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Abstract 

In this paper, we address the issue of imple- 
menting matrix-matrix multiplication on heteroge- 
neous platforms. We target two different classes of 
heterogeneous computing resources: heterogeneous 
networks of workstations, and collections of het- 
erogeneous clusters. Intuitively, the problem is 
to load balance the work with different-speed re- 
sources while minimizing the communication vol- 
ume. We formally state this problem and prove 
its NP-completeness. Next we introduce a (poly- 
nomial) column-based heuristic, which turns out to 
be very satisfactory: we derive a theoretical perfor- 
mance guarantee for  the heuristic, and we assess its 
practical usefulness through MPI experiments. 

1 Introduction 

In this paper, we deal with the implementation 
of a very simple but important linear algebra ker- 
nel, namely matrix-matrix multiplication (MMM 
for short), on heterogeneous platforms. Several par- 
allel MMM algorithms are available for parallel ma- 
chines or homogeneous networks of workstations or 
PCs (see (1, 11, 131 among others). The popu- 
lar ScaLAPACK library [4] includes a highly-tuned, 
very efficient routine targeted to  two-dimensional 
processor grids. This routine uses a block-cyclic dis- 
tribution of the matrices in both grid dimensions. 
We briefly recall parallel MMM algorithms for ho- 
mogeneous machines in Section 2.1. 

Why extending parallel MMM algorithms to het- 
erogeneous platforms? The answer is clear: fu- 
ture computing platforms are best described by the 
key-words distributed and heterogeneous. We target 
two different classes of heterogeneous computing re- 
sources: 

Heterogeneous networks of workstations 
are ubiquitous in university departments and 
companies. They represent the typical poor 
man’s parallel computer: running a large PVM 
or MPI experiment (possibly all night long) is 
a cheap alternative to  buying supercomputer 
hours. When implementing MMM algorithms 
on HNOWs, the idea is to  make use of all 
available resources, namely slower machines as 
well as more recent ones. This is a challenging 
but very useful task, given the importance of 
MMM in scientific computing. Also, it is a first 
step towards understanding how to implement 
more complicated linear algebra kernels on 
HNOWs. 

Collections of clusters are made up of nodes, or 
clusters, each of them being itself a HNOW of 
a parallel machine. These nodes may well be 
geographically scattered all around the world. 
Inter-nodes communications are typically an 
order of magnitude slower than intra-nodes 
communications. The need to  design a MMM 
algorithm which would execute on a collection 
of clusters is less obvious. Are there actual 
applications which involve such huge matrices 
that their product cannot be computed with a 
single parallel machine or workstation network? 
Larger and larger experiments are conducted 
throughout the world within the NPAC12 ini- 
tiative, using tools such as Globus [9]. Huge 
linear algebra kernels often are at the core 
of these experiments, so investigating “meta- 
computing” MMM algorithms is quite natural. 
Anyway, we view MMM algorithms as a perfect 
case study for the implementation of tightly- 
coupled high-performance applications on the 

‘HNOWs for short. 
2National Partnership for Advanced Computational In- 

frastructure, see http://uuu.npaci.edu. 
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metacomputing grid [lo]: indeed, such appli- 
cations are much more difficult to tackle than 
loosely-coupled cooperative applications. Be- 
cause MMM is a simple kernel which encom- 
passes a lot of data movements, we view it as 
a perfect testbed to be studied before experi- 
menting more challenging computational prob- 
lems on the grid. 

The major limitation to programming heteroge- 
neous platforms arises from the additional difficulty 
of balancing the load when using processors running 
at different speeds. Data and computations are not 
evenly distributed to processors. Minimizing com- 
munication overhead becomes a challenging task: in 
fact, the MMM problem with different-speed pro- 
cessors turns out to be surprisingly difficult. The 
main result of this paper is the NP-completeness of 
the MMM problem on heterogeneous platforms. 

The full length version of the paper is available 
in [2]: it includes all proofs and a literature survey. 

2 MMM Algorithms 

In this section we briefly describe how to imple- 
ment a parallel (or distributed) MMM algorithm on 
a heterogeneous platform. We adopt an abstract 
view by assuming that we have a collection of p 
heterogeneous computing resources P I ,  P2,. . . , Pp. 
If each computing resource Pi reduces to a single 
processor, we are dealing with a heterogeneous net- 
work of workstations or PCs (HNOW). When each 
computing resource Pi is itself a heterogeneous clus- 
ter or a parallel machine, we are targeting a meta- 
computing environment, made up from a collection 
of clusters. The high-level algorithmic description 
is the same for all target machines. However, our 
model will have to cope with different hypotheses 
on communication issues. We come back to the 
impact of communication modeling in Section 3.2. 
Before dealing with heterogeneous resources, we 
briefly summarize existing algorithms for homoge- 
neous machines. 

2.1 Homogeneous Grids 

We start by briefly recalling the MMM algorithm 
implemented in the ScaLAPACK library [4] on 2D 
homogeneous grids. For the sake of simplicity we 
restrict to the multiplication C = AB of two square 
n x n matrices A and B. In that case, ScaLAPACK 
uses the outer product algorithm described in [l, 11, 
131. Consider a 2D processor grid of size p = pl  x p 2 ,  
and assume for a while that n = pl = p2. In that 

case, the three matrices share the same layout over 
the 2D grid: processor Pi,j stores aid, bi,j and C i , j .  

Then at each step I C ,  

0 each processor Pi,k (for d l  i E (1,  ..,PI}) hori- 
zontally broadcasts a i , k  to  processors Pi,*. 

0 each processor Pk,j (for all j E (1, . . , p z } )  ver- 
tically broadcasts b k , j  to processors P,,j. 

so that each processor P,,j can independently up- 
date C i j  = C ( i , j )  + ai,k X b k , j .  

This current version of the ScaLAPACK li- 
brary uses a blocked version of this algorithm to 
squeeze the most out state-of-the-art processors 
with pipelined arithmetic units and multilevel mem- 
ory hierarchy [4]. Each matrix coefficient in the de- 
scription above is replaced by a T x T square block, 
where optimal values of T depend on the memory hi- 
erarchy and on the communication-to-computation 
ratio of the target computer. Finally, a level of vir- 
tualization is added: usually, the number of blocks 

x [?I is much greater than the number of pro- 
cessors pl x p ~ .  Thus blocks are scattered in a cyclic 
fashion along both grid dimensions, so that each 
processor is responsible for updating several blocks 
at each step of the algorithm. 

To prepare for the description of the heteroge- 
neous version, we introduce another “logical” de- 
scription of the algorithm: 

0 We take a macroscopic view and concentrate 
on allocating (and operating on) matrix blocks 
to processors: each element in A ,  B and C is a 
square T x T block, and the unit of computation 
is the updating of one block, i.e. a matrix- 
matrix multiplication of size T .  

0 At each step, a column of blocks (the pivot 
column) is communicated (broadcast) horizon- 
tally, and a row of blocks (the pivot row) is 
communicated (broadcast} vertically. 

0 The C matrix is partitioned into pl x p2 rect- 
angles. There is a one-to-one mapping between 
these rectangles and the processors. Each pro- 
cessor is responsible for updating its rectangle: 
more precisely, it updates each block in its rect- 
angle with one block from the pivot row and 
one block form the column row, as illustrated 
in Figure 1. For square p x p homogeneous 2D- 
grids, and when the number of blocks in each 
dimension n is a multiple of p (the actual ma- 
trix size is thus n . ~  x n . ~ ) ,  it turns out that all 
rectangles are identical squares of 9 x 9 blocks. 
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Figure 1. The MMM algorithm on a 4 x 4 
homogeneous 2D-grid. 

On Figure 1, we see that the total amount of 
communications performed by the MMM algorithm 
is proportional to the sum of the perimeters of the 
rectangles allocated to the processors. More pre- 
cisely, at each step each processor responsible for a 
rectangle of h x w blocks must receive (vertically) 
h blocks of matrix B and (horizontally) w blocks of 
matrix A. This explains why rectangles are identi- 
cal squares for square p x p homogeneous 2D-grids, 
when p divides n: in that case, all rectangles of 
fixed area E x E are squares. Because the (half)- 
perimeter of a rectangle of fixed area is minimized 
when it is a square, this choice does minimize the 
communication volume. 

There are other homogeneous MMM algorithms: 
for instance Cannon’s algorithm [13] (whose main 
drawback is to require an initial permutation of ma- 
trices A and B )  replaces all the horizontal and ver- 
tical broadcasts by nearest-neighbor shifts. The to- 
tal communication volume at each step is the same, 
but the communications are different. Still, all pro- 
cessors independently update their rectangle of C 
blocks at each step. 

P P  

2.2 Heterogeneous Platforms 

How to modify the previous MMM algorithms 
for a heterogeneous platform? The idea is to keep 
the same framework: at each step, one pivot col- 
umn and one pivot row are communicated to  all 
processors, and independent updates take place. 
However, with different-speed processors, we cannot 
distribute same size rectangles from the C matrix 
to the processors. Intuitively, we want to balance 
the computing load so that each processor receives 
an amount of work in accordance to its comput- 
ing power. Because all C blocks require the same 

amount of arithmetic operations, each processor ex- 
ecutes an amount of work which is proportional to  
the number of blocks that are allocated to it, hence 
proportional to the area of its rectangle. To paral- 
lelize the matrix-matrix product C = AB, we have 
t o  tile the C matrix into p non-overlapping rectan- 
gles, each rectangle being assigned to  one processor. 
Figure 2 shows an example with 13 different-speed 
computing resources. 

Figure 2. The MMM algorithm on a hetero- 
geneous platform. 

The question is: how to compute the area and 
shape of these p rectangles so as t o  minimize the 
total execution time? As usual with parallel algo- 
rithms, there are two non-independent and maybe 
conflicting goals: (i) load-balancing computations; 
(ii) minimizing communication overhead. Goal (i) 
is related to the area of the rectangles that are al- 
located to  the processors, while goal (ii) is related 
to  their shapes. We discuss areas and shapes in the 
next section, in order to  formally state (and try to 
solve) this difficult optimization problem. 

3 The Heterogeneous MMM Opti- 
mization Problem 

Consider a matrix-matrix product C = A x B,  
where A, B and C are square matrices of n x n 
square blocks of size r. Assume that we have 
p computing resources PI, P2,. . . , Pp of (relative) 
cycle-times tl , t 2 ,  . . . , t p :  if all processors have same 
speed, then ti = 1 for 1 5 i 5 p .  If, say, P2 is twice 
faster than PI, then tl = 2 t2 .  We start with load- 
balancing issues before dealing with communication 
overhead. 

3.1 Load Balancing 

To perfectly load-balance the computation, each 
processor should receive an amount of work in ac- 
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cordance to its computing power. If, say, P2 is 
twice faster than PI (tl = 2t2), then P2 should be 
assigned twice as many elements as PI. In other 
words, the area of its rectangle should be the dou- 
ble of that of P I .  Let si be the area of the rect- 
angle Ri allocated to processor Pi. Obviously, the 
first equation is E:='=, si = n2, in order to obtain 
a true partition of the C matrix. Next, since Pi 
processes its rectangle within si x ti time-steps, we 
have sltl = s2t2 = . . . = spt,. The last constraint is 
t o  write si as si = hi x vi, where hi and U, are the 
number of rows and columns of Ri. These equations 
do not always have integer solutions, which means 
that a perfect load balancing of the computations is 
not always possible. 

However, we are not really interested in an exact 
solution. A more concrete and interesting question 
is the following: given the p computing resources, 
how to compute the respective area of the rectangles 
Ri so that the workload is asymptotically optimally 
balanced: the larger the matrix size (expressed in 
blocks), the more accurate the tiling into rectangles. 
This question translates into the following system: 
given t l ,  . . . , t,, search for real unknowns si = hi x 
vi, 1 5 i 5 p ,  such that: 

( (1) Sltl = sat2 = . . . = s,t, . .  . .  

(2) C:=1 si = 1 { (3) The p rectangles of size hi x V i  

1 - 
( where hivi = si) tile the unit square 

Condition (1) ensures that the area of the rectangle 
R, allocated to processor Pi is inversely proportional 
to its cycle-time. Condition ( 2 )  is for normalization: 
the sum of the areas of the p rectangles is that of 
the unit square, a necessary condition for condition 
(3) to hold. Note that, as expected, conditions (1) 
and (2) allow to compute the S i :  we obtain si = 

$) We see that si is computed from the 
harmonic mean of the t i ,  and it is not an integer 
(0 < s i  < 1 as soon as p 2 2 ) .  

t i  

There are always solutions to the normalized 
problem. For instance we fulfill condition (3) by 
choosing to tile the unit square into p horizontal 
slices of height vi = si (and width hi = l),  or into p 
vertical slices of width hi = si (and height vi = 1). 
This degree of freedom comes from the fact that 
load balancing imposes constraints on the area of 
the rectangles Ri, but not on their shapes. Shapes 
come into the story when discussing communication 
issues, as explained below. 

3.2 Communication Overhead 

At each step of the MMM algorithm, communi- 
cations take place between processors: the total vol- 
!me of data exchanged is proportional to the sum 
C = x:=l(hi + vi) of the half perimeters of the 
p rectangles Ri. In fact, this is not exactly true: 
because the pivot row and columns are not sent to 
the processors that own them, we should subtract 2 
from C, 1 for the horizontal communications F d  1 
for the vertical ones. Since minimizing C or C - 2 
is equivalent, so we keep the value of C as stated. 

Minimizing C seems to be a very natural goal, 
because it represents the total volume of communi- 
cations. However, other objective functions could 
be selected, because the target computing plat- 
form may influence the way communications are 
implemented. For instance it is natural to assume 
that communications will be mostly sequential on 
a HNOW where processors are linked by a sim- 
ple Ethernet network; also, there will be little or 
none computation/communication overlap on such 
a platform. In that context, minimizing the total 
communication volume is the main objective. 

Conversely, some communications can occur in 
parallel, or some efficient broadcast mechanisms 
can be used, if the computing resources are linked 
through a dedicated high-speed network, and if par- 
allel communication links are provided. In that con- 
text, we may want to use a columnwise allocation as 
depicted in Figure 3: vertical communications are 
performed in parallel in all columns, and broadcasts 
or at least scatters can be performed horizontally. 

Figure 3. Tiling the unit square into 
columns of rectangles. 

Finally, in a metacomputing context, inter- 
cluster communications are typically one order of 
magnitude slower than intra-cluster communica- 
tions, so we may want to adopt a two-level scheme: 
we assign rectangles to clusters as above, while 
inside each cluster some master-slave mechanism 
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could be provided. 
It seems that minimizing the total communica- 

tion volume is the most important optimization 
problem, because of its wide potential applicabil- 
ity. Also, forgetting about MMM algorithms for a 
while, consider the implementation of any applica- 
tion (such as a finite-difference scheme) where het- 
erogeneous processors communicate boundary ele- 
ments at each step (the communication scheme need 
not be nearest-neighbor, it can be anything): mini- 
mizing the total communication volume while load- 
balancing the work amounts to  solving exactly the 
same optimization problem. 

3.3 The MMM Optimization Problem 

We are ready to state the MMM optimization 
problem for heterogeneous platforms. We have p 
computing resources Pi, 1 5 i _< p .  Each Pi is 
assigned a rectangle Ri of prescribed area si ,  where 
E:=, si = 1. The shape of each Ri is the degree of 
freedom: we want to tile the,unit square s? as to 
minimize the total communication volume C. The 
abstract optimization problem is the following: 

Definition 1 MMM-OPT(s): Given p real positive 
numbers SI, . . . , sp s.t.  si = 1, find a partition 
of the unit square into p rec!angles Ri of area si 
and of size hi x vi, so that C = E:=l(hi + vi) is 
minimized. 

Given the solution (or an approximation of the 
solution) of MMM-OPT(s), we round up the values 
to  the nearest integers so as to derive a concrete so- 
lution for matrices of given size n. As stated above, 
the integer solution will be asymptotically optimal. 
There is an obvious lower bound for MMM-OPT(s): 

Lemma 1 For all solutions of MMM-OPT(s), C 2 
2 E:=, 6. 

Proof The half-perimeter of each rectangle Ri 
will be always larger that 2 6 ,  the value when it 
is a square. Of course, tiling the unit square into 
p squares of area si is not always possible, so this 
lower bound is not always tight. 

3.4 NP-Completeness 

The decision problem associated to the optimiza- 
tion problem MMM-OPT is the following: 

Definition 2 MMM-DEC(s,K): Given p real posi- 
tive numbers 51,. . . , sp s . t .  Eh, si = 1 and a pos- 
itive real bound K ,  is there a partition of the unit 
square into p rectangles Ri of area si and of size 
hi x vi, SO that CL1 (hi + vi) _< K ? 

Our main result states the intrinsic difficulty of 
the MMM optimization problem: 

Theorem 1 MMM-DEC(s,K) is NP-complete. 

4 Related Results 

Load balancing strategies for heterogeneous plat- 
forms have been widely studied. Distributing the 
computations (together with the associated data) 
can be performed either dynamically or statically, 
or a mixture of both. Some simple schedulers are 
available, but they use naive mapping strategies 
such as master-slave techniques or paradigms based 
upon the idea “use the past predict the future”, i.e. 
use the currently observed speed of computation of 
each machine to decide for the next distribution of 
work [8, 31. There is a challenge in determining a 
trade-off between the data distribution parameters 
and the process spawning and possible migration 
policies. Redundant computations might also be 
necessary to use a heterogeneous cluster at its best 
capabilities. 

To the best of our knowledge, there has been little 
work devoted to the implementation of dense linear 
algebra kernels on heterogeneous platforms. Exten- 
sions of parallel libraries such as ScaLAPACK are 
not yet available, even for simple HNOWs. Pre- 
liminary results on implementing MMM and linear 
system solvers on a HNOWs are reported in [5, 71. 
Load-balancing issues for heterogeneous 2D-grids 
are studied by Kalinov and Lastovetky [12]: in fact, 
they arrange the processors into columns. The load 
is first balanced inside each column independently; 
next the load is balanced between columns, weight- 
ing each column by the inverse of the harmonic 
mean of the cycle-times of the processors within the 
column. This leads to the so-called “heterogeneous 
block cyclic distribution”, which ensures a perfect 
load balancing. It corresponds to a simple solution 
to conditions (1) and (2) of Section 3.1, but com- 
munications are not taken into account, and the 
number of horizontal neighbors of each processor 
is not bounded. Boudet et a1 [6] adopt a different 
strategy: they enforce the design of a true 2D-grid, 
where each processor communicates only with its 
four neighbors. The question is how to arrange the 
processors so that the load is best balanced? In that 
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case, a perfect load-balancing is possible only if the 
processor cycle-times can be arranged into a rank- 
1 matrix. Heuristics are presented in [6] t o  obtain 
efficient solutions to  that problem. 

-.-. 
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1 

Figure 4. Column-based partitioning of the 
unit square: C = 3, kl = 5, kz = 3 and 
k3 = 4. 

5.1 Optimal Column-based Tiling 

As outlined in Section 3.3, the MMM-OPT(s) 
problem is the following: given p real positive vari- 
ables sl,. . . , sp such that E:='=, si = 1, tile the unit 
square into p non-overlapping rectangles RI,. . . , R, 
of respective areas SI,. . . , s, so as to  minimize the 
sum of the (half) perimeters of these rectangles. 
Because the associated decision problem MMM- 
DEC(s,K) is NP-complete (Section 3.4), we consider 
the more constrained problem MMM-COL(s) where 
we impose that the tiling is made up of processor 
columns, as illustrated in Figure 4. In other words, 
MMM-COL(s) is the restriction of MMM-OPT(s) 
to  column-based partitions. In this section, we give 
a polynomial solution to  the MMM-COL(s), which 
will be used as a heuristic to  solve MMM-OPT(s). 

Framework We describe the MMM-COL(s) 
problem more formally: we aim at tiling the unit 

square into C columns (where C is yet to  be deter- 
mined) of width c1 , .  . . , cc.  Each column Ci is par- 
titioned itself into ki rows (to be determined too) of 
respective area su(i,l), . . . , sU( i ,k i ) .  Of course, the fi- 
nal partitioning has Ici = p rectangles, and all 
the areas S I , .  . . , sp are represented once and only 
once. The goal is to build such a partitioning, sub- 
ject to  the minimization of the sum of the rectangle 
perimeters. 

Algorithm We describe the tiling algorithm; the 
optimality proof will be presented later. The main 
points are the following: 

1. Re-index the variables SI,. . . , s, such that 
SI 5 sp 5 . . . 5 sp. 

2. Iteratively build the function fc, by increment- 
ing the value of C from 1 to  the desired value. 
For q E {1, ... , p } ,  f c ( q )  represents the total 
perimeter of an optimal column-based parti- 
tioning of a rectangle of height 1 and width 
(E:.-'=, si) into q rectangles of respective area 
SI,. . . , s q ,  using C columns. 

To help understand the derivation, we ap- 
ply the algorithm on the following toy ex- 
ample: we have p = 8 areas of values 
(0.02,0.04,0.06,0.08,0.2,0.2,0.2,0.2). The results 
of the algorithm are given in Table 1. Each col- 
umn Ci contributes to the sum of the half perime- 
ters as follows: 1 for the vertical line, and ki x cj 
for the kj horizontal lines of length ci.  In the ex- 
ample, the optimal partitioning is obtained for 3 
columns ( f 3 ( 8 )  = 5.4). The last column of width 
c3 = s7 + ss = 0.4 is composed of 2 elements. The 
second column of width cp = s5 + s6 = 0.4 is also 
composed of 2 elements. Then the first column of 
width c1 = s1 + sp + s3 + s4 = 0.2 is made of the 
smallest 4 elements. Figure 5 represents this parti- 
tioning. 

Algorithm The algorithm is outlined as follows: 
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Table 1. Table containing the values of the 
couples fc(q) and T.  Bold entries corre- 
spond to the optimal solution. 

0.2 
t_ 

perimeter 
0.2 x 4 + 1 

fi(4) = 1.8 

0.4 
P 

0.4 
c___ 

perimeter perimeter 
0.4 x 2 + 1 0.4 x 2 + 1 

fz(6) = 3.6 f3(8) = 5.4 

partitioning of the whole square 

Figure 5. Optimal column-based partition- 
ing for the example. Thicker lines corre- 
spond to the sum of the half perimeters. 

s=o 
for q=l  to p 
s=s-t-s, 
fperimeter (q) = 1 + s x q 
fi'%) = 0 

endfor 
for C=2 to p 

for Q=C to i> 

fCPerimeter min (Tly + fperimeter 

1SrS,-C+1 c-1 k-9) 
fC"""(Q) = q - Topt 

endfor 

The worst-case complexity of the algorithm 
O(p210g(p}): indeed, fc+l(q) can be built from fc 
in O(1ogp) steps, since the minimum in the algo- 
rithm can be searched by dichotomy: since for each 
c, fc-1 is an non-decreasing function, gC,,(T) = 
1 + ~ x r + f C p r ; ~ ~ ~ ~ ~ ( q - r )  is aconvexfunction o f r .  
Hence, the minimum minl<rSq-C+l (gc,,(r)) can be 
found by dichotomy in O(Lg(q - C + 1)) = O(l0gp) 
steps. Note that in practice the complexity will 
be lower than the worst-case analysis shows, be- 
cause fc(p) is a function that is first decreasing 
and then increasing as C varies. All the func- 
tions fc will not be built, the expected cost will 

The final partitioning corresponding to the func- 
tion fc,,,(p) = minlSCip fc(p) is found using the 
following algorithm: 

endfor 

be &opt log(P) pJiSlog(p). 

for C = Copt downto 2 
kc = Q - fC%) 

endfor 

which corresponds to tracking (backwards) the 
bold entries in Table 1. The unit square is parti- 
tioned into Copt columns. The i th column contains 
the rectangles Sd+l,. . . , Sd+ki with d = k1 + kz + 
. . . + ki-1. 
Correctness See [2]. 

5.2 Experimental Comparison with the Lower 
Bound 

Aslshown in Section 3.3, a lower bound for the 
sum C of the half-perimeters is twice the sum of 
the square roots of the areas L B  = 2 6. Of 
course this bound cannot always be met: consider 
an instance of MMM-OPT(s) with only two pro- 
cessors, s1 = 1 - E and sa = E ,  where E > 0 is 
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an arbitrarily small number. Partitioning into two 
rFctangles requires to draw a line of length 1, hence 
C = 3. However, LB = 2(- f 4) > 2 can be 
arbitrarily close to 2. 

Figure 6. For each number of processors 
(varying from 1 to 40), 2,000,000 values for 
the si have been randomly generated. For 
each case, we compute the ratio of the sum 
6 of the half perimeters of our partitioning 
over the absolute lower bound LB. The 
average and minimum values of this ratio 
are reported in the two curves. 

Experimental resulls using 2Woooo random tests per point 

: ‘ r  
I. I ’ ’ d  

5 10 15 20 25 30 35 
Number 01 processors 

In this section, we experimentally compFre, using 
a large number of random tests, the value C given by 
our partitioning against the absolute lower bound 
LB. Figure 6 represents two curves for a number 
of processors varying from 1 to 40. The first curve 
corresponds to  the mean value of the ratio -& while 
the second curve gives the minimum values of this 
ratio. We see that in average, the optimal column- 
based tiling given by our algorithm gives a solution 
that is “almost” optimal, so that we can be satisfied 
with the results for all practical purposes. 

5.3 Theoretical Comparison with the Lower 
Bound 

The column-based heuristic appears to be quite 
satisfactory in practice. Still, the following theoret- 
ical questions can be raised: 

1. Is this “absolute lower bound” realistic? How 
far from the actual optimal solution is the op- 
timal column-based algorithm? 

2. How can we improve the column-based algo- 
rithm? 

In this section, we prove that the column-based par- 
titioning is not far from being optimal, especially 
when the ratio r between max si and min si is small. 
In other words, we are able to give the following 
guarantee to the column-based heuristic: 

Proposition 1 Let r = E, and let C denote 
the sum of the half perimeters of the rectangles ob- 
tained with the optimal column-based partitioning. 
Then, 

, 

Proof See [2]. 
If T = 1, i.e. all the processors have the same 

speed, the column-based partitioning is asymptot- 
ically optimal. On the other hand, if r is large, 
i.e. one processor is much faster than another, the 
bound is very pessimistic. 

6 MPI Experiments 

To provide a preliminary experimental validation 
of our approach, we have implemented the hetero- 
geneous MMM algorithm using the MPI library. In 
this section, we report a few experiments performed 
on a HNOW, and on a (very small!) collection of 
two clusters. 

6.1 Using a Single HNOW to Compare Differ- 
ent Partitions 

In this section we use a cluster of 7 hetero- 
geneous machines of relative cycle-times equal to 
(1 ,1,  f ,  f ,  i, 5,  &). These 7 machines are SUN 
workstations of our laboratory, linked by a sim- 
ple Ethernet network. We compare the partition 
given by the optimal column-based heuristic (see 
Figure 7) with 4 different partitions of the same 
matrices which are shown in Figure 8. 

The measures were realized for matrices of size 
n = 640, using a blocksize r = 32, and for matrices 
of size n = 1280, using two blocksize values T = 32 
and r = 64. Table 2 gives the average time to com- 
pute the MMM product for the five partitions. In 
the case of a matrix of size n = 1280, we see that the 
time is slightly smaller if we increase the blocksize, 
because there are fewer communications. We check 
that the execution time does grow with the cost of 
the partition, which shows that our modeling of the 
communication costs is very reasonable, and is in 

296 



40 

40 ; I 

18 10 

. 

18 10 

3 

10 

3 

10 

Partition n=640 
r= 32 

Figure 7. Partition given by the column- 
based heuristic (Cost C = 5.1) 

n=1280 n=1280 
r=32 r=64 

- . .  - .~ 

C=5.4 I T=48 
C=5.6 1 T=34 

Cz5.1  I T=33 I T=269 I T=258 
C=5.3 I T=34 I T=287 I T=265 ~ ~- ~ ~ _ _  

T=289 T=264 
T=290 T=267 

I I I 1 C=6.4 I T=72 I T=367 I T=302 1 

Table 2. Average times for a matrix-matrix 
multiplication. 

good adequation with these experiments. Note that 
(for fairness) we have not compared the results with 
the homogeneous block-cyclic distribution: because 
the processor speeds are very different, the perfor- 
mances would have been disastrous. 

cost  e = 5.3 cos t  c = 5.4 

Cost C = 5.6 Cost 6 = 6.4 

Figure 8. Four different column-based par- 
titions 

in the first cluster and 3 in the second one, and the 
other one with only 4 processors in the first cluster 
and 2 processors in the second one. In both cases, 
the gain of the load-balancing heuristic over the ho- 
mogeneous block-cyclic distribution (a meaningful 
comparison here because the processor speeds are 
rather similar) is very important. 

6.3 Future work 
6.2 Experimenting with Two Clusters 

In this section, the target platform is made up of 
two clusters. The first cluster is a pile of Pentium 
Pros and the second cluster is a pile of Power PCs. 
The interconnection network within both clusters is 
a Myrinet network. There is also a Myrinet link be- 
tween the two clusters. Hence, all communications 
are very fast. In the experiments, either we allo- 
cate to each cluster a fraction of the matrix which 
is proportional to its computing power, according 
to  Section 3.1, or we give the same fraction to  each 
processor, as in the homogeneous case. When we 
use the load-balancing strategy, we use each cluster 
as a farm of processors, and equally distribute the 
workload inside the farm. 

We use two configurations, one with 5 processors 

The preliminary MPI experiments reported in 
Sections 6.1 and 6.2 are promising. At the very 
least they fully demonstrate the importance of us- 
ing a good load-balancing strategy. 

Clearly, further and larger experiments must be 
performed. More experimental results will be pro- 
vided in the final version of the paper. In particular, 
we aim at testing a larger collection of clusters with 
slower inter-cluster links. The Globus system [9J 
provides a perfect framework for such experiments, 
because hardware resources are used in a dedicated 
mode through a remote batch system, so that static 
load-balancing strategies such as the one presented 
in this paper have all their significance. 
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Figure 9. MPI experiments with two clus- 
ters. 

7 Conclusion 

In this paper, we have dealt with the implemen- 
tation of MMM algorithms on heterogeneous plat- 
forms. The bad news is that  minimizing the total 
communication volume is NP-complete. The  good 
news is that  efficient polynomial heuristics can be 
provided, as we have shown both theoretically (by 
guaranteeing their performance) and through simu- 
lations and MPI experiments. 

The MMM algorithm is the prototype of tightly- 
coupled kernels that  need to be implemented effi- 
ciently on distributed and heterogeneous platforms: 
we view it as a perfect testbed before experimenting 
more challenging computational problems on the 
grid. 

It is not clear which is the good level to program 
metacomputing platforms. Data-parallelism seems 
unrealistic, due to the strong heterogeneity. Ex- 
plicit message passing is too low-level. Despite their 
many advantages, object-oriented approaches still 
request the user to have a deep knowledge and un- 
derstanding of both its application behavior and the 
underlying hardware and network. Remote comput- 
ing systems such as NetSolve face severe limitations 
to efficiently load-balance the work to processors. 
For the inexperienced user, relying on specialized 
but highly-tuned libraries of all kinds (communi- 
cation, scheduling, application-dependent data de- 
compositions) may prove a good trade-off until the  
programming environments evolve into “high-level- 
yet-general-purpose-and-efficient” solutions! 
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