The Iso-Level Scheduling Heuristic for Heterogeneous Processors

Olivier Beaumont, Vincent Boudet and Yves Robert
LIP, UMR CNRS-ENS Lyon-INRIA 5668
Ecole Normale Supérieure de Lyon
69364 Lyon Cedex 07, France
[0livier.Beaumont,Vincent.Boudet,Yves.Robert]@ens-lyon.fr

Abstract

Scheduling computational tasks on processors is a
key issue for high-performance computing. Although
a large number of scheduling heuristics have been pre-
sented in the literature, most of them target only ho-
mogeneous resources. We present a new scheduling
heuristic for heterogeneous processors, which improves
the load-balancing achieved at each decision step while
keeping a low complezity. Ezxperimental comparisons
with five heuristics taken from the literature (BIL,
GDL, CPOP, HEFT and PCT) and using siz classical
testbeds, show very favorable results.

1. Introduction

The efficient scheduling of application tasks is crit-
ical to achieving high performance in parallel and dis-
tributed systems. The objective of scheduling if to find
a mapping of the tasks onto the processors, and to
order the execution of the tasks so that: (i) task prece-
dence constraints are satisfied; and (ii) a minimum
schedule length is provided. Since the scheduling prob-
lem with communication delays is NP-hard [4], various
heuristics have been proposed in the literature (see the
tutorial [1]).

Although various different approaches are used to
solve the task scheduling problem, most of them tar-
get homogeneous processors only. Heterogeneity poses
new challenges to scheduling techniques. Schedul-
ing methods that are suitable for homogeneous envi-
ronments may well not be efficient for heterogeneous
domains. For instance, clustering techniques (such
as Gerasoulis and Yang’s dominant sequence cluster-
ing [11]) are widely used in the context of homogeneous
parallel machines, while they seem difficult to use in the
context of heterogeneous processors. In the literature,
most heuristics for heterogeneous processors are adap-

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP’02)
1066-6192/02 $17.00 © 2002 IEEE

tations of list-scheduling techniques for homogeneous
processors, and are still based upon critical paths and
bottom levels.

In this paper, we introduce a new scheduling heuris-
tic for heterogeneous processors, which we name the
Iso-Level Heterogeneous Allocation (ILHA) heuristic.
In a word, the main characteristic of the ILHA heuris-
tic is a better load-balancing at each decision step,
which is achieved by considering a chunk of several
ready tasks rather than a single one; the idea is to
allocate to each processor a number of the tasks in
the chunk that is proportional to its computing power.
We compare the ILHA heuristic with five heuristics
taken from the literature: the minimum Partial Com-
pletion Time static priority (PCT) heuristic, the Best
Imaginary Level (BIL) heuristic, the Heterogeneous
Earliest Finish Time (HEFT) heuristic, the Critical
Path on a Processor (CPOP) heuristic and the Gen-
eralized Dynamic Level (GDL) heuristic. For the ex-
perimental comparisons, we use six classical testbeds:
LAPLACE, LU, STENCIL, FORK-JOIN, DOOLIT-
TLE, and LDMt. All these comparisons show very fa-
vorable results. Note that the ILHA heuristic requires
a simple graph traversal, which renders it very attrac-
tive to process huge size problems.

The rest of the paper is organized as follows. Sec-
tion 2 is devoted to some technical preliminaries (defini+
tions and notations). We briefly survey the five heuris-
tics from the literature in Section 3. We present the
ILHA heuristic in Section 4. In Section 5, six classical
testbeds are used to compare the different heuristics.
Finally, we give some concluding remarks in Section 6.

2. Preliminaries

In this section, we specify some notations for the
standard macro-dateflow model, which is widely used
in the scheduling literature [1]. For each task schedul-
ing algorithm, the input is a directed acyclic graph

TEEE ':a

COMPUTER

SOCIETY

G = (W, A), that models a parallel program, where
N ={N;:i=1,---,N} is a set of N nodes and
A ={A4;;} is a set of edges. A node in the DAG rep-
resents a task. Each task has a computation cost which
is defined as the amount of computation cycles needed
to process it. The time needed to compute this task
on a processor is then the product of this computa-
tion cost by the cycle time of the processor. An edge
corresponds to a precedence constraint and has a com-
munication cost. Each edge A;; carries a label D; ;
which specifies the amount of data that NV; passes to
N;. This can be used to compute the time needed to
achieve the communication. We suppose that if both
tasks are assigned to the same processor, there is no
communication cost; otherwise, we pay a cost propor-
tional to D; ;, regardless the location of the processors.
Moreover, we suppose that we can realize an unlimited
number of communications simultaneously.

A task without any input edge is called an entry
task while a task with no output edge is called an ezit
task. A task is said ready when all its predecessors have
finished their execution. We denote by Pred(N;) the
set of the immediate predecessors of task V; and by
Succ(N;) the set of the immediate successors of task
A/,lu

The target architecture consists of a set of p hetero-
geneous processors P = {Py, P, ..., Pp} so that com-
putation can be overlapped with communication and
there is no limitation on the communication links: as
soon as a task NNV; is completed, data D; ; is sent to all
its successors. The execution time of node N; on pro-
cessor P;, given by E(N;, P;) (denoted further by e; ;)
is available at compile time for each node-processor
pair.

Our scheduling objective is to minimize the schedul-
ing length where all interprocessor communication
overheads are included. This scheduling problem is
NP-complete even if there is an infinite number of pro-
cessors available [4], hence the need to rely on heuris-
tics.

3 The algorithms

3.1 Minimum partial completion time static pri-
ority (PCT) algorithm

Maheswaran and Siegel present in [7] a dynamic al-
gorithm. Their heuristic refines a given mapping which
has already been computed statically. It can be used
from scratch to compute a static mapping at compile
time by using any basic schedule as input (for exam-
ple, assume that every task is allocated to the fastest
processor). In the following, we assume that we al-

ready have a scheduling of our task graph. The first
phase or the algorithm assigns ranks to each task. The
second phase orders the tasks and uses a minimization
criterion to solve the mapping problem.

Consider the first phase of the algorithm. We assign
to each task a priority equals to an estimation of the
time needed to finish the program. As we already have
a scheduling, we take communications into considera-
tion. Letting P; be the processor to which task N; is
assigned in the given scheduling, we define the priority
as follows:

priority(N;) =e;j + max

¢i k. + priority(N,
NkESucc(N;)(Wk T y(Nk))

where ¢; r = D; x T is the time needed to send the
data from the node N; to the node N with bandwidth
7. If both nodes are on the same processor, we have
Cik = 0.

In the second phase, we allocate the ready tasks to
processors in the order given by their priority. We first
compute the node with the highest priority, then the
following node and so on. Let P; be a candidate proces-
sor for task N;. We note pct(N;, P;) the partial com-
pletion time of task N; on processor P;, and dr(N;)
the instant where all the data needed to compute /V; is
available by P;,i.e. the time at which the last data item
required by N; to begin its execution is available by P;.
N; may be computed after the instant dr(N;) and as
soon as the processor P; is available. Let proc(Ny) be
the processor which executes task N, we deduce the
following equations for dr(N;) and pct(N;, P;): For an
entry task, pct(N;, P;) = e; j. For any other task,

pct(N;, Pj) = e; j + max(Available[j] + dr(N;))

dr(N;) = max

Ck,i t(NV, oc(Ny,
Nkél"rﬁd(Ni)(ki + pct(Ng, proc(Ny)))

where Available[7] is the instant where processor P; is

free to start the execution of a new task. The task NV; is
mapped onto the processor which minimizes pct(N;, *).

THE PCT ALGORITHM

Compute the priority for each task

ReadyTask + {Entry tasks}

While ReadyT ask is not empty
Choose n in ReadyTask with the highest priority
Compute pct(n,p) for all p in P
Assign n to the processor which minimize pct(n, p)
Update A[p] and ReadyTask

End while

3.2 Bestimaginary level (BIL) algorithm

Oh and Ha present in [8] a list scheduler. The gen-
eral idea is to assign a priority, or a static level, to each

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP’02)
1066-6192/02 $17.00 © 2002 IEEE

node. Then the list scheduler schedules the runnable
nodes in the decreasing order of priority, and tries to
determine the optimal processor for the selected node.

They define the level of a node N; as the Best Imagi-
nary Level (BIL). The BIL is the length of the critical
path beginning with N; if this node is remapped onto
a processor P;, including the communications and as-
suming that all the children are perfectly scheduled.
Since it is not always possible to schedule the nodes at
the best times, we use the term imaginary:

BIL(N;,P;) =e;; + max

in(BIL(Ng, P;
NkGSucc(Nl)[mln((1 o J)’

m;n(BIL(Nk, Pp) + cip))]
p#J

The BIL of a node is then used to compute a priority
order over the nodes.

Once the BIL is computed for each node, we start
the second phase which consists of selecting a node,
i.e. computing a priority order. To select a node, we
adjust the level of a NV; on processor P; to measure the
Best Imaginary Makespan (BIM). BIM is defined as
follows: BIM(N;, P;) = Awvailable[j] + BIL(N;, P;).
For each node, there exist P different BIM values, one
for each processor. Assuming there exist k£ runnable
nodes at a step, we define the priority of a node N; as
the k" smallest BIM value, or the largest finite BIM
value if the k" is undefined. The selected node is the
one with the highest priority.

Once we have selected a node, we have to find a
processor where to map it. If the number of ready
nodes k is high, i.e. greater than the number of pro-
cessors, the execution time becomes more important
than the communication overhead, since the communi-
cation overhead is likely to be hidden. Therefore, we
define the revised BIM as follows :

k
B[M*(Ni,Pj) = BIM(N,',P]') + e X maz(ﬁ -1,0)

We select the processor that has the highest revised
BIM value. If more than one processor have the same
revised BIM value, we select the processor that makes
the sum of the revised BIM values of other nodes
on the processor maximum. As soon as the task is
assigned to a processor, we update the runnable nodes
and continue while there exists a ready task.

THE BIM ALGORITHM

Compute BIL(n,p) for all n and p

ReadyTask «+ {Entry tasks}

While ReadyT ask is not empty
Compute BIM for every task in ReadyTask
Choose the node n with the highest priority

Compute BIM*(n,p) for all p

Assign n to the processor p that maximizes
BIM™*(n,p)

Update ReadyT ask
End while

3.3 Heterogeneous earliest finish time (HEFT)
and critical path on a processor (CPOP) al-
gorithms

Topcuoglu, Hariri and Wu present in [10] two
heuristics. The general idea of both heuristics is
the same. In a first phase, they compute a pri-
ority on the runnable nodes and select the node
with the highest priority. Then, in the second
phase, using two different criteria, they determine
a processor to which the selected node is mapped.
Before studying the two different algorithms, we
need some definitions. We define the earliest start
time, EST, and the earliest finish time, EFT, of
node N; on processor P; as follows: EST(N;, P;) =
maz(A[j], maxy, e prea(n,) (EFT (N, proc(Ny)) +
cki)), and EFT(N;, P;) = e; ; + EST(N;, Pj), where
proc(Ny) is the processor where Ny is assigned. EST
returns the ready time, i.e. the time when all data
needed by N; is available at the host P;, and when the
host P; itself is available.

In the algorithm, tasks are ranked upward and
downward to set the scheduling priorities. The upward
rank of a task N; is recursively defined by

rank,(N;) = & + max (¢ x + rank,(Ny))

Ny €Succ(N;)

where €; = 3 ‘;j;j is the average execution time of the
task N; over the processors. rank, is the length of
the critical path from N; to the exit node, including
the computation cost of the node itself. Similarly, the
downward rank of a task N; is recursively defined by

rankqy(N;) = max (ck,; + € + rankq(Ni))

NiE€Pred(N;)
The rank, is the longest distance from the start node
to the node N;, excluding the computation cost of the
node itself.

3.3.1 HEFT

To set priority to a task IV;, the HEFT algorithm uses
the upward rank value of the task. Ready tasks are
sorted with respect to decreasing rank, values. If two
nodes to be scheduled have the same priority, one of
them is selected randomly.

The HEFT algorithm uses the EFT value to select
the processor for the selected task. It is natural to

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP’02)
1066-6192/02 $17.00 © 2002 IEEE

consider the EFT value to select a processor. In-
deed,when all nodes in the graph have been scheduled,
the schedule length is the earliest finish time of the
exit node. We assign node N, to the processor p which
minimizes the value of EFT(N;,p).

THE HEFT ALGORITHM
Compute rank,, for all nodes
ReadyTask « {Entry tasks}
While ReadyTask is not empty
Select the task n with highest priority
Assign the task n to the processor p that minimizes
the EFT value of n
Update EST values and ReadyTask
End while

3.3.2 CPOP

The CPOP algorithm uses rank,(n) + rankgs(n) to
assign the node priority. As previously, we select the
node with the highest priority, i.e. we first consider
the tasks that belong to the critical path. A task
is on the critical path if its value of rank, + rankg
is equal to the value of rank,(N;) where N; is the
start node. The critical-path-processor (CPP) is the
one that minimizes the length of the critical path.
If the current task is on the critical path, then it is
assigned to the C' PP, otherwise it is assigned to the
processor that minimizes the EFT. The time needed
to compute the tasks along the critical path is a lower
bound of the execution time. Hence it appears to be a
good criterion in order to (try to) minimize the length
of the critical path. The CPP is often the fastest
Processor.

THE CPOP ALGORITHM
Compute rank, and ranky for all nodes
ReadyTask + {Entry tasks}
While ReadyT ask is not empty
Select the task n with highest priority
If n is on the critical processor
Assign n to the CPP
Else
Assign the task n to the processor p that
minimizes the EF'T value of n
Update EST values and ReadyT ask
End while

3.4 Generalized dynamic level (GDL) algorithm

Sih and Lee propose in [9] a compile-time schedul-
ing heuristic for heterogeneous networks called GDL.
As in the previous algorithm, the GDL scheduler com-

putes the critical path in a heterogeneous system. Con-
trarily to the CPOP algorithm, GDL defines the as-
sumed execution time of node N; denoted e*(V;) as the
median execution time of the node over all processors.

We define the static level of a node N;, SL(N;) as the
largest sum of execution times along any directed path
from N; to an exit node of the graph. SL(N;) can be
easily computed recursively. To take the difference of
processors speeds into account, we introduce the quan-
tity A(Nj, Pj) = e*(N;) — e;j. Then we introduce a
dynamic level DL(N;, P;) which reflects how well node
N, and processor P; are matched. This quantity will
be re-evaluated at each step of the algorithm to take
next decisions into account: DL(N;, P;) = SL(N;) —
EST(N;, Pj) + A(Ny, Pj). The term EST(N;, P;j) is
the earliest start time defined in the same way as for
the HEFT and the CPOP algorithms. This algorithm
is very simple. While there exists a ready task, we se-
lect the node and the processor which maximize the
expression DL.

Descendant consideration Although DL(N;, Pj)
indicates how well node N; is matched with proces-
sor Pj, it fails to consider how well the descendants
of N; are matched with P;. For each node N; we note
D(N;) the descendant to which NV; passes the most data.
and d(NV;, D(N;)) the amount of data passed between
them. We then define F(N;, D(N;), P;) to indicate how
quickly D(N;) can be completed on any other processor
if N; is executed on P;. Then F(N;, D(N;),P;) =71 x
d(N;, D(N;)) + mingz; E(D(N;), Py). This is a lower
bound of the time necessary to finish the execution of
D(N;) on any processor other than P;. We then de-
fine a descendant consideration term as DC(N;, P;) =
e*(D(N;)) — min{E(D(N;), P;), F(N;, D(N;), P})}.

Resource scarcity We generally fail to consider how
important it is for two nodes to obtain the same proces-
sor. To characterize this resource scarcity cost, we first
define the preferred processor of a node, i.e the proces-
sor that maximizes its dynamic level. We then define
the cost of not scheduling N; onto its preferred pro-
Cessor: C(Ni) = DL(N“.PJ*) — MaXg£ + DL(Ni,Pk),
where j* is the index of the preferred processor of ;.
If the cost is zero, N; will still have at least one proces-
sor with which it can obtain the same dynamic level.

Generalized dynamic level By taking into ac-
count the descendant consideration and the resource
scarcity we can now define a generalized dynamic level
GDL(N;,P;) = DL(N;,P;) + DC(N;, P;) + C(Ny).
The algorithm is unchanged. We select among the
runnable tasks the task and the processor which

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP’02)
1066-6192/02 $17.00 © 2002 IEEE

maximize the GDL.

THE GDL ALGORITHM
Compute e*(n) and D(n) for all nodes n
Compute SL(n) for all nodes n
ReadyT ask < {Entry tasks}
While ReadyT ask is not empty
Compute GDL(n, p) for every node n in ReadyT ask
and every processor p
Select the pair (n,p) that maximizes GDL
Update ReadyTask
End while

4. The Iso-Level Heterogeneous Alloca-
tion (ILHA) algorithm

The main idea of the algorithm that we propose is to
perfectly balance the load between those computations
that can be performed in parallel. First we sketch a
simple method to balance a set of n tasks on p hetero-
geneous processors, then we explain how to split the
task graph into task levels which we assign to proces-
sors using the load-balancing algorithm. Finally we
outline the ILHA algorithm.

Load balancing algorithm Given n independent
chunks of computations, each requiring the same
amount of work, how can we assign these chunks
to p processors so that the load is best balanced
? Intuitively, the load of P; should be inversely

proportional to its cycle-time t;, i.e. F; should
1
receive ¢; = =7+ X n chunks. This strategy leads

=1 t;
to a perfect load balance when n is a multiple of
C = lem(ti,ta, - ,tp) Z?:l ;—J_, a quantity that may
be very large. For the general case, the following
algorithm provides the best solution [3]:

OPTIMAL DISTRIBUTION

1
foralli€ {1,....,p},ci = | =T an.
i=11;
form=c+c2+...+c,ton
find k € {1,...,p} s.t.
tr X (¢ +1) = min{t; x (¢; + 1))}

cr=cp+1
4.1. First version

Iso-level splitting We split a task graph into levels
made up of independent tasks, by considering the tasks
that will be ready at the same time-step. In other
words, two tasks belong to the same level if they have
the same top-level, using the terminology of {11]. This

is done by a traversal of the graph. Initially, the O-level
is composed of the entry tasks. The (i + 1)-th level
groups the tasks that are ready when the i-th level is
achieved.

The ILHA-0 algorithm A first version of the
ILH A algorithm is the following: we traverse the task
graph to split it into levels made of independent tasks.
We compute the number of tasks that we allocate to
each processor using the load-balancing algorithm.
Once this is done, we have to determine exactly which
task is given to each processor. The criteria is to
minimize the communication costs. So for each task of
the level, we consider its predecessors. If they are all
allocated to the same processor, we try to allocate the
task to the same processor (i.e. if the processor may
receive another task), otherwise, we allocate the task
to the fastest processor that is not yet saturated (able
to receive new tasks according to the load-balancing
strategy). This simple strategy leads to the following
algorithm:

THE ILHA-0 ALGORITHM
ReadyTask < {Entry tasks}
While ReadyT ask is not empty
Compute the optimal
||ReadyT ask|| tasks
For each task t of ReadyT ask
If all predecessors of t are on p and p is free
Assignt top
For each task t of ReadyT ask not yet assigned
Assign t to the first free processor
Update ReadyTask
End while

distribution with

4.2. Refined version

In the previous version of the ILHA algorithm, we
process all the ready tasks at each step. In some cases,
it would be better to take into account the bottom level
of the ready tasks and to consider first the tasks on a
critical path. To this purpose, we sort the ready tasks
according to their bottom level. Then, we introduce a
parameter B, the maximal number of ready tasks that
will be considered at each step. We consider those B
tasks with the higher bottom levels and we allocate
them using the load balancing algorithm. Then, we
update the set of ready tasks (indeed some new tasks
may have become ready) and we re-sort them according
to their bottom level. Thus, we expect that the tasks
on a critical path will be processed as soon as possible.
Unfortunately, we face a tradeoff for choosing an ap-
propriate value for B. On one hand if B is large, it will

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP’02)
1066-6192/02 $17.00 © 2002 IEEE

be possible to better balance the load and minimize
the communications. On the other hand, a small value
of B will enable us to process the tasks on the critical
path sooner. Of course B must be at least equal to
the number of processors, otherwise some processors
will be kept idle. The choice of B will be discussed
furthermore in the Section 5.

We obtain the final version of the ILH A algorithm:

THE ILHA ALGORITHM
Compute the bottom level of each task
ReadyTask <+ {Entry tasks} sorted by decreasing
value of their bottom level
While ReadyTask is not empty
Take the B first tasks of the ReadyT ask
Compute the optimal distribution with B tasks
For each task t of ReadyT ask
If all predecessors of t are on p and p is free
Assign t to p
For each task t of ReadyT ask not yet assigned
Assign t to the first free processor
Update the list of ReadyT ask by inserting the new
ready tasks in the sorted list
End while

5. Experiments

5.1. Testbeds

In order to compare the different algorithms,
we consider six classical kernels representing var-
ious types of parallel algorithms. The selected
task graphs are LU decomposition (“LU”), Laplace
equation solver (“LAPLACE”), a stencil algorithm
(“STENCIL"), a fork-join graph (“Fork-Join”), Doolit-
tle reduction(“DOOLITTLE”) and LDM' decomposi-
tion (“LDMt”). Miniature versions of each task graph
are shown in Figure 1.

For the LAPLACE, STENCIL, and FORK-JOIN
testbeds, all tasks have same weight, which we nor-
malize to 1. For the linear algebra testbeds, i.e. LU,
DOOLITTLE and LDMt, the situation is more compli-
cated, because the amount of work to be done at each
step of the algorithm is not constant (see [6, 5]). For
the LU kernel, the weight of a task at level k is N —k,
where N is the size of the graph. For the DOOLITTLE
and LDMt kernels, the the weight of a task at level k&
is k, where k varies from 1 to NV, the size of the graph.

For each testbed, we let the communication costs be
proportional to the task weights: indeed in each kernel,
we always communicate the data that has just been up-
dated. In other words, the communication cost from a
task v to a task v’ is equal to ¢ times the weight of v,

The Laplace task graph

The stencil task graph

o —

T

The DOOLITTALFAI'(?Sl}}gti\OH task graph
NN/
o
ng/

The LDM? decomposition task graph

Figure 1. The different task graphs

where c is a parameter that models the communication-
to-computation ratio of the target platform. For each
kernel, we perform a first simulation with small com-
munication costs, i.e. ¢ = 1, as well as a second simu-
lation with large communication costs, i.e. ¢ = 10.

5.2. Results

A full set of results is available in [2], where we con-
sider two sets of experiments. In the first set, we use
only 3 processors with respective cycle times 6, 10 and
15. Remember that the time to execute a task is the
product of its weight by the processor cycle-time. In
the second set, we use 10 processors: five processors
with cycle time 6, three processors with cycle time 10,
and two processors with cycle time 15. Also, for each

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP’02)
1066-6192/02 $17.00 © 2002 IEEE

kernel, we perform a first simulation with small com-
munication costs, i.e. ¢ = 1, as well as a second simu-
lation with large communication costs, i.e. ¢ = 10.

IFCTE]BIL DHEFT @CPOP BGDL &@ILHA B=10 QILHA B=20

a) LAPLACE

Execution time

'DBIL MGDL OCPOP CIHEFT MPCT MILHA B=10 BILHA B=20

b) STENCIL

Execution time

Problem size

Figure 2. Comparison of the heuristics with 3
processors for LAPLACE and STENCIL.

Due to the lack of space, we only report one repre-
sentative subset of the whole experiments, with 3 pro-
cessors and ¢ = 10. The three processor speeds are
strongly heterogeneous: it turns out that many heuris-
tics fail to be more efficient than a sequential execution.
This should not be too surprising: if we were able to
achieve a full utilization of the computing resources,
i.e. an efficiency equal to one, we would improve the
sequential time (using the fastest processor alone) by a
factor 6% (3 + 15 + 15) = 2 (which represents the max-
imum number of tasks that we may compute during a
cycle time).

In Figures 2 to 4, we show the expected execution
time of the five heuristics (BIL, GDL, CPOP, HEFT
and PCT) and of two instances of the ILHA heuris-
tic with different values for B, namely B = 10 and
B = 20. Results for LDMt are similar to those for
DOOLITTLE. See [2] for a detailed analysis of these
experiments; here we only give a few synthetical com-

BPCT @BIL OHEFT OCPOP MGDL BILHA B=10 BILHA B=20

oL

Execution time

300 400 500
Problem size

Figure 3. Comparison of the heuristics with 3
processors for LU.

ments:

(i) The CPOP heuristic is not eflicient for regular prob-
lems, where each node of the task graph is on a critical
path: this comment holds for LAPLACE, STENCIL,
and FORK-JOIN. However, CPOP leads to an efficient
scheduling for LU, DOOLITTLE and LDMt.

(ii) The BIL heuristic gives good results for LAPLACE,
FORK-JOIN, DOOLITTLE and LDM?, but relatively
bad ones for STENCIL and LU.

(iii) PCT is efficient for LU, DOOLITTLE, LDMt and
FORK-JOIN but it is dramatically bad for LAPLACE
and STENCIL.

(iv) GDL never gives good results, but it is never the
worst heuristic. (v) The value of the B parameter of
ILHA is important for LU decomposition: the ILHA
version with B = 10 is quite better than the ILHA ver-
sion with B = 20, which can be explained as follows:
the shape of the LU task graph is such that the criti-
cal path must be executed rapidly, hence the need for
a smaller value of B. (v) ILHA and HEFT give very
satisfactory results.

It appears that HEFT and ILHA heuristics give very
close results. However, if we consider the number of
communications generated by both heuristics, we point
out that our algorithm involves significantly fewer com-
munications: see Table 1. In the classical scheduling
model (as outlined in Section 2), we assume that the
number of communications that can be performed at
the same time is not limited. While this model is widely
used in the scheduling community, it is not realistic
in practice. The interest of ILHA may well become
more important in actual implementations on hetero-
geneous networks of workstations, where communica-
tion resources often turn out to be the limiting factor
to achieving good performances.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP’02)
1066-6192/02 $17.00 © 2002 IEEE

Problem HEFT | ILHA B=10 | ILHA B=100

STENCIL 17129 5742 396
MEBIL @GDL OCPOP (IHEFT WPCT EILHA B=10 @ILHA B=20

e LU 11244 4494 2508
fremeon LAPLACE 17129 8669 392
FORKJOIN 100 100 100
DOOLITTLE | 13727 10585 5018
LDMt 14387 10494 5272

Execution time

Table 1. Number of communications with
HEFT and ILHA

References

[1] B.A.Shirazi, A. Hurson, and K. Kavi. Scheduling
and load balancing in parallel and distributed systems.
IEEE Computer Science Press, 1995.

[2] O. Beaumont, V. Boudet, and Y. Robert. The iso-
level scheduling heuristic for heterogeneous processors.
Technical Report 2001-22, LIP, ENS Lyon, France,
May 2001. Available at www.ens-lyon.fr/ ~yrobert.

[3] V. Boudet, F. Rastello, and Y. Robert. A proposal
for a heterogeneous cluster ScaLAPACK (dense linear
solvers). In H. R. Arabnia, editor, International Con-
ference on Parallel and Distributed Processing Tech-

Problem size niques and Applications (PDPTA’99). CSREA Press,

. . e 1999. Ext il IP Technical Re-
Figure 4. Comparison of the heuristics with 3 p?)?f RP’:_;; (i(;,d version available as LIP Technical Re

processors for FORK-JOIN and DOOLITTLE. [4] P. Chrétienne, E. C. Jr., J. Lenstra, and Z. Liu, ed-

itors. Scheduling Theory and its Applications. John
Wiley and Sons, 1995.
[5] M. Cosnard, M. Marrakchi, Y. Robert, and D. Trys-
6. Conclusion tram. Parallel Gaussian elimination on a MIMD com-
puter. Parallel Computing, 6:275-296, 1988.
[6] G. H. Golub and C. F. V. Loan. Matriz computations.
Johns Hopkins, 2 edition, 1989.
[7] M. Maheswaran and H. J. Siegel. A dynamic match-
ing and scheduling algorithm for heterogeneous com-
puting systems. In Seventh Heterogeneous Computing

Execution time

In this paper we have dealt with five different heuris-
tics from the literature to solve the task schedul-
ing problem on heterogeneous platforms: PCT, BIL,

HEFT, CPOP and GDL. It appears that HEFT is the Workshop. IEEE Computer Society Press, 1998.
only heuristic giving good results for all the six testbeds {8] H. Oh and S. Ha. A static scheduling heuristic
used in our comparison. for heterogeneous processors. In Proceedings of Eu-

ropar’96, volume 1123 of LNCS, Lyon, France, Aug.

We have introduced a new heuristic, ILHA, which i
1996. Springer Verlag.

Seems very promising for the fol¥0v‘ving.main reasor_n.s: [9] G. Sih and E. Lee. A compile-time scheduling heuristic
(i) ILHA is always the best heuristic with HEFT, (i) for interconnection-constrained heterogeneous proces-
ILHA only requires a traversal of the task graph, so sor architectures. IEEE Transactions on Parallel and
its low complexity makes its suitable to process huge Distributed Systems, 4(2):175-187, 1993.

task graphs in a reasonable time. (iii) ILHA gener- [10] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task schedul-
ates very few communications, which renders is quite ing algorithms for heterogeneous processors. In Eighth
attractive for more realistic models where communica- Heterogeneous Computing Workshop. IEEE Computer

Society Press, 1999.

tion contentions are taken into account. Further work)
[11] T. Yang and A. Gerasoulis. DSC: Scheduling parallel

must be devoted to the tuning of the B parameter in
. tasks on an unbounded number of processors. IEEE
ILHA, which results from a trade-off between fast exe- L
. L. Trans. Parallel and Distributed Systems, 5(9):951-967,
cution of the critical path (small value of B) and better 1994
load-balancing (large value of B).

YF]',F.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP’02) COMPUTER
1066-6192/02 $17.00 © 2002 IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

