problem COL-PERI-SUM(s) where 
we impose that the tiling is made up with processor 
columns, as illustrated in Figure 3 .  In other words, 
COL-PERI-SUM(s) is the restriction of PERI-SUM(s) 
to column-based partitions. In this section, we give a 
polynomial solution to COL-PERI-SUM(s), which will 
be used as a heuristic for PERI-SUM(s). 

the intrinsic difficulty of static load-balancing on het- 
erogeneous platforms while minimizing communication 
rnrt 

Framework We describe the COL-PERI-SUM(s) 
problem more formally: we aim at tiling the unit square 

* V O L .  

into C columns (where C is yet to be determined) of 
width c1 . . . , CC. Each column Ci is partitioned itself 
into ki rows (to be determined too) of respective area 
s,,(%,~), . . . , sv(+). Of course, the final partitioning has 

ki = p rectangles, and all the areas SI, . . . , sp are 
represented once and only once. The goal is to build 
such a partitioning, subject to the minimization of the 
sum of the rectangle perimeters. 

4 Approximation Algorithms for PERI- 
SUM 

There are several "natural" heuristics to approximate 
PERI-SUM. However, proving approximation bounds 
turns out to be very technical. We start in Section 4.1 
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Algorithm The main points of the column-based 
tiling are the following: 

1.  Re-index the variables S I ,  . . . , sp  such that s 1  5 
s2 5 . . .  5 sp .  

2. Iteratively build the function f c ,  by incrementing 
the value of C from 1 to the desired value For 
q E (1,. . . , p } ,  f c ( q )  represents the total perime- 
ter of an optimal column-based partitioning of a 
rectangle of height 1 and width (E:==, si )  x 1 into 
q rectangles of respective area SI ,  . . . , sy, using C 
columns. 

To help understand the derivation, we apply the algo- 
rithm on the following example: we have p = 8 areas 
of values (0.05,0.05,0.08,0.1,0.1,0.12,0.2,0.3). The 
results of the algorithm are described in Table 1. Each 
column C, contributes to the sum of the half-perimeters 
as follows: 1 for the vertical line, and IC, x c, for the ki 
horizontal lines of length cz. 

1 1  q=l I q=2 I q=3 I q=4 
C = 1 1 1  1,0510 1 1.210 I 1.54/0  1 2.1210 

I 

C =  I 2 . 9 / 0  
C = 2  2.9413 
C = 3 3.6614 
C = 4 4.4814 
C = 5 5 .3814  

q=6 q=7 q=8 
410 5.910 9 1 0  

3.513 4.38 14 5.76 1 5  
4 1 4  4.5815 5.516 

4.78 1 5  5.2 16 5.88 17 
5.615 5.98 1 6  6.5 17 
6.5 I 5  6.8 I 6  7.28 17 

1.116 8.117 
9 1 7  

Table 1. Table containing the values 
of the couples f c ( q ) / T  where f c ( q )  = 

and T is the value minimizing the previous 
expression. Bold entries correspond to 
the optimal solution. 

r ~ [ C - l , q - l ]  min (1 + ( cr<,<y s.1) x ( 4  - 7.) + f C - l ( T ) )  

In the example, the optimal partitioning is obtained 
for 3 columns (f3(8) = 5.5). The first column of width 
c3 = s7 + sa = 0.5 is composed of 2 elements. The 
second column of width c2 = s 4  + s 5  + 36  = 0.32 is 
composed of 3 elements. Then the last column of width 
e 1  = SI + s2 + s3 = 0.18 is made up with the smallest 
3 elements. 

Algorithm The algorithm is outlined as follows (fcperznze t e  corresponds to the f c (q )  previously used. 

fcut (q)  corresponds to the total number of blocs in the 
first C - 1 columns. So that, there remains q - f;""(q) 
blocs in the column C): 

s=o 
for q=l to p 
s=s+s ,  
f l P e r i m e t e T  ( 4 )  = 1 + s x q 
flcUt(4) = 0 

endfor 
for C=2 to p 

for q=C to p 

+ fc-1 ( r )  
fi""t(4) = Tnzzn  

endfor 
endfor 

Optimality This algorithm provides the optimal 
column-based partitioning. The proof is detailed in [2, 
151. The worst-case complexity of the algorithm is 
O(U". 

4.1.2 Experimental Comparison with the Lower 
Bound 

As shown in Section 3, a lower bound for the sum C of 
the half-perimeters is twice the sum of the square roots 
of the areas, i.e. LB = 2 c&, 6. Of course this 
bound cannot always be met: consider an instance of 
PERI-SUM(s) with only two rectangles, s1 = 1 - E and 
s2 = E ,  where E > 0 is an arbitrarily small number. 
Partitioning into two rectangles requires to draw a line 
of length 1, hence C = 3 .  However, LB = 2 n  + 
& > 2 can be arbitrarily close to 2. 

In this section, we experimentally compare, using a 
large number of random tests, the value C given by our 
partitioning against the absolute lower bound LB. Fig- 
ure 4 represents two curves for a number of processors 
varying from I to 40. The first curve corresponds to the 
mean value of the ratio while the second curve gives 
the minimum values of this ratio. We see that in average, 
the optimal column-based tiling given by our algorithm 
gives a solution that is "almost" optimal, so that we can 
be satisfied with the results for all practical purposes. 

4.1.3 Theoretical Comparison with the Lower 
Bound 

In this section, we prove that the column-based parti- 
tioning is a good approximation, especially when the ra- 
tio between max si and min si is small: 
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Experimental results using 2000000 random tests per point r---- 

I \  

' ' d  
1 J L'I 

10 15 20 25 30 35 40 
Number 01 processors 

Figure 4. For each number of processors 
(varying from 1 to 40), 2,000,000 values for 
the si have been generated. For each case, 
we compute the ratio of the sum C of the 
half perimeters of our partitioning over the 
absolute lower bound LB. The worst case 
is a constant value equal to 1.5. The aver- 
age and best cases are reported in the two 
curves. 

Proposition 1 Let T = *, let C denote the sum 
of the half perimeters of the rectangles obtained with 
the optimal colunzn-based partitioning, and let LB = 
2 E:='=, 6. Then, 

The proof can be found in [2]. It is straightforward 
when evaluating the cost of a very simple partitioning 
(with about fi columns and Jp elements per column). 
If T = 1, i.e. all the processors have the same speed, 
the column-based partitioning is asymptotically optimal. 
On the other hand, if T is large, i.e. if one rectangle is 
much larger than another, the bound is very pessimistic. 

4.2 Recursive Heuristic 

We have derived a recursively defined heuristic that 
lead to a good approximation factor: letting C denote 
the sum of the half perimeters of the rectangles obtained 
with this heuristic, and LB = 2 E:==, 6, s .  we have 

5 
4 

C ' I l + - L B  

The construction of the heuristic, together with the proof 
of the approximation factor, are available in [3, 151. 

5 Approximation algorithms for PERI- 
MAX 

In this section, we introduce a polynomial heuristic 
to solve the PERI-MAX problem. Again, we consider a 
column based partitioning of the unit square. We con- 
sider two different heuristics, according to the area of 
the largest rectangle. Let SI > s2 . . . >_ s p  denote the 
given areas of the rectangles. 

If s1 is greater than 4, we use a first heuristic. In this 
case, one column is created for each element. Therefore, 
the half-perimeter of one rectangle of area si is 1 + si. 
In this case, 

In the case where s1 is less than f ,  we use a second 
heuristic, which ensures that 

The algorithm can be stated as follows: 
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Peri-max-column-based ( p ,  S = (SI,. . . , s p ) )  
c = l  
fori = 1 top 

Scol(c)=Scol(c) U{i} 
if C z € S c o l ( c )  3% 1 
2 f i -  !.EL- 3 maXz~scor(c) SZ 

c = c + l  
endif 

endfor 
C m a x  = C 

ifCZ€SC0l(Cmax) sz 5 
2 f i  - Jy - m~xz~scoi (c , , , )  sz 

S C O l ( 1 )  = Scol(1) U SCOZ(Cma,) 

C m a x  = cmaz - 1 
endif 

endPeri-maxrolumn-based 

The configuration of one of the columns Scol is de- 
picted in Figure 5. The largest perimeter of the rectan- 
gles in the column Scol(c) is 

maxi~~col(c)  si 
si+ 

iEScol(c)  C i E S C O l ( C )  si 

A 1  

Si+l H S i + k  

Figure 5. Scol(c). 

Proposition2 Let M denote the maximum of the half 
perimeters of the rectangles obtained with the above 
heuristic, and let LB = 2 6 .  Then, 

The proof is available in [3, 151. Note that it is im- 
possible to obtain a better guarantee (without taking into 
account the actual values of the si's). Indeed, if we con- 
sider the following situation with s1 = s:! = s3 = I 

3 '  

then the optimal solution satisfies to 

6 Preliminary Experimental Results Using 
MPI 

To demonstrate the practical usefulness of our heuris- 
tics, some experiments have been conducted on an het- 
erogeneous network of workstations using MPICH. Fig- 
ure 6 shows the average execution time of the matrix- 
matrix multiplication algorithm for various matrix sizes 
and for different numbers of machines. Two Pentium 
I11 550 MHz and two Pentium MMX 200 MHz linked 
by an Ethernet network have been used in the exper- 
iments reported in Figure 6(a). Heterogeneous distri- 
butions are obviously much better than classical homo- 
geneous ones. The column-based approximation of the 
PERI-SUM heuristic leads to the best results. In the ex- 
periments reported in Figure 6(b), two additional Pen- 
tium I1 350 have been used and, as communications are 
getting more important, the difference between ID and 
2D distributions begins to appear. Both homogeneous 
and heterogeneous 1D distributions are worse than 2D 
distributions. Lastly, for the Figure 6(c)  experiments, a 
wider variety of machines (1 P-MMX 200 MHz, 2 P-I1 
350 MHz, 2 P-I1400 MHz, 3 P-I1500 MHz, and 2 P-I11 
550 MHz) has been used. In this case, optimizing com- 
munications gets crucial and the superiority of 2D dis- 
tributions over 1 D distributions becomes obvious. The 
PERI-SUM heuristic still leads to the best results. 

7 Related Results 

In this section, we survey results on geometric op- 
timization problems similar to PERI-SUM or PERI- 
MAX: 

Covering a square by small perimeter rectangles 
Alon and Kleitman [l] consider the tiling of 
the unit square into n rectangles. There is no 
constraint on the area of the rectangles. They show 
that one of the rectangle must have perimeter at 
least 4(2m + l ) / (n  + m(m + l)), where m is 
the largest integer whose square is at most n. This 
result is exact for n = m(m + 1) or n = m'. 

Decomposition of a square into rectangles of minimal 
perimeter Kong et al. [13] determine how to tile 
the unit square into p rectangles of same area 
so as to minimize the maximum perimeter of 
these rectangles. This is exactly our PERI-MAX 
problem constrained to same-area rectangles 
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(si = l / p  for 1 5 i 5 p) .  This problem is shown 
to be polynomial in [ 131. The optimal solution is 
one of the following two arrangements: let either 
m = [JiSJ or m = [@I, and use m columns 
composed of LgJ or [ f ]  rectangles. This solution 
is extended to deal with the decomposition of a 
rectangle (instead of a square) onto same-area 
rectangles in [ 121. 

Partitioning a rectangle with interior points 
Another related problem is to find the mini- 
mum partition of a rectangle with interior points: 
given a rectangle R and a finite set P of points 
located inside R, find a set of line segments 
that partition R into rectangles such that every 
point in P is on the boundary of some rectangle. 
The goal is to minimize the total length of the 
introduced line segments. This problem is shown 
NP-complete in [ 141 and approximation algorithms 
are given in [6, 71. The link with our PERI-MAX 
problem is that the objective function is the same, 
but the original motivation in [6, 71 was a VLSI 
routing problem (and the constraints are quite 
different). 

Array partitioning The minimum rectangle tiling 
problem [ IO]  is partially related to our optimiza- 
tion problems PERI-MAX: given an n x n array A 
of non-negative numbers, and a positive integer p ,  
find a partition of A into p non-overlappingrect- 
angular subarrays, such that the maximum weight 
of any rectangle in the partition is minimized (the 
weight of a rectangle is the sum of its elements). 
This problem is NP-complete, and approximation 
algorithms are given in [ 1 1, 101 

Finally, note that Crandall and Quinn [ 5 ] ,  Kaddoura, 
Ranka and Wang [8] and Kalinov and Lastovetky [9] 
have proposed several heuristics for a formulation of 
the heterogeneous matrix-matrix multiplication problem 
that is very similar to the PERI-MAX problem. Both 
papers report several numerical simulations. However, 
we are not aware of any theoretical result, nor of any ap- 
proximation bound stating some performance guarantee. 

8 Conclusion 

In this paper, we have dealt with two geometric prob- 
lems arising from heterogeneous parallel computing. 
Because both problems have been shown NP-complete, 
we have introduced approximation algorithms. Prelim- 
inary MPI experiments demonstrate the practical use- 
fulness of these heuristics. The original motivation for 
this work is very important: the MM algorithm is the 

prototype of tightly-coupled kernels that need to be im- 
plemented efficiently on distributed and heterogeneous 
platforms: we view it as a perfect testbed before exper- 
imenting more challenging computational problems on 
the computational grid. 
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Figure 6. Comparison between various 
heuristics on a heterogeneous network of 
up to 10 workstations. 
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