
Master-Slave Tasking on Asymmetric Networks

Cyril Banino-Rokkones1, Olivier Beaumont2, and Lasse Natvig1

1 Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
{Cyril.Banino, Lasse.Natvig}@idi.ntnu.no

2 LaBRI, UMR CNRS 5800, Domaine Universitaire, 33405 Talence Cedex, France
Olivier.Beaumont@labri.fr

Abstract. This paper presents new techniques for master-slave tasking on tree-
shaped networks with fully heterogeneous communication and processing re-
sources. A large number of independent, equal-sized tasks are distributed from
the master node to the slave nodes for processing and return of result files. The
network links present bandwidth asymmetry, i.e. the send and receive bandwidths
of a link may be different. The nodes can overlap computation with at most one
send and one receive operation. A centralized algorithm that maximizes the plat-
form throughput under static conditions is presented. Thereafter, we propose sev-
eral distributed heuristics making scheduling decisions based on information es-
timated locally. Extensive simulations demonstrate that distributed heuristics are
better suited to cope with dynamic environments, but also compete well with
centralized heuristics in static environments.

1 Introduction

In this paper, we consider the allocation of a large number of independent equal-sized
tasks onto a tree platform. We concentrate on tree-shaped platforms since they represent
a natural framework for master slave tasking. More importantly, administrative organi-
zations often rely on tree-shaped networks to interconnect computing resources [1].
Initially, the root of the tree (master node) holds a large bunch of tasks. Those tasks
will be either processed by the master node or transmitted to its child nodes (also called
slave nodes). Then, in turn, the child nodes face the same allocation problem (either
processing the tasks locally or forwarding them to their child nodes). We consider the
case where slave processors need to send back a file of results after processing each
task. Even if this is the most natural situation, it is worth noting that most of the papers
on independent tasks scheduling or Divisible Load Theory (DLT) do not consider those
return communications. Targeted platforms are fully heterogeneous, i.e. both the pro-
cessing resources and the communication resources have different capacities in terms
of processing power and bandwidth. Moreover, the network links present bandwidth
asymmetry in the sense that the bandwidth for sending tasks down the tree may be
different from the bandwidth for returning results up the tree.

We concentrate on the influence of dynamic resource characteristics on the allocation
scheme. In shared and unstable environments such as grids and peer to peer systems,
the performance of the resources may well change during the execution of the whole
process. In this context, it is not realistic to assume that one of the nodes knows at any
time step the exact performance of all resources and is able to make optimal scheduling

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 167–176, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

168 C. Banino-Rokkones, O. Beaumont, and L. Natvig

decisions [1]. Therefore, the main question consists in determining whether the alloca-
tion scheme can make use of some static knowledge about the platform (for instance,
the optimal solution computed from an initial snapshot of the platform), or whether we
need to rely on fully dynamic scheduling schemes. In order to answer this question, we
first derive optimal scheduling algorithms (with respect to throughput maximization).
Then we present several heuristics. Some of them make their scheduling decisions us-
ing the optimal scheduling policy, computed using a snapshot of resource performance
characteristics. Those heuristics may lead to optimal scheduling decisions in static en-
vironments. On the other hand, we propose a set of fully dynamic allocation heuristics
that make their scheduling decisions only according to information measurable locally.
Those heuristics may give poor results in static environments, but their performances are
expected to be more robust in dynamic environments. We compare all those heuristics
through extensive simulations using the SimGrid toolkit [2]. We rely on simulations
rather than direct experiments in order to make a fair comparison between proposed
heuristics. Indeed, simulation enables running of the different tests on computing plat-
forms having exactly the same dynamic behavior. Moreover, SimGrid enables to define
the trace of performance data over time for each processing or communication resource.
Therefore, it is possible to compute (off-line) the optimal solution at any given time step
and it is therefore possible to compare the performances of the different heuristics be-
tween them and against the optimal ideal solution.

The rest of the paper is organized as follows. Section 2 is devoted to a survey of
related work, both DLT studies, independent tasks scheduling and on dynamic schedul-
ing. Then, we present our platform model in Section 3 and how to find the optimal
solution, in presence of return messages, in Section 4. Section 5 states the main Theo-
rem of this paper, which provides a mean to optimize the nodes bandwidth utilization.
Section 6 presents a task-flow control mechanism that regulates the amount of tasks
and results buffered by the nodes throughout the execution. The set of centralized and
distributed heuristics are described in Section 7. The methodology and results of the
simulations are discussed in Section 8. Finally, we give some remarks and conclusions
in Section 9. Due to space limitation, many of the technical details have been omitted,
but can be found in the extended version of this paper [3].

2 Related Work

The problem of master-slave tasking on heterogeneous tree platforms has already been
widely studied, both in the context of Divisible Load Theory (DLT) and independent
tasks scheduling. A divisible load is a perfect parallel task that can be arbitrarily split
and allocated to slave processors, without processing overhead. The overall load is first
split at the master node in order to minimize the total execution time. Tasks are dis-
tributed in one round to the slaves, so that the master node makes the decisions about
the set of slaves to be used, the amount of data to be sent to each slave, and the communi-
cation ordering [4,5,6]. When return messages are taken into account, two permutations
must then be determined (one for tasks distribution and one for results collection) [7,8].
Although the complexity of this problem is still open, Rosenberg et al. [9] proved that
in the case of a homogeneous single-level tree, the optimal schedule for both outgoing

Master-Slave Tasking on Asymmetric Networks 169

and incoming messages can be determined, and the optimal LIFO and FIFO orderings
are given in [10] for heterogeneous single-level trees.

On the other hand, when considering independent tasks scheduling, the master node
faces the allocation problem for each task and the communications with its child nodes
may well be split into several rounds [11,12,13]. Recently research studies have focused
on steady-state scheduling, i.e. throughput maximization [11, 14, 15]. The steady-state
scheduling approach has been pioneered by Bertsimas and Gamarnik [16] who con-
sidered packet routing and proposed to concentrate first on resource occupation rather
than scheduling. The optimal solution for resource occupation, given link capacities,
is obtained via a linear program. Then, an algorithm based on super-steps is proposed
for building the actual schedule of packets. This idea has been adapted in [14] to the
distribution of independent tasks on static platforms. Results collection was not consid-
ered in [14], but the linear program presented in Section 4 is a direct adaptation of the
solution proposed in [14].

Dynamic scheduling of independent tasks has not been widely studied. Recently,
Hong et al. [1, 15, 17] proposed a very nice algorithm, based on decentralized versions
of flow algorithms. It is worth noting that this algorithm assumes a strongly different
communication model than the one presented in this paper, and consequently cannot be
easily adapted to our model. Here again, the results collection has not been considered.

3 Platform Model

The model considered in this paper is based on the model proposed in [14] that we
augment by introducing communication weights for returning computation results back
to the master. Processing nodes are assumed to be connected via a node-weighted edge-
weighted tree T = (V, E, w, c, c′) as depicted in Figure 1.

Each node Pi ∈ V represents a com-

w3

P0

c6

w2w1

P1

w4

P4

w5

P3

P2

P5

w6

P6

c1

c′
3

c′
1

c′
2

c5

c′
6

c4

c′
4 c′

5

c2

c3
w0

Fig. 1.

puting resource of weight wi, meaning
that node Pi requires wi units of time
to process one task. Each edge corre-
sponds to a communicating resource
and is weighted by two values: ci which
represents the time needed by a parent
node to send one task to its child Pi, and
c′i which represents the time needed by
the child Pi to send one result back to
its parent. All the wi’s are assumed to
be positive rational numbers since they
represent node processing times. We
disallow wi = 0 since it would permit
node Pi to perform an infinite number of tasks. Similarly, we assume that all ci’s and
c′i’s are positive rational numbers since they correspond to the communication times
between two processors. A node can perform three kinds of activity simultaneously: (i)
it can process a task, (ii) it can receive a task file from its parent or a result file from
one of its children, and (iii) it can send a result file to its parent or a task file to one

170 C. Banino-Rokkones, O. Beaumont, and L. Natvig

of its children. This model is known under the name full overlap, bidirectional-single-
port model [14,11]. At any given time-step, a node may overlap computation with only
two connections, one for incoming communications and one for outgoing communica-
tions. Computation and communication are assumed to be atomic operations, i.e. once
initiated they cannot be preempted. Finally the communication model works in a store-
and-forward fashion.

4 Maximizing the Throughput

Given the resources of a weighted tree T operating under the full overlap, bidirectional-
single-port model, we aim at maximizing the number of tasks processed per time unit.
Let Ci denote the set of Pi’s children. During one time unit, let αi be the fractional
number of tasks processed by Pi, and βi be the fractional number of tasks received by Pi

from its parent. Equivalently, αi and βi correspond respectively to the fractional number
of results produced by Pi, and to the fractional number of results sent by Pi to its
parent. The optimal throughput is obtained by solving the following linear programming
problem (LPP), whose objective function is to maximize the number of tasks processed
per time unit.

Maximize ntask(T) =
∑

i αi

subject to ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀i, 0 ≤ αi ≤ 1
wi

∀i �= m, 0 ≤ βi

∀i �= m, βi = αi +
∑

j∈Ci
βj

∀i,
∑

j∈Ci
cjβj + c′iβi ≤ 1

∀i,
∑

j∈Ci
c′jβj + ciβi ≤ 1

The first set of constraints states that computation resources are limited. The second
set of constraints confines the variables βi within non-negative values. Note that the
master Pm does not have a parent, so that we let βm = 0. The third set of constraints
deals with conservation laws. For each node Pi (except the master), the number of tasks
received by Pi, should be equal to the number of tasks that Pi processes locally, plus
the number of tasks forwarded to the children of Pi. Equivalently, the number of results
sent by Pi to its parent, should be equal to the number of results produced locally by
Pi, plus the number of results received from its children. The last constraints account
for the single-port model. The send and receive operations performed by the nodes are
assumed to be sequential.

Since we are looking for a solution of the LPP into rational numbers, optimal ratio-
nal values for all variables can be obtained in polynomial time. However, the solution
of the above LPP is in general not unique and some solutions might be more interesting
than others in our context. In particular, compact solutions, i.e. that utilize nodes close
to the root in priority, are more preferable than stretched solutions (that utilize nodes far
away from the root). Indeed, start-up time (required to enter the steady-state) and wind-
down time (required to gather the last results to the root) will be longer for stretched
solutions than for compact ones. In order to obtain compact solutions, we first need to
solve the initial LPP to derive the optimal throughput ntask(T) of the tree. The objec-
tive function of the second LPP becomes the minimization of all the communications,

Master-Slave Tasking on Asymmetric Networks 171

under the aforementioned constraints plus an additional one that states the conserva-
tion of the optimal throughput obtained by the former LPP. Minimizing the amount of
communications while maintaining the optimal number of tasks processed implicitly
enforces compact solutions. We hence add the following constraint:

∑
αi = ntask(T).

And the objective function of the second LPP becomes: Minimize
∑

i βi. Once a so-
lution has been obtained, one needs to construct a schedule that (i) ensures that the
optimal throughput is achieved and (ii) exhibits a correct orchestration of communica-
tion events, i.e. where simultaneous communications involve disjoint pairs of senders
and receivers. We can obtain a time period Γ by taking the least common multiple (lcm)
of all the denominators of the variables αi. Then, the integer number of tasks γi that
must be communicated to Pi during each time period Γ is obtained by γi = βiΓ .

Proposition 1. Sending and receiving files by bunches of γi in a round robin fashion
generates an optimal steady-state schedule where single-port constraints are satisfied.

Proof. The proof is done by induction over h, the height of the tree T [3]. ��

Initially, nodes do not dispose of tasks nor results buffered locally to comply with
Proposition 1. Therefore an initialization phase must take place before entering steady-
state. During start-up, nodes will act as if they were in steady-state, at the difference that
fake results will be sent to the parents if not enough results are available. Thus, tasks
will be propagated down the tree, while fake results will be propagated up the tree. The
fake results received by parents nodes are simply discarded. Once the first bunch of
results processed by all the deepest nodes used in the schedule have been transmitted to
the root node, then steady-state has been reached.

5 Bandwidth Optimization

A simple scheduling principle is presented in [14] when returning results is neglected.
This scheduling algorithm was termed bandwidth-centric because priorities do not de-
pend on the children processing capabilities, but only on their communication capa-
bilities. The bandwidth-centric principle is extended to our problem as follows. First,
observe that for each task that a node Pi delegates to a child Pj , Pi must first receive
the task from its parent, then forward it to Pj , receive the associated result back, and
finally send the result to its parent. Consequently, Pi will spend xj = cj + c′i time units
sending data, and yj = c′j + ci time units receiving data. Since the master Pm does
not have a parent, we let xm = cm and ym = c′m. The bandwidth utilization of a node
Pi can be sketched within the Cartesian plane, where the X and Y axes represent the
time spent in emission and reception respectively. Hence, allocating a task to child Pj

corresponds to a displacement in the Cartesian plane along vector vj of components
(xj , yj).

Theorem 1. In steady-state, the bandwidth utilization of a parent node is optimized
when using at most 2 children (if processing capabilities are not taken into account).

Proof. The proof is done by induction over n, the number of children that are utilized by
a parent in addition to the two nodes mentioned in Theorem 1. Consider the case where

172 C. Banino-Rokkones, O. Beaumont, and L. Natvig

n = 1, i.e. when a parent delegates α1, α2 and α3 tasks per time unit to three children
P1, P2 and P3 respectively (see Figure 2). Displacements OA1, A1A2 and A2A3 stand
for delegating α1, α2 and α3 tasks to the children P1, P2 and P3 respectively.

Consider the triangle A1A2P where the

P

A3Q

O

R

y

x

α2

A1

A2 α3

α1

j1

j3

k2

k3

Fig. 2.

displacements A1P and PA2 amount to al-
locate j1 and j3 tasks to P1 and P3 respec-
tively. Consider now both quantities (j1 + j3)
and α2. If (j1 + j3) ≥ α2, it means that it is
more profitable to spend the bandwidth time
assigned to P2 by allocating more tasks to P1
and P3. As a consequence, P2 should not be
used. But if (j1 + j3) < α2, then consider the
triangle ORA1, where the displacements OR
and A1R amount to allocate k2 and k3 tasks
to P2 and P3 respectively. Since both triangles
A1A2P and ORA1 are equal (since their in-
ternal angles are equal), if (j1 + j3) < α2 then
(α1 + k3) < k2. In that case, it becomes more
profitable to assign k2 tasks to P2 instead of α1
tasks to P1 and j3 tasks to P3, and P1 should not be used. Assume now that Theorem 1
is true for rank n, and let us prove that it holds also for rank n + 1. Consider a parent
utilizing n + 3 children. Extract 3 of the n + 3 children and apply the aforementioned
geometric transformation. One then utilizes only n + 2 children without degrading the
initial throughput. ��

Theorem 1 assumes that nodes can provide as much computing power as necessary
which contravenes the fact that computing resources are limited. Nonetheless, it allows
identifying the way to optimize the bandwidth of any node Pi in using at most two
children. Furthermore, we show in [3] that if such a pair of children exists, then the
emission and reception bandwidth of Pi are equally utilized.

6 Task-Flow Control

In order to regulate the number of tasks and results that nodes are allowed to buffer lo-
cally throughout the execution, a threshold value θi is introduced for each node Pi, i �=
m. On the one hand, if the number of tasks buffered locally by Pi is beneath the thresh-
old, then Pi will request more tasks in order to prevent starvation. On the other hand,
if the number of results buffered locally by Pi is larger than the threshold, then Pi will
not request additional tasks in order to hinder a monotonic accumulation of results. Ini-
tially, θi = 1, ∀i �= m. Since we search for compact solutions, parent nodes will try
to process as many tasks as possible. If additional tasks arrive while a node is busy
processing, then the task will be forwarded down the tree. During the execution, nodes
are allowed to increase their local thresholds θi only when (i) they are starving and
(ii) if they recently succeeded to accumulate θi tasks locally (to ensure that the current
threshold is not sufficient) and (iii) if the number of results buffered locally is strictly
lower than θi. This mechanism allows nodes to collect enough tasks locally to feed their

Master-Slave Tasking on Asymmetric Networks 173

sub-trees, while ensuring that results do not accumulate monotonically locally. On the
other hand, nodes must decrease their local thresholds whenever the number of results
buffered locally exceeds the threshold. This threshold growth mechanism provides a
mean to adapt to the platform dynamics.

7 Scheduling Heuristics

Round Robin. (RR) This heuristic implements Proposition 1. Once all the αi are
known, the period Γ is estimated as follows. Let us set x = 	log10(maxi αi)
. If x ≤ 0
then Γ = 10|x|+1, Γ = 10x otherwise. The aim is to obtain a compromise between a
short time period, and an approximation close to the optimal solution. Then we get the
number of tasks computed by each node Pi by rounding Γαi to the nearest integer.
On the Fly. (OTF) This heuristic makes use of the centralized knowledge. Once all the
βi’s are known, each node maintains a table tasks given[j], which records the number
of tasks delegated to child Pj so far. The child node that has the lowest tasks given[j]

βj

ratio is served in priority.
FIFO. Tasks are delegated in a first-come first-served basis.
Bandwidth-Centric. (BC) Let rj = min{ 1

xj
, 1

yj
} denote the maximum amount of

tasks that Pi can delegate to child Pj per time unit. The child which has the highest rj

is served in priority.
Geometric. (Geo) This heuristic makes use of Theorem 1, but starts by applying the
bandwidth-centric heuristic, in order to determine which child obtains the highest rj .
Then, it inspects if a pair of children can improve that rate. If such a pair of children ex-
ists, one must decide which child should be served. In order to make the right decision,
we use a variable Δ which works much like a pair of scales. At start, Δ = 0. Each time
a child node Pj is served, we put xj in one scale, and yj in the other, which amounts
to Δ = Δ + xj − yj . When a pair of children nodes is elected, then the child which
brings Δ closest to 0 is serve. The aim is to utilize equally the emission and reception
bandwidths of the parent nodes. Such strategy will optimize the bandwidth utilization
of the nodes, while naturally adapting to the platform dynamics.

8 Simulations Results

To evaluate our heuristics, we simulate the execution of an application on different ran-
dom trees. Since a sub-tree can be reduced to a single super-node of equivalent process-
ing power [14], it is not necessary to employ thousands of nodes to simulate large-scale
systems [15]. We arbitrarily limited the number of nodes in a tree to 100. Each node
was arbitrarily restricted to have at most 10 child nodes. A random tree is generated as
follows. Each node is numbered with an ID number between 0 and 99. Then, each node
Pi, i ∈ [1, 99] is connected randomly to a node Pj , j ∈ [0, i − 1]. The links have static
performance values comprised between cmin and cmax and the nodes between wmin

and wmax. All random distributions are uniform. The dynamic environments used in
our simulations were generated as follows. Each resource Ri (node or link) has a cyclic
behavior, i.e. its performance changes ni times per cycle. The number of changes ni

174 C. Banino-Rokkones, O. Beaumont, and L. Natvig

per cycle is randomly taken within the interval [5, 15]. Resource performance changes
will occur every 25 treated tasks in average. We do not claim that these arbitrary deci-
sions correspond to realistic network conditions. Our aim is to compare our heuristics
on a set of different tree configurations. Inspired by Kreaseck et al. [11], we determine
the throughput rate by using a growing window. The execution time is divided into 100
equal-sized time slots. Then, the window increases in size by step of one time slot, and
the throughput rate delivered within the window time-frame is computed. The through-
put rates delivered by the trees have been normalized to the maximum steady-state
rates obtained with the LPP in static environments. However, throughput rates obtained
in dynamic environments have been scaled up by a dynamic factor that accounts for the
performance loss incurred by the platform dynamics. The dynamic factors have been
obtained by successively solving LPPs of static platforms and comparing them to their
homologous LPPs where some dynamism have been introduced (i.e. with the same plat-
form topologies but with scaling down resource performances). More details about our
methodology as well as a broader set of simulation can be found in [3].

In this paper, we report the simulation of an independent-task application of 2500
tasks on 50 trees where cmin = 1, cmax = 10, wmin = 20 and wmax = 200. Two
scenarios for the data volume associated to the tasks and results were considered: (i)
task data are 1000 times larger than result ones (t

r = 1000), and (ii) task and result
data have the same size (t

r = 1). Figure 3 plots an average of the 50 throughput rates
(associated to the 50 trees) over time. Figure 3 (a) and (b) correspond to static environ-
ments, while Figure 3 (c) and (d) correspond to fully dynamic environments, i.e. where
resource performances can degrade down to 1% of the static value. The RR heuristic
has been simulated with more than 2500 tasks in order to overcome the long start-up
time required to enter steady-state. Still, RR does not outperform the other heuristics
in static environments, certainly due to the truncating and rounding operations that oc-
curred when computing Γ and the γi’s. Not only the integer number of tasks intended
to each node may be sub-optimal, but also the schedule of communications gets dis-
turbed. The centralized heuristics (RR and OTF) are the highest performers in static
environments, but the lowest ones in dynamic environments. Indeed, the information
on which they rely throughout the execution becomes misleading in dynamic settings.
As expected, the BC heuristic works very well when result data are small, while Geo
only departs from BC when result data become significant.

Interestingly, when result data become significant, the performance of the best heu-
ristics decrease, whereas the performance of FIFO increases. On the one hand, the de-
cline of the best heuristics can be explained by the scheduling problem becoming more
complicated. Returning results up the tree taking as long as sending tasks down the tree,
parent nodes may sometimes have to stall a long time, waiting for a child to become
available in reception. On the other hand, the performance increase of FIFO is a di-
rect consequence of the task-flow control mechanism. When returning results takes a
long time, local accumulations of results will arise, hindering the ineffective nodes to
request for additional tasks. In contrast, when returning results is quick, no local results
accumulations take place, increasing the margin to make wrong scheduling decisions.

Finally, it is worth noticing that BC and Geo compete well with the centralized
heuristics even in static environments. See [3] for further details and interpretations.

Master-Slave Tasking on Asymmetric Networks 175

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 t

hr
ou

gh
pu

t

Time slots

 ROUND-ROBIN

 ON THE FLY

 GEOMETRIC

 BW-CENTRIC

 FIFO

(a) static, t
r

= 1000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 t

hr
ou

gh
pu

t

Time slots

 ROUND-ROBIN

 ON THE FLY

 GEOMETRIC

 BW-CENTRIC

 FIFO

(b) static, t
r

= 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 t

hr
ou

gh
pu

t

Time slots

 ROUND-ROBIN

 ON THE FLY

 GEOMETRIC

 BW-CENTRIC

 FIFO

(c) dynamic t
r

= 1000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 t

hr
ou

gh
pu

t

Time slots

 ROUND-ROBIN

 ON THE FLY

 GEOMETRIC

 BW-CENTRIC

 FIFO

(d) dynamic t
r

= 1

Fig. 3. Average of the 50 throughput rates (associated to the 50 trees) over time, with the com-
putation to communication ratio wi

ci
= 20. In the dynamic environments, resource performances

can degrade arbitrarily without failing, i.e. down to 1% of the static performance value.

9 Conclusion and Future Work

The problem of distributing a large number of independent tasks onto heterogeneous
tree-shaped platforms with bandwidth asymmetry was considered. In contrast with most
previous studies, the cost of returning results to the master node was represented in
the problem formulation. We provided theoretical results that were embedded into au-
tonomous heuristics. Simulations results showed that the autonomous heuristics put
together with the task-flow control mechanism not only behaved very well in dynamic
environments, but also compete well with centralized heuristics in static environments.

The scope of this paper was restricted to tree-shaped networks. However, at the back-
bone level, various geographically organizations are connected via the Internet resulting
in a graph topology. Adapting the theoretical results presented in this paper to graph-
shape platforms is a natural continuation of this work, albeit graph topology introduces
routing problems. Another direction is to consider master-slave tasking in the presence
of multiple masters. This situation arises naturally when several applications share the
same platform, or when multiple masters collaborate on a single application.

176 C. Banino-Rokkones, O. Beaumont, and L. Natvig

References

1. Hong, B., Prasanna, V.K.: Performance Optimization of a De-centralized Task Allocation
protocol via bandwidth and buffer management. In: CLADE. (2004) 108

2. Casanova, H.: SimGrid: A Toolkit for the Simulation of Application Scheduling. In: Pro-
ceedings of the 1st International Symposium on Cluster Computing and the Grid, IEEE Com-
puter Society (2001) 430

3. Banino-Rokkones, C., Beaumont, O., Natvig, L.: Master-Slave Tasking on Asym-
metric Tree-Shaped Networks. Technical Report 02/06, NTNU (2006) URL:
http://www.idi.ntnu.no/∼banino/research/research.html.

4. Robertazzi, T.: Processor Equivalence for a Linear Daisy Chain of Load Sharing Processors.
IEEE Trans. Aerospace and Electronic Systems 29 (1993) 1216–1221

5. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling Divisible Loads in Parallel
and Distributed Systems. IEEE Computer Society Press (1996)

6. Drozdowski, M., Wolniewicz, P.: Experiments with scheduling divisible tasks in clusters of
workstations. In: Proceedings of Euro-Par 2000: Parallel Processing. LNCS 1900, Springer
(2000) 311–319

7. Barlas, G.D.: Collection-Aware Optimum Sequencing of Operations and Closed-Form So-
lutions for the Distribution of a Divisible Load on Arbitrary Processor Trees. IEEE Trans.
Parallel Distrib. Syst. 9(5) (1998) 429–441

8. Blazewicz, J., Drozdowski, M., Guinand, F., Trystram, D.: Scheduling a Divisible Task in
a Two-dimensional Toroidal Mesh. In: Proceedings of the third international conference on
Graphs and optimization, Amsterdam, The Netherlands, Elsevier Science Publishers B. V.
(1999) 35–50

9. Adler, M., Gong, Y., Rosenberg, A.L.: Optimal Sharing of Bags of Tasks in Heterogeneous
Clusters. In: 15th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA’03),
ACM Press (2003) 1–10

10. Beaumont, O., Marchal, L., Robert, Y.: Scheduling Divisible Loads with Return Messages on
Heterogeneous Master-Worker Platforms. In: International Conference on High Performance
Computing HiPC’2005. LNCS, Springer Verlag (2005) 123–132

11. Kreaseck, B., Carter, L., Casanova, H., Ferrante, J.: Autonomous Protocols for Bandwidth-
Centric Scheduling of Independent-Task Applications. In: IPDPS ’03: Proceedings of the
17th International Symposium on Parallel and Distributed Processing, Washington, DC,
USA, IEEE Computer Society (2003) 26.1

12. Dutot, P.F.: Complexity of Master-slave Tasking on Heterogeneous Trees. European Journal
on Operationnal Research 164(3) (2005) 690–695

13. Rosenberg, A.L.: Sharing Partitionable Workloads in Heterogeneous NOWs: Greedier is not
Better. In: Cluster Computing 2001, IEEE Computer Society Press (2001) 124–131

14. Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.: Scheduling Strate-
gies for Master-Slave Tasking on Heterogeneous Processor Platforms. IEEE Transactions on
Parallel and Distributed Systems 15(4) (2004) 319–330

15. Hong, B., Prasanna, V.K.: Distributed Adaptive Task Allocation in Heterogeneous Com-
puting Environments to Maximize Throughput. In: International Parallel and Distributed
Processing Symposium IPDPS’2004, IEEE Computer Society Press (2004) 52b

16. Bertsimas, D., Gamarnik, D.: Asymptotically optimal algorithm for job shop scheduling and
packet routing. Journal of Algorithms 33(2) (1999) 296–318

17. Hong, B., Prasanna, V.K.: Bandwidth-Aware Resource Allocation for Heterogeneous Com-
puting Systems to Maximize Throughput. In: ICPP. (2003) 539–546

	Introduction
	Related Work
	Platform Model
	Maximizing the Throughput
	Bandwidth Optimization
	Task-Flow Control
	Scheduling Heuristics
	Simulations Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

