
Heterogeneous Matrix-Matrix Multiplication
or Partitioning a Square into Rectangles:

NP- Completeness and Approximation Algorithms

0. Beaumont* V. Boudet* A. Legrand" E Rastello* Y. Robert*

Abstract

In this pape6 we deal with n ~ o geometric problems
arising froin heterogeneous parallel computing: how to
partition the unit square irito p rectangles of given area
SI, sa, . . . sp (such that E:='=, s, = l), so as to mini-
mize (i) either the sum of the p perimeters of the rect-
angles (i i) or the largest perimeter of the p rectangles.
For both problems, we prove NP-completeness and we
introduce approximation algorithms.

1 Introduction

In this paper, we deal with two simple geometric
problems: how to partition the unit square into p rectan-
gles of given area s1 s21 . . . , sp (such that c:='=, si =
l) , so as to minimize

0 either the sum of the p half perimeters of the rect-
angles,

0 or the largest half perimeter of the p rectangles.

Note that there always exist solutions to these problems:
e.g. tile the unit square into p horizontal slices of height
SI sa, . . . , sp. The difficulty is to minimize the objec-
tive function.

Consider the following example with p = 5 rect-
angles R I , . . . R5 of areas SI = 0.36, s2 = 0.25,
s3 = s4 = s5 = 0.13. A possible partition is shown
in Figure 1. The size of each rectangle is the following:
0.61 x for R I , 0.61 x 25 for Rz, and 0.39 x 5 for

6.1
R3, Rs, and R5. The maximum half-perimeter is that
of R I , approximately 1.2002, which is very close to the
absolute lower bound 1.2 obtained when the largest rect-
angle is a square (this is not achievable in this example).
As for the second objective function, we compute that

*LIP, UMR CNRS-ENS Lyon-INRIA 5668, Ecole Normale
SupCrieure de Lyon, 46, AllCe d'ltalie, 69364 Lyon Cedex 07, France.
E-mail: Firstname.Lastname@ens-1yon.fr

the sum of the half-perimeters is 4.39, while the abso-
lute lower bound is E:='=, 2 6 M 4.36 (obtained when
all rectangles are squares, which is not achievable in this
example either). Hence the partition turns out to be very
satisfactory for both objective functions. The geometric
interpretation for the sum of the half-perimeters is nice:
i t is the length of the lines drawn to make the partition.
plus 2 corresponding to the right and bottom edge of the
unit square.

0.61 11.3Y

I I I s 3 I I ln

Figure 1. A simple example with 5 rectan-
gles.

The main results of the paper are the proof of NP-
completeness and approximation algorithms for both
optimization problems. Beforehand, we explain the ini-
tial motivation for this work, which arises from mini-
mizing communications in the design of parallel algo-
rithms targeted to heterogeneous platforms. The rest
of the paper is organized as follows. In Section 2
we explain the motivation from heterogeneous paral-
lel computing. In Section 3 we formally state the op-
timization problems PERI-SUM (minimize the sum of
the perimeters of the rectangles) and PERI-MAX (min-
imize the largest perimeter), and we establish their NP-
completeness. Section 4 is devoted to the design of ap-
proximation algorithms for PERI-SUM; Section 5 is its
counterpart for PERI-MAX. To demonstrate the prac-
tical usefulness of these heuristics, some MPI experi-

1066-6192/01$10.00 @ 2001 IEEE 298

mailto:Firstname.Lastname@ens-1yon.fr

ments are reported in Section 6. In Section 7 we briefly
survey related optimization problems. We give some fi-
nal remarks and conclusions in Section 8.

2 Problem Motivation

The motivation for this work is the design of par-
allel Matrix Multiplication (MM for short) algorithms
targeted to heterogeneous platforms, such as heteroge-
neous clusters of workstations, or collections of such
clusters. Parallel MM algorithms work as follows: let
C = A x B the product to be computed, where A and
B are square matrices of size n x n. First, granularity is
increased: matrix blocks rather than elementary matrix
coefficients are allocated to processors, as in the ScaLA-
PACK library [4]. Hence, each “element” in A, B and
C is a square T x T block, and the unit of computation
is the updating of one block, i.e. a matrix-matrix multi-
plication of size T . Assume there are p processors. The
three matrices A, B and C are partitioned into p (super-
posed) rectangles. There is a one-to-one mapping be-
tween these rectangles and the processors. Each proces-
sor is responsible for updating its rectangle: at each step,
one pivot column and one pivot row are communicated
to all processors, and independent updates take place;
more precisely, each processor updates each block in
its rectangle with one block from the pivot row and one
block from the column row, as illustrated in Figure 2.

I v
Figure 2. The MM algorithm on a heteroge-
neous platform.

Using different-speed processors, we want to balance
the computing load so that each processor receives an
amount of work in accordance to its computing power.
Because all C blocks require the same amount of arith-
metic operations, each processor executes an amount of
work which is proportional to the number of blocks that
are allocated to it, hence proportional to the area of its
rectangle. In Figure 2 , we have 13 different-speed com-
puting resources. We let si the fraction of the total com-

puting power represented by processor Pi, 1 _< i _< p .
Normalizing processor speeds, we have cy=’=, si = 1.
Normalizing the computing workload accordingly, we
have to tile the unit square into p rectangles Ri of pre-
scribed area si, 1 5 i 5 p. The question is: how to
compute the shape of these p rectangles so as to mini-
mize the total execution time?

Let hi x vi be the size of rectangle Ri, where
hiui = s i . At each step of the M M algorithm, com-
munications take place between processors: the total
volume of data exchanged is proportional to the sum
C = x:=’=l(hi + vi) of the half perimeters of the p
rectangles Ri. In fact, this is not exactly true: because
the pivot row and columns are not sent to the-processors
that own them, we should subtract 2 from C , 1 for the
horizontal communjcations and 1 for the vertical ones.
Since minimi$ng C or C - 2 is equivalent, we keep
the value of C as stated. Minimizing C seems to be a
very natural goal, because i t represents the total volume
of communications. For instance it is natural to assume
that communications will be mostly sequential on a het-
erogeneous network of workstations where processors
are linked by a simple Ethernet network; also, there will
be little or none computationkommunication overlap on
such a platform. In that context, minimizing the total
communication volume is the main objective.

Conversely, some communications can occur in par-
allel, if the computing resources are linked through a
dedicated high-speed network, and if parallel communi-
cation links are provided. In that context, we may want
to minimize the maximal amount of communications to
be performed by each processor, so that the objective
function becomes A4 = maxl<i<,(h, _ _ + vi).

Once a solution to either optimization problem has
been found, we derive the allocation of data elements
to processor Pi by rounding up the values n x hi and
n x wi. Finally, note that both optimization problems
have a wide potential applicability. Forgetting about
MM algorithms, consider the implementation of any ap-
plication (such as a finite-difference scheme) where het-
erogeneous processors communicate boundary elements
at each step (the communication scheme need not be
nearest-neighbor, it can be anything): minimizing the
total communication volume, or the maximal amount
of communications performed by one processor, while
load-balancing the work, amounts to solving exactly the
same optimization problems.

3 NP-Completeness

We formally state both optimization problems. We
have to determine p rectangles RZ, of prescribed area s t ,
1 5 i 5 p where Cy=‘=, s, = 1. The shape of each R, is

299

the degree of freedom: we want to tile the unit square so
as to solve the following optimization problems:

Definition 1
- PERI-SUM(s): Given p real positive numbers
s1 . . . , s p s.t. E:='=, si = 1, find a partition of the unit
square into p rectangles Ri of area si and of size hi x vi,
so that C = E:''=, (hi + vi) is minimized.
- PERI-MAX(s): Given p real positive numbers
SI, . . . , s p s.t. E:='=, si = 1, find a partition of the unit
square into p rectangles Ri of area si and of size hi x vi,
so that $I = maxl<ilp (hi + vi) is minimized.

There is an obvious lower bound for PERI-SUM(s)
and for PERI-MAX(s):

Lemma 1 For all solutions of PERI-SUM(s), 6' 2
2 cf, 6. For a11 solutions of PERI-MAX(s), $I >_
2 maxl<,<, 6.

The decision problems associated to the optimization
problems PERI-SUM and PERI-MAX are the follow-
ing:

Definition 2
- PERI-SUM(s,K): Given p real positive numbers
SI . . . , sp s.t. c:='=, si = 1 and a positive real bound
K , is there a partition of the unit square into p rectan-
gles Ri of area si and of size hi x wi, so that Cy"=, (hi +
- PERI-MAX(s,K): Given p real positive numbers
SI,. . . sp s.t. E:==, si = 1 and a positive real bound
K , is there a partition of the unit square into p rect-
angles Ri of area si and of size hi x vi, so that
maxiii<p(hi + vi) 5 K ?

U<) 5 K ?

Our main result states the intrinsic difficulty of the
PERI-SUM and PERI-MAX optimization problems:

Theorem 1 PERI-SUM(s, K) and PERI-MAX(s,K) are
NP-complete.

The proof is provided in [3, 1.51. More important
than the proof, the theorem itself clearly demonstrates

with a column-based heuristic, very simple to imple-
ment, and which appears very efficient through exten-
sive experimental comparisons. However, we have not
been able to give a tight approximation bound: the
bound of Section 4.1.3 depends on the relative size of
the rectangles to be used in the tiling. In Section 4.2 we
move to a recursive heuristic, much more complicated
to describe, but for which a nice approximation bound is
provided.

4.1 Column-Based Heuristic

, c 1 c2 c3

1

Figure 3. Column-based partitioning of the
unit square: C = 3, kl = 5, k2 = 3 and
ks = 4.

4.1.1 Description

Since PERI-SUM(s) is NP-complete, we consider the
more constrained problem COL-PERI-SUM(s) where
we impose that the tiling is made up with processor
columns, as illustrated in Figure 3 . In other words,
COL-PERI-SUM(s) is the restriction of PERI-SUM(s)
to column-based partitions. In this section, we give a
polynomial solution to COL-PERI-SUM(s), which will
be used as a heuristic for PERI-SUM(s).

the intrinsic difficulty of static load-balancing on het-
erogeneous platforms while minimizing communication
rnrt

Framework We describe the COL-PERI-SUM(s)
problem more formally: we aim at tiling the unit square

* V O L .

into C columns (where C is yet to be determined) of
width c1 . . . , CC. Each column Ci is partitioned itself
into ki rows (to be determined too) of respective area
s,,(%,~), . . . , sv(+). Of course, the final partitioning has

ki = p rectangles, and all the areas SI, . . . , sp are
represented once and only once. The goal is to build
such a partitioning, subject to the minimization of the
sum of the rectangle perimeters.

4 Approximation Algorithms for PERI-
SUM

There are several "natural" heuristics to approximate
PERI-SUM. However, proving approximation bounds
turns out to be very technical. We start in Section 4.1

300

Algorithm The main points of the column-based
tiling are the following:

1. Re-index the variables S I , . . . , sp such that s 1 5
s2 5 . . . 5 sp .

2. Iteratively build the function f c , by incrementing
the value of C from 1 to the desired value For
q E (1,. . . , p } , f c (q) represents the total perime-
ter of an optimal column-based partitioning of a
rectangle of height 1 and width (E:==, si) x 1 into
q rectangles of respective area SI , . . . , sy, using C
columns.

To help understand the derivation, we apply the algo-
rithm on the following example: we have p = 8 areas
of values (0.05,0.05,0.08,0.1,0.1,0.12,0.2,0.3). The
results of the algorithm are described in Table 1. Each
column C, contributes to the sum of the half-perimeters
as follows: 1 for the vertical line, and IC, x c, for the ki
horizontal lines of length cz.

1 1 q=l I q=2 I q=3 I q=4
C = 1 1 1 1,0510 1 1.210 I 1.54/0 1 2.1210

I

C = I 2 . 9 / 0
C = 2 2.9413
C = 3 3.6614
C = 4 4.4814
C = 5 5 .3814

q=6 q=7 q=8
410 5.910 9 1 0

3.513 4.38 14 5.76 1 5
4 1 4 4.5815 5.516

4.78 1 5 5.2 16 5.88 17
5.615 5.98 1 6 6.5 17
6.5 I 5 6.8 I 6 7.28 17

1.116 8.117
9 1 7

Table 1. Table containing the values
of the couples f c (q) / T where f c (q) =

and T is the value minimizing the previous
expression. Bold entries correspond to
the optimal solution.

r ~ [C - l , q - l] min (1 + (cr<,<y s.1) x (4 - 7.) + f C - l (T))

In the example, the optimal partitioning is obtained
for 3 columns (f3(8) = 5.5). The first column of width
c3 = s7 + sa = 0.5 is composed of 2 elements. The
second column of width c2 = s 4 + s 5 + 36 = 0.32 is
composed of 3 elements. Then the last column of width
e 1 = SI + s2 + s3 = 0.18 is made up with the smallest
3 elements.

Algorithm The algorithm is outlined as follows (fcperznze t e corresponds to the f c (q) previously used.

fcut (q) corresponds to the total number of blocs in the
first C - 1 columns. So that, there remains q - f;""(q)
blocs in the column C):

s=o
for q=l to p
s=s+s ,
f l P e r i m e t e T (4) = 1 + s x q
flcUt(4) = 0

endfor
for C=2 to p

for q=C to p

+ fc-1 (r)
fi""t(4) = Tnzzn

endfor
endfor

Optimality This algorithm provides the optimal
column-based partitioning. The proof is detailed in [2,
151. The worst-case complexity of the algorithm is
O(U".

4.1.2 Experimental Comparison with the Lower
Bound

As shown in Section 3, a lower bound for the sum C of
the half-perimeters is twice the sum of the square roots
of the areas, i.e. LB = 2 c&, 6. Of course this
bound cannot always be met: consider an instance of
PERI-SUM(s) with only two rectangles, s1 = 1 - E and
s2 = E , where E > 0 is an arbitrarily small number.
Partitioning into two rectangles requires to draw a line
of length 1, hence C = 3 . However, LB = 2 n +
& > 2 can be arbitrarily close to 2.

In this section, we experimentally compare, using a
large number of random tests, the value C given by our
partitioning against the absolute lower bound LB. Fig-
ure 4 represents two curves for a number of processors
varying from I to 40. The first curve corresponds to the
mean value of the ratio while the second curve gives
the minimum values of this ratio. We see that in average,
the optimal column-based tiling given by our algorithm
gives a solution that is "almost" optimal, so that we can
be satisfied with the results for all practical purposes.

4.1.3 Theoretical Comparison with the Lower
Bound

In this section, we prove that the column-based parti-
tioning is a good approximation, especially when the ra-
tio between max si and min si is small:

301

Experimental results using 2000000 random tests per point r----

I \

' ' d
1 J L'I

10 15 20 25 30 35 40
Number 01 processors

Figure 4. For each number of processors
(varying from 1 to 40), 2,000,000 values for
the si have been generated. For each case,
we compute the ratio of the sum C of the
half perimeters of our partitioning over the
absolute lower bound LB. The worst case
is a constant value equal to 1.5. The aver-
age and best cases are reported in the two
curves.

Proposition 1 Let T = *, let C denote the sum
of the half perimeters of the rectangles obtained with
the optimal colunzn-based partitioning, and let LB =
2 E:='=, 6. Then,

The proof can be found in [2]. It is straightforward
when evaluating the cost of a very simple partitioning
(with about fi columns and Jp elements per column).
If T = 1, i.e. all the processors have the same speed,
the column-based partitioning is asymptotically optimal.
On the other hand, if T is large, i.e. if one rectangle is
much larger than another, the bound is very pessimistic.

4.2 Recursive Heuristic

We have derived a recursively defined heuristic that
lead to a good approximation factor: letting C denote
the sum of the half perimeters of the rectangles obtained
with this heuristic, and LB = 2 E:==, 6, s . we have

5
4

C ' I l + - L B

The construction of the heuristic, together with the proof
of the approximation factor, are available in [3, 151.

5 Approximation algorithms for PERI-
MAX

In this section, we introduce a polynomial heuristic
to solve the PERI-MAX problem. Again, we consider a
column based partitioning of the unit square. We con-
sider two different heuristics, according to the area of
the largest rectangle. Let SI > s2 . . . >_ s p denote the
given areas of the rectangles.

If s1 is greater than 4, we use a first heuristic. In this
case, one column is created for each element. Therefore,
the half-perimeter of one rectangle of area si is 1 + si.
In this case,

In the case where s1 is less than f , we use a second
heuristic, which ensures that

The algorithm can be stated as follows:

302

Peri-max-column-based (p , S = (SI,. . . , s p))
c = l
fori = 1 top

Scol(c)=Scol(c) U{i}
if C z € S c o l (c) 3% 1
2 f i - !.EL- 3 maXz~scor(c) SZ

c = c + l
endif

endfor
C m a x = C

ifCZ€SC0l(Cmax) sz 5
2 f i - Jy - m~xz~scoi (c , , ,) sz

S C O l (1) = Scol(1) U SCOZ(Cma,)

C m a x = cmaz - 1
endif

endPeri-maxrolumn-based

The configuration of one of the columns Scol is de-
picted in Figure 5. The largest perimeter of the rectan-
gles in the column Scol(c) is

maxi~~col(c) si
si+

iEScol(c) C i E S C O l (C) si

A 1

Si+l H S i + k

Figure 5. Scol(c).

Proposition2 Let M denote the maximum of the half
perimeters of the rectangles obtained with the above
heuristic, and let LB = 2 6 . Then,

The proof is available in [3, 151. Note that it is im-
possible to obtain a better guarantee (without taking into
account the actual values of the si's). Indeed, if we con-
sider the following situation with s1 = s:! = s3 = I

3 '

then the optimal solution satisfies to

6 Preliminary Experimental Results Using
MPI

To demonstrate the practical usefulness of our heuris-
tics, some experiments have been conducted on an het-
erogeneous network of workstations using MPICH. Fig-
ure 6 shows the average execution time of the matrix-
matrix multiplication algorithm for various matrix sizes
and for different numbers of machines. Two Pentium
I11 550 MHz and two Pentium MMX 200 MHz linked
by an Ethernet network have been used in the exper-
iments reported in Figure 6(a). Heterogeneous distri-
butions are obviously much better than classical homo-
geneous ones. The column-based approximation of the
PERI-SUM heuristic leads to the best results. In the ex-
periments reported in Figure 6(b), two additional Pen-
tium I1 350 have been used and, as communications are
getting more important, the difference between ID and
2D distributions begins to appear. Both homogeneous
and heterogeneous 1D distributions are worse than 2D
distributions. Lastly, for the Figure 6(c) experiments, a
wider variety of machines (1 P-MMX 200 MHz, 2 P-I1
350 MHz, 2 P-I1400 MHz, 3 P-I1500 MHz, and 2 P-I11
550 MHz) has been used. In this case, optimizing com-
munications gets crucial and the superiority of 2D dis-
tributions over 1 D distributions becomes obvious. The
PERI-SUM heuristic still leads to the best results.

7 Related Results

In this section, we survey results on geometric op-
timization problems similar to PERI-SUM or PERI-
MAX:

Covering a square by small perimeter rectangles
Alon and Kleitman [l] consider the tiling of
the unit square into n rectangles. There is no
constraint on the area of the rectangles. They show
that one of the rectangle must have perimeter at
least 4(2m + l) / (n + m(m + l)), where m is
the largest integer whose square is at most n. This
result is exact for n = m(m + 1) or n = m'.

Decomposition of a square into rectangles of minimal
perimeter Kong et al. [13] determine how to tile
the unit square into p rectangles of same area
so as to minimize the maximum perimeter of
these rectangles. This is exactly our PERI-MAX
problem constrained to same-area rectangles

303

(si = l / p for 1 5 i 5 p) . This problem is shown
to be polynomial in [131. The optimal solution is
one of the following two arrangements: let either
m = [JiSJ or m = [@I, and use m columns
composed of LgJ or [f] rectangles. This solution
is extended to deal with the decomposition of a
rectangle (instead of a square) onto same-area
rectangles in [121.

Partitioning a rectangle with interior points
Another related problem is to find the mini-
mum partition of a rectangle with interior points:
given a rectangle R and a finite set P of points
located inside R, find a set of line segments
that partition R into rectangles such that every
point in P is on the boundary of some rectangle.
The goal is to minimize the total length of the
introduced line segments. This problem is shown
NP-complete in [141 and approximation algorithms
are given in [6, 71. The link with our PERI-MAX
problem is that the objective function is the same,
but the original motivation in [6, 71 was a VLSI
routing problem (and the constraints are quite
different).

Array partitioning The minimum rectangle tiling
problem [IO] is partially related to our optimiza-
tion problems PERI-MAX: given an n x n array A
of non-negative numbers, and a positive integer p ,
find a partition of A into p non-overlappingrect-
angular subarrays, such that the maximum weight
of any rectangle in the partition is minimized (the
weight of a rectangle is the sum of its elements).
This problem is NP-complete, and approximation
algorithms are given in [1 1, 101

Finally, note that Crandall and Quinn [5] , Kaddoura,
Ranka and Wang [8] and Kalinov and Lastovetky [9]
have proposed several heuristics for a formulation of
the heterogeneous matrix-matrix multiplication problem
that is very similar to the PERI-MAX problem. Both
papers report several numerical simulations. However,
we are not aware of any theoretical result, nor of any ap-
proximation bound stating some performance guarantee.

8 Conclusion

In this paper, we have dealt with two geometric prob-
lems arising from heterogeneous parallel computing.
Because both problems have been shown NP-complete,
we have introduced approximation algorithms. Prelim-
inary MPI experiments demonstrate the practical use-
fulness of these heuristics. The original motivation for
this work is very important: the MM algorithm is the

prototype of tightly-coupled kernels that need to be im-
plemented efficiently on distributed and heterogeneous
platforms: we view it as a perfect testbed before exper-
imenting more challenging computational problems on
the computational grid.

References

[I] N. Alon and D. Kleitman. Covering a square by small
perimeter rectangles. Discrete Computational Geome-

[2] 0. Beaumont, V. Boudet, E Rastello, and Y. Robert.
Matrix-matrix multiplication on heterogeneous plat-
forms. Technical Report RR-2000-02, LIP, ENS Lyon,
Jan. 2000. Short version appears in the proceedings of
ICPP’2000.

[3] 0. Beaumont, V. Boudet, E Rastello, and Y. Robert. Par-
titioning a square into rectangles: NP-completeness and
approximation algorithms. Technical Report RR-2000-
10, LIP, ENS Lyon, Feb. 2000.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J . Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM, 1997.

[5] P. Crandall and M. Quinn. Block data decomposition
for data-parallel programming on a heterogeneous work-
station network. In 2nd International Symposium on
High Performance Distributed Computing, pages 4249.
IEEE Computer Society Press, 1993.

[6] T. Gonzalez and S. Zheng. Improved bounds for rect-
angular and guilhotine partitions. J. Symbolic Computa-
tion, 7591-610, 1989.

[7] T. Gonzalez and S. Zheng. Approximation algorithm for
partitioning a rectangle with interior points. Algorith-
mica, 5:11-42, 1990.

[8] M. Kaddoura, S. Ranka, and A. Wang. Array decom-
position for nonuniform computational environments.
Journal of Parallel and Distributed Computing, 36:91-
105, 1996.

[9] A. Kalinov and A. Lastovetsky. Heterogeneous dis-
tribution of computations while solving linear algebra
problems on networks of heterogeneous computers. In
P. Sloot, M. Bubak, A. Hoekstra, and B. Hertzberger, ed-
itors, HPCN Europe 1999, LNCS 1593, pages 191-200.
Springer Verlag, 1999.

[lo] S. Khanna, S. Muthukrishnan, and M. Paterson. On ap-
proximating rectangle tiling and packing. In Proc. 9th
Ann. ACM-SIAM Symp. on Discrete Algorithms, pages
384-393. ACM Press, 1998.

[I 11 S. Khanna, S. Muthukrishnan, and S. Skiena. Efficient
array partitioning. In Proc. 24th Int. Colloquium on
Automata, Languages and Programming, LNCS 1256,
pages 616-626. Springer-Verlag, 1997.

121 T. Kong, D. Mount, and W. Roscoe. The decomposi-
tion of a rectangle into rectangles of minimal perimeter.
SIAM J. Computing, 1 7(6): 12 1 5- 1 23 1, 1988.

131 T. Kong, D. Mount, and M. Wermann. The decompo-
sition of a square into rectangles of minimal perimeter.
Discrete Applied Mathematics, 16:239-243, 1987.

tv, l:l-7, 1986.

304

[14] A. Lingas, R. Pinter, R. Rivest, and A. Shamir. Mini-
mum edge length partitioning of rectilinear polygons. In
Proc. 20th Ann. Allerton CorZference on Cornniunication,

[151 E Rastello. Par-titionnenienr et distribution des donne'es:
des nids de boucles ci I'algorithmipe he're'rogdne. PhD

eo*

Control and Computing, 1982. 700

thesis, Ecole Normale Supkrieure de Lyon, Sept. 2000.

600 -
s 500 -
i
F 400

$ 3 0 0

200

100

0
0 500 1000 1 M O X Q O 2500 3wO 350.3 IOW

(a) 4 nodes

(b) 6 nodes

(c) 10 nodes

Figure 6. Comparison between various
heuristics on a heterogeneous network of
up to 10 workstations.

305

