
Mat r ix-Mat r ix Multiplication on Heterogeneous Plat forms

Olivier Beaumont, Vincent Boudet , Fabrice Rastello and Yves Robert
LIP, UMR CNRS-ENS Lyon-INRIA 5668

Ecole Normale Supbrieure de Lyon
F - 69364 Lyon Cedex 07

Firstname.LastnameQens-1yon.fr

Abstract

In this paper, we address the issue of imple-
menting matrix-matrix multiplication on heteroge-
neous platforms. We target two different classes of
heterogeneous computing resources: heterogeneous
networks of workstations, and collections of het-
erogeneous clusters. Intuitively, the problem is
to load balance the work with different-speed re-
sources while minimizing the communication vol-
ume. We formally state this problem and prove
its NP-completeness. Next we introduce a (poly-
nomial) column-based heuristic, which turns out to
be very satisfactory: we derive a theoretical perfor-
mance guarantee for the heuristic, and we assess its
practical usefulness through MPI experiments.

1 Introduction

In this paper, we deal with the implementation
of a very simple but important linear algebra ker-
nel, namely matrix-matrix multiplication (MMM
for short), on heterogeneous platforms. Several par-
allel MMM algorithms are available for parallel ma-
chines or homogeneous networks of workstations or
PCs (see (1, 11, 131 among others). The popu-
lar ScaLAPACK library [4] includes a highly-tuned,
very efficient routine targeted to two-dimensional
processor grids. This routine uses a block-cyclic dis-
tribution of the matrices in both grid dimensions.
We briefly recall parallel MMM algorithms for ho-
mogeneous machines in Section 2.1.

Why extending parallel MMM algorithms to het-
erogeneous platforms? The answer is clear: fu-
ture computing platforms are best described by the
key-words distributed and heterogeneous. We target
two different classes of heterogeneous computing re-
sources:

Heterogeneous networks of workstations
are ubiquitous in university departments and
companies. They represent the typical poor
man’s parallel computer: running a large PVM
or MPI experiment (possibly all night long) is
a cheap alternative to buying supercomputer
hours. When implementing MMM algorithms
on HNOWs, the idea is to make use of all
available resources, namely slower machines as
well as more recent ones. This is a challenging
but very useful task, given the importance of
MMM in scientific computing. Also, it is a first
step towards understanding how to implement
more complicated linear algebra kernels on
HNOWs.

Collections of clusters are made up of nodes, or
clusters, each of them being itself a HNOW of
a parallel machine. These nodes may well be
geographically scattered all around the world.
Inter-nodes communications are typically an
order of magnitude slower than intra-nodes
communications. The need to design a MMM
algorithm which would execute on a collection
of clusters is less obvious. Are there actual
applications which involve such huge matrices
that their product cannot be computed with a
single parallel machine or workstation network?
Larger and larger experiments are conducted
throughout the world within the NPAC12 ini-
tiative, using tools such as Globus [9]. Huge
linear algebra kernels often are at the core
of these experiments, so investigating “meta-
computing” MMM algorithms is quite natural.
Anyway, we view MMM algorithms as a perfect
case study for the implementation of tightly-
coupled high-performance applications on the

‘HNOWs for short.
2National Partnership for Advanced Computational In-

frastructure, see http://uuu.npaci.edu.

289
0-7695-0768-9/00 $10.00 0 2000 IEEE

http://Firstname.LastnameQens-1yon.fr
http://uuu.npaci.edu

metacomputing grid [lo]: indeed, such appli-
cations are much more difficult to tackle than
loosely-coupled cooperative applications. Be-
cause MMM is a simple kernel which encom-
passes a lot of data movements, we view it as
a perfect testbed to be studied before experi-
menting more challenging computational prob-
lems on the grid.

The major limitation to programming heteroge-
neous platforms arises from the additional difficulty
of balancing the load when using processors running
at different speeds. Data and computations are not
evenly distributed to processors. Minimizing com-
munication overhead becomes a challenging task: in
fact, the MMM problem with different-speed pro-
cessors turns out to be surprisingly difficult. The
main result of this paper is the NP-completeness of
the MMM problem on heterogeneous platforms.

The full length version of the paper is available
in [2]: it includes all proofs and a literature survey.

2 MMM Algorithms

In this section we briefly describe how to imple-
ment a parallel (or distributed) MMM algorithm on
a heterogeneous platform. We adopt an abstract
view by assuming that we have a collection of p
heterogeneous computing resources P I , P2,. . . , Pp.
If each computing resource Pi reduces to a single
processor, we are dealing with a heterogeneous net-
work of workstations or PCs (HNOW). When each
computing resource Pi is itself a heterogeneous clus-
ter or a parallel machine, we are targeting a meta-
computing environment, made up from a collection
of clusters. The high-level algorithmic description
is the same for all target machines. However, our
model will have to cope with different hypotheses
on communication issues. We come back to the
impact of communication modeling in Section 3.2.
Before dealing with heterogeneous resources, we
briefly summarize existing algorithms for homoge-
neous machines.

2.1 Homogeneous Grids

We start by briefly recalling the MMM algorithm
implemented in the ScaLAPACK library [4] on 2D
homogeneous grids. For the sake of simplicity we
restrict to the multiplication C = AB of two square
n x n matrices A and B. In that case, ScaLAPACK
uses the outer product algorithm described in [l, 11,
131. Consider a 2D processor grid of size p = pl x p 2 ,
and assume for a while that n = pl = p2. In that

case, the three matrices share the same layout over
the 2D grid: processor Pi,j stores aid, bi,j and C i , j .

Then at each step I C ,

0 each processor Pi,k (for d l i E (1, ..,PI}) hori-
zontally broadcasts a i , k to processors Pi,*.

0 each processor Pk,j (for all j E (1, . . , p z }) ver-
tically broadcasts b k , j to processors P,,j.

so that each processor P,,j can independently up-
date C i j = C (i , j) + ai,k X b k , j .

This current version of the ScaLAPACK li-
brary uses a blocked version of this algorithm to
squeeze the most out state-of-the-art processors
with pipelined arithmetic units and multilevel mem-
ory hierarchy [4]. Each matrix coefficient in the de-
scription above is replaced by a T x T square block,
where optimal values of T depend on the memory hi-
erarchy and on the communication-to-computation
ratio of the target computer. Finally, a level of vir-
tualization is added: usually, the number of blocks

x [?I is much greater than the number of pro-
cessors pl x p ~ . Thus blocks are scattered in a cyclic
fashion along both grid dimensions, so that each
processor is responsible for updating several blocks
at each step of the algorithm.

To prepare for the description of the heteroge-
neous version, we introduce another “logical” de-
scription of the algorithm:

0 We take a macroscopic view and concentrate
on allocating (and operating on) matrix blocks
to processors: each element in A , B and C is a
square T x T block, and the unit of computation
is the updating of one block, i.e. a matrix-
matrix multiplication of size T .

0 At each step, a column of blocks (the pivot
column) is communicated (broadcast) horizon-
tally, and a row of blocks (the pivot row) is
communicated (broadcast} vertically.

0 The C matrix is partitioned into pl x p2 rect-
angles. There is a one-to-one mapping between
these rectangles and the processors. Each pro-
cessor is responsible for updating its rectangle:
more precisely, it updates each block in its rect-
angle with one block from the pivot row and
one block form the column row, as illustrated
in Figure 1. For square p x p homogeneous 2D-
grids, and when the number of blocks in each
dimension n is a multiple of p (the actual ma-
trix size is thus n . ~ x n . ~) , it turns out that all
rectangles are identical squares of 9 x 9 blocks.

290

Figure 1. The MMM algorithm on a 4 x 4
homogeneous 2D-grid.

On Figure 1, we see that the total amount of
communications performed by the MMM algorithm
is proportional to the sum of the perimeters of the
rectangles allocated to the processors. More pre-
cisely, at each step each processor responsible for a
rectangle of h x w blocks must receive (vertically)
h blocks of matrix B and (horizontally) w blocks of
matrix A. This explains why rectangles are identi-
cal squares for square p x p homogeneous 2D-grids,
when p divides n: in that case, all rectangles of
fixed area E x E are squares. Because the (half)-
perimeter of a rectangle of fixed area is minimized
when it is a square, this choice does minimize the
communication volume.

There are other homogeneous MMM algorithms:
for instance Cannon’s algorithm [13] (whose main
drawback is to require an initial permutation of ma-
trices A and B) replaces all the horizontal and ver-
tical broadcasts by nearest-neighbor shifts. The to-
tal communication volume at each step is the same,
but the communications are different. Still, all pro-
cessors independently update their rectangle of C
blocks at each step.

P P

2.2 Heterogeneous Platforms

How to modify the previous MMM algorithms
for a heterogeneous platform? The idea is to keep
the same framework: at each step, one pivot col-
umn and one pivot row are communicated to all
processors, and independent updates take place.
However, with different-speed processors, we cannot
distribute same size rectangles from the C matrix
to the processors. Intuitively, we want to balance
the computing load so that each processor receives
an amount of work in accordance to its comput-
ing power. Because all C blocks require the same

amount of arithmetic operations, each processor ex-
ecutes an amount of work which is proportional to
the number of blocks that are allocated to it, hence
proportional to the area of its rectangle. To paral-
lelize the matrix-matrix product C = AB, we have
t o tile the C matrix into p non-overlapping rectan-
gles, each rectangle being assigned to one processor.
Figure 2 shows an example with 13 different-speed
computing resources.

Figure 2. The MMM algorithm on a hetero-
geneous platform.

The question is: how to compute the area and
shape of these p rectangles so as t o minimize the
total execution time? As usual with parallel algo-
rithms, there are two non-independent and maybe
conflicting goals: (i) load-balancing computations;
(ii) minimizing communication overhead. Goal (i)
is related to the area of the rectangles that are al-
located to the processors, while goal (ii) is related
to their shapes. We discuss areas and shapes in the
next section, in order to formally state (and try to
solve) this difficult optimization problem.

3 The Heterogeneous MMM Opti-
mization Problem

Consider a matrix-matrix product C = A x B,
where A, B and C are square matrices of n x n
square blocks of size r. Assume that we have
p computing resources PI, P2,. . . , Pp of (relative)
cycle-times tl , t 2 , . . . , t p : if all processors have same
speed, then ti = 1 for 1 5 i 5 p . If, say, P2 is twice
faster than PI, then tl = 2 t2 . We start with load-
balancing issues before dealing with communication
overhead.

3.1 Load Balancing

To perfectly load-balance the computation, each
processor should receive an amount of work in ac-

291

cordance to its computing power. If, say, P2 is
twice faster than PI (tl = 2t2), then P2 should be
assigned twice as many elements as PI. In other
words, the area of its rectangle should be the dou-
ble of that of P I . Let si be the area of the rect-
angle Ri allocated to processor Pi. Obviously, the
first equation is E:='=, si = n2, in order to obtain
a true partition of the C matrix. Next, since Pi
processes its rectangle within si x ti time-steps, we
have sltl = s2t2 = . . . = spt,. The last constraint is
t o write si as si = hi x vi, where hi and U, are the
number of rows and columns of Ri. These equations
do not always have integer solutions, which means
that a perfect load balancing of the computations is
not always possible.

However, we are not really interested in an exact
solution. A more concrete and interesting question
is the following: given the p computing resources,
how to compute the respective area of the rectangles
Ri so that the workload is asymptotically optimally
balanced: the larger the matrix size (expressed in
blocks), the more accurate the tiling into rectangles.
This question translates into the following system:
given t l , . . . , t,, search for real unknowns si = hi x
vi, 1 5 i 5 p , such that:

((1) Sltl = sat2 = . . . = s,t,

(2) C:=1 si = 1 { (3) The p rectangles of size hi x V i

1 -
(where hivi = si) tile the unit square

Condition (1) ensures that the area of the rectangle
R, allocated to processor Pi is inversely proportional
to its cycle-time. Condition (2) is for normalization:
the sum of the areas of the p rectangles is that of
the unit square, a necessary condition for condition
(3) to hold. Note that, as expected, conditions (1)
and (2) allow to compute the S i : we obtain si =

$) We see that si is computed from the
harmonic mean of the t i , and it is not an integer
(0 < s i < 1 as soon as p 2 2) .

t i

There are always solutions to the normalized
problem. For instance we fulfill condition (3) by
choosing to tile the unit square into p horizontal
slices of height vi = si (and width hi = l), or into p
vertical slices of width hi = si (and height vi = 1).
This degree of freedom comes from the fact that
load balancing imposes constraints on the area of
the rectangles Ri, but not on their shapes. Shapes
come into the story when discussing communication
issues, as explained below.

3.2 Communication Overhead

At each step of the MMM algorithm, communi-
cations take place between processors: the total vol-
!me of data exchanged is proportional to the sum
C = x:=l(hi + vi) of the half perimeters of the
p rectangles Ri. In fact, this is not exactly true:
because the pivot row and columns are not sent to
the processors that own them, we should subtract 2
from C, 1 for the horizontal communications F d 1
for the vertical ones. Since minimizing C or C - 2
is equivalent, so we keep the value of C as stated.

Minimizing C seems to be a very natural goal,
because it represents the total volume of communi-
cations. However, other objective functions could
be selected, because the target computing plat-
form may influence the way communications are
implemented. For instance it is natural to assume
that communications will be mostly sequential on
a HNOW where processors are linked by a sim-
ple Ethernet network; also, there will be little or
none computation/communication overlap on such
a platform. In that context, minimizing the total
communication volume is the main objective.

Conversely, some communications can occur in
parallel, or some efficient broadcast mechanisms
can be used, if the computing resources are linked
through a dedicated high-speed network, and if par-
allel communication links are provided. In that con-
text, we may want to use a columnwise allocation as
depicted in Figure 3: vertical communications are
performed in parallel in all columns, and broadcasts
or at least scatters can be performed horizontally.

Figure 3. Tiling the unit square into
columns of rectangles.

Finally, in a metacomputing context, inter-
cluster communications are typically one order of
magnitude slower than intra-cluster communica-
tions, so we may want to adopt a two-level scheme:
we assign rectangles to clusters as above, while
inside each cluster some master-slave mechanism

292

could be provided.
It seems that minimizing the total communica-

tion volume is the most important optimization
problem, because of its wide potential applicabil-
ity. Also, forgetting about MMM algorithms for a
while, consider the implementation of any applica-
tion (such as a finite-difference scheme) where het-
erogeneous processors communicate boundary ele-
ments at each step (the communication scheme need
not be nearest-neighbor, it can be anything): mini-
mizing the total communication volume while load-
balancing the work amounts to solving exactly the
same optimization problem.

3.3 The MMM Optimization Problem

We are ready to state the MMM optimization
problem for heterogeneous platforms. We have p
computing resources Pi, 1 5 i _< p . Each Pi is
assigned a rectangle Ri of prescribed area si , where
E:=, si = 1. The shape of each Ri is the degree of
freedom: we want to tile the,unit square s? as to
minimize the total communication volume C. The
abstract optimization problem is the following:

Definition 1 MMM-OPT(s): Given p real positive
numbers SI, . . . , sp s.t. si = 1, find a partition
of the unit square into p rec!angles Ri of area si
and of size hi x vi, so that C = E:=l(hi + vi) is
minimized.

Given the solution (or an approximation of the
solution) of MMM-OPT(s), we round up the values
to the nearest integers so as to derive a concrete so-
lution for matrices of given size n. As stated above,
the integer solution will be asymptotically optimal.
There is an obvious lower bound for MMM-OPT(s):

Lemma 1 For all solutions of MMM-OPT(s), C 2
2 E:=, 6.

Proof The half-perimeter of each rectangle Ri
will be always larger that 2 6 , the value when it
is a square. Of course, tiling the unit square into
p squares of area si is not always possible, so this
lower bound is not always tight.

3.4 NP-Completeness

The decision problem associated to the optimiza-
tion problem MMM-OPT is the following:

Definition 2 MMM-DEC(s,K): Given p real posi-
tive numbers 51,. . . , sp s . t . Eh, si = 1 and a pos-
itive real bound K , is there a partition of the unit
square into p rectangles Ri of area si and of size
hi x vi, SO that CL1 (hi + vi) _< K ?

Our main result states the intrinsic difficulty of
the MMM optimization problem:

Theorem 1 MMM-DEC(s,K) is NP-complete.

4 Related Results

Load balancing strategies for heterogeneous plat-
forms have been widely studied. Distributing the
computations (together with the associated data)
can be performed either dynamically or statically,
or a mixture of both. Some simple schedulers are
available, but they use naive mapping strategies
such as master-slave techniques or paradigms based
upon the idea “use the past predict the future”, i.e.
use the currently observed speed of computation of
each machine to decide for the next distribution of
work [8, 31. There is a challenge in determining a
trade-off between the data distribution parameters
and the process spawning and possible migration
policies. Redundant computations might also be
necessary to use a heterogeneous cluster at its best
capabilities.

To the best of our knowledge, there has been little
work devoted to the implementation of dense linear
algebra kernels on heterogeneous platforms. Exten-
sions of parallel libraries such as ScaLAPACK are
not yet available, even for simple HNOWs. Pre-
liminary results on implementing MMM and linear
system solvers on a HNOWs are reported in [5, 71.
Load-balancing issues for heterogeneous 2D-grids
are studied by Kalinov and Lastovetky [12]: in fact,
they arrange the processors into columns. The load
is first balanced inside each column independently;
next the load is balanced between columns, weight-
ing each column by the inverse of the harmonic
mean of the cycle-times of the processors within the
column. This leads to the so-called “heterogeneous
block cyclic distribution”, which ensures a perfect
load balancing. It corresponds to a simple solution
to conditions (1) and (2) of Section 3.1, but com-
munications are not taken into account, and the
number of horizontal neighbors of each processor
is not bounded. Boudet et a1 [6] adopt a different
strategy: they enforce the design of a true 2D-grid,
where each processor communicates only with its
four neighbors. The question is how to arrange the
processors so that the load is best balanced? In that

293

case, a perfect load-balancing is possible only if the
processor cycle-times can be arranged into a rank-
1 matrix. Heuristics are presented in [6] t o obtain
efficient solutions to that problem.

-.-.

$4 s1
S l l

85

s8
s10

s3

SQ
36

5-12

s2 s7 _ _ _ _

5 Heuristics

1

Y Y
1

Figure 4. Column-based partitioning of the
unit square: C = 3, kl = 5, kz = 3 and
k3 = 4.

5.1 Optimal Column-based Tiling

As outlined in Section 3.3, the MMM-OPT(s)
problem is the following: given p real positive vari-
ables sl,. . . , sp such that E:='=, si = 1, tile the unit
square into p non-overlapping rectangles RI,. . . , R,
of respective areas SI,. . . , s, so as to minimize the
sum of the (half) perimeters of these rectangles.
Because the associated decision problem MMM-
DEC(s,K) is NP-complete (Section 3.4), we consider
the more constrained problem MMM-COL(s) where
we impose that the tiling is made up of processor
columns, as illustrated in Figure 4. In other words,
MMM-COL(s) is the restriction of MMM-OPT(s)
to column-based partitions. In this section, we give
a polynomial solution to the MMM-COL(s), which
will be used as a heuristic to solve MMM-OPT(s).

Framework We describe the MMM-COL(s)
problem more formally: we aim at tiling the unit

square into C columns (where C is yet to be deter-
mined) of width c1 , . . . , cc. Each column Ci is par-
titioned itself into ki rows (to be determined too) of
respective area su(i,l), . . . , sU(i ,k i) . Of course, the fi-
nal partitioning has Ici = p rectangles, and all
the areas S I , . . . , sp are represented once and only
once. The goal is to build such a partitioning, sub-
ject to the minimization of the sum of the rectangle
perimeters.

Algorithm We describe the tiling algorithm; the
optimality proof will be presented later. The main
points are the following:

1. Re-index the variables SI,. . . , s, such that
SI 5 sp 5 . . . 5 sp.

2. Iteratively build the function fc, by increment-
ing the value of C from 1 to the desired value.
For q E {1, ... , p } , f c (q) represents the total
perimeter of an optimal column-based parti-
tioning of a rectangle of height 1 and width
(E:.-'=, si) into q rectangles of respective area
SI,. . . , s q , using C columns.

To help understand the derivation, we ap-
ply the algorithm on the following toy ex-
ample: we have p = 8 areas of values
(0.02,0.04,0.06,0.08,0.2,0.2,0.2,0.2). The results
of the algorithm are given in Table 1. Each col-
umn Ci contributes to the sum of the half perime-
ters as follows: 1 for the vertical line, and ki x cj
for the kj horizontal lines of length ci. In the ex-
ample, the optimal partitioning is obtained for 3
columns (f 3 (8) = 5.4). The last column of width
c3 = s7 + ss = 0.4 is composed of 2 elements. The
second column of width cp = s5 + s6 = 0.4 is also
composed of 2 elements. Then the first column of
width c1 = s1 + sp + s3 + s4 = 0.2 is made of the
smallest 4 elements. Figure 5 represents this parti-
tioning.

Algorithm The algorithm is outlined as follows:

294

Table 1. Table containing the values of the
couples fc(q) and T. Bold entries corre-
spond to the optimal solution.

0.2
t_

perimeter
0.2 x 4 + 1

fi(4) = 1.8

0.4
P

0.4
c___

perimeter perimeter
0.4 x 2 + 1 0.4 x 2 + 1

fz(6) = 3.6 f3(8) = 5.4

partitioning of the whole square

Figure 5. Optimal column-based partition-
ing for the example. Thicker lines corre-
spond to the sum of the half perimeters.

s=o
for q=l to p
s=s-t-s,
fperimeter (q) = 1 + s x q
fi'%) = 0

endfor
for C=2 to p

for Q=C to i>

fCPerimeter min (Tly + fperimeter

1SrS,-C+1 c-1 k-9)
fC"""(Q) = q - Topt

endfor

The worst-case complexity of the algorithm
O(p210g(p}): indeed, fc+l(q) can be built from fc
in O(1ogp) steps, since the minimum in the algo-
rithm can be searched by dichotomy: since for each
c, fc-1 is an non-decreasing function, gC,,(T) =
1 + ~ x r + f C p r ; ~ ~ ~ ~ ~ (q - r) is aconvexfunction o f r .
Hence, the minimum minl<rSq-C+l (gc,,(r)) can be
found by dichotomy in O(Lg(q - C + 1)) = O(l0gp)
steps. Note that in practice the complexity will
be lower than the worst-case analysis shows, be-
cause fc(p) is a function that is first decreasing
and then increasing as C varies. All the func-
tions fc will not be built, the expected cost will

The final partitioning corresponding to the func-
tion fc,,,(p) = minlSCip fc(p) is found using the
following algorithm:

endfor

be &opt log(P) pJiSlog(p).

for C = Copt downto 2
kc = Q - fC%)

endfor

which corresponds to tracking (backwards) the
bold entries in Table 1. The unit square is parti-
tioned into Copt columns. The i th column contains
the rectangles Sd+l,. . . , Sd+ki with d = k1 + kz +
. . . + ki-1.
Correctness See [2].

5.2 Experimental Comparison with the Lower
Bound

Aslshown in Section 3.3, a lower bound for the
sum C of the half-perimeters is twice the sum of
the square roots of the areas L B = 2 6. Of
course this bound cannot always be met: consider
an instance of MMM-OPT(s) with only two pro-
cessors, s1 = 1 - E and sa = E , where E > 0 is

295

an arbitrarily small number. Partitioning into two
rFctangles requires to draw a line of length 1, hence
C = 3. However, LB = 2(- f 4) > 2 can be
arbitrarily close to 2.

Figure 6. For each number of processors
(varying from 1 to 40), 2,000,000 values for
the si have been randomly generated. For
each case, we compute the ratio of the sum
6 of the half perimeters of our partitioning
over the absolute lower bound LB. The
average and minimum values of this ratio
are reported in the two curves.

Experimental resulls using 2Woooo random tests per point

: ‘ r
I. I ’ ’ d

5 10 15 20 25 30 35
Number 01 processors

In this section, we experimentally compFre, using
a large number of random tests, the value C given by
our partitioning against the absolute lower bound
LB. Figure 6 represents two curves for a number
of processors varying from 1 to 40. The first curve
corresponds to the mean value of the ratio -& while
the second curve gives the minimum values of this
ratio. We see that in average, the optimal column-
based tiling given by our algorithm gives a solution
that is “almost” optimal, so that we can be satisfied
with the results for all practical purposes.

5.3 Theoretical Comparison with the Lower
Bound

The column-based heuristic appears to be quite
satisfactory in practice. Still, the following theoret-
ical questions can be raised:

1. Is this “absolute lower bound” realistic? How
far from the actual optimal solution is the op-
timal column-based algorithm?

2. How can we improve the column-based algo-
rithm?

In this section, we prove that the column-based par-
titioning is not far from being optimal, especially
when the ratio r between max si and min si is small.
In other words, we are able to give the following
guarantee to the column-based heuristic:

Proposition 1 Let r = E, and let C denote
the sum of the half perimeters of the rectangles ob-
tained with the optimal column-based partitioning.
Then,

,

Proof See [2].
If T = 1, i.e. all the processors have the same

speed, the column-based partitioning is asymptot-
ically optimal. On the other hand, if r is large,
i.e. one processor is much faster than another, the
bound is very pessimistic.

6 MPI Experiments

To provide a preliminary experimental validation
of our approach, we have implemented the hetero-
geneous MMM algorithm using the MPI library. In
this section, we report a few experiments performed
on a HNOW, and on a (very small!) collection of
two clusters.

6.1 Using a Single HNOW to Compare Differ-
ent Partitions

In this section we use a cluster of 7 hetero-
geneous machines of relative cycle-times equal to
(1 ,1, f , f , i, 5, &). These 7 machines are SUN
workstations of our laboratory, linked by a sim-
ple Ethernet network. We compare the partition
given by the optimal column-based heuristic (see
Figure 7) with 4 different partitions of the same
matrices which are shown in Figure 8.

The measures were realized for matrices of size
n = 640, using a blocksize r = 32, and for matrices
of size n = 1280, using two blocksize values T = 32
and r = 64. Table 2 gives the average time to com-
pute the MMM product for the five partitions. In
the case of a matrix of size n = 1280, we see that the
time is slightly smaller if we increase the blocksize,
because there are fewer communications. We check
that the execution time does grow with the cost of
the partition, which shows that our modeling of the
communication costs is very reasonable, and is in

296

40

40 ; I

18 10

.

18 10

3

10

3

10

Partition n=640
r= 32

Figure 7. Partition given by the column-
based heuristic (Cost C = 5.1)

n=1280 n=1280
r=32 r=64

- . . - .~

C=5.4 I T=48
C=5.6 1 T=34

Cz5.1 I T=33 I T=269 I T=258
C=5.3 I T=34 I T=287 I T=265 ~ ~- ~ ~ _ _

T=289 T=264
T=290 T=267

I I I 1 C=6.4 I T=72 I T=367 I T=302 1

Table 2. Average times for a matrix-matrix
multiplication.

good adequation with these experiments. Note that
(for fairness) we have not compared the results with
the homogeneous block-cyclic distribution: because
the processor speeds are very different, the perfor-
mances would have been disastrous.

cost e = 5.3 cos t c = 5.4

Cost C = 5.6 Cost 6 = 6.4

Figure 8. Four different column-based par-
titions

in the first cluster and 3 in the second one, and the
other one with only 4 processors in the first cluster
and 2 processors in the second one. In both cases,
the gain of the load-balancing heuristic over the ho-
mogeneous block-cyclic distribution (a meaningful
comparison here because the processor speeds are
rather similar) is very important.

6.3 Future work
6.2 Experimenting with Two Clusters

In this section, the target platform is made up of
two clusters. The first cluster is a pile of Pentium
Pros and the second cluster is a pile of Power PCs.
The interconnection network within both clusters is
a Myrinet network. There is also a Myrinet link be-
tween the two clusters. Hence, all communications
are very fast. In the experiments, either we allo-
cate to each cluster a fraction of the matrix which
is proportional to its computing power, according
to Section 3.1, or we give the same fraction to each
processor, as in the homogeneous case. When we
use the load-balancing strategy, we use each cluster
as a farm of processors, and equally distribute the
workload inside the farm.

We use two configurations, one with 5 processors

The preliminary MPI experiments reported in
Sections 6.1 and 6.2 are promising. At the very
least they fully demonstrate the importance of us-
ing a good load-balancing strategy.

Clearly, further and larger experiments must be
performed. More experimental results will be pro-
vided in the final version of the paper. In particular,
we aim at testing a larger collection of clusters with
slower inter-cluster links. The Globus system [9J
provides a perfect framework for such experiments,
because hardware resources are used in a dedicated
mode through a remote batch system, so that static
load-balancing strategies such as the one presented
in this paper have all their significance.

297

70

eo

s 50
T
1

40

Q

Y
;f 30

20

10

0
5w low 1500 20w 2500 3000 3500 4ow

Matru w e

Figure 9. MPI experiments with two clus-
ters.

7 Conclusion

In this paper, we have dealt with the implemen-
tation of MMM algorithms on heterogeneous plat-
forms. The bad news is that minimizing the total
communication volume is NP-complete. The good
news is that efficient polynomial heuristics can be
provided, as we have shown both theoretically (by
guaranteeing their performance) and through simu-
lations and MPI experiments.

The MMM algorithm is the prototype of tightly-
coupled kernels that need to be implemented effi-
ciently on distributed and heterogeneous platforms:
we view it as a perfect testbed before experimenting
more challenging computational problems on the
grid.

It is not clear which is the good level to program
metacomputing platforms. Data-parallelism seems
unrealistic, due to the strong heterogeneity. Ex-
plicit message passing is too low-level. Despite their
many advantages, object-oriented approaches still
request the user to have a deep knowledge and un-
derstanding of both its application behavior and the
underlying hardware and network. Remote comput-
ing systems such as NetSolve face severe limitations
to efficiently load-balance the work to processors.
For the inexperienced user, relying on specialized
but highly-tuned libraries of all kinds (communi-
cation, scheduling, application-dependent data de-
compositions) may prove a good trade-off until the
programming environments evolve into “high-level-
yet-general-purpose-and-efficient” solutions!

References

[l] R. Agarwal, F. Gustavson, and M. Zubair. A high
performance matrix multiplication algorithm on a
distributed-memory parallel computer, using over-
lapped communication. IBM J. Research and De-
velopment, 38(6):673-681, 1994.
0. Beaumont, V. Boudet, F. Rastello, and
Y. Robert. More NP-complete results for heteroge-
neous parallel matrix-matrix multiplication. Tech-
nical Report RR-2000-XX, LIP, ENS Lyon, Jan.
2000. In preparation.
F. Berman. High-performance schedulers. In I. Fos-
ter and C. Kesselman, editors, The Grid: Blueprint
for a New Computing Infrastructure, pages 279-
309. Morgan-Kaufmann, 1999.
L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users’ Guide.
SIAM, 1997.
V. Boudet, F. Rastello, and Y . Robert. Algorith-
mic issues for (distributed) heterogeneous comput-
ing platforms. In R. Buyya and T. Cortes, ed-
itors, Cluster Computing Technologies, Environ-
ments, and Applications (CC-TEA ’99). CSREA
Press, 1999. Extended version available as LIP
Technical Report RR-99-19.
V. Boudet, F. Rastello, and Y. Robert. A proposal
for a heterogeneous cluster ScaLAPACK (dense
linear solvers). In H. R. Arabnia, editor, Intema-
tional Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA ’99).
CSREA Press, 1999. Extended version available as
LIP Technical Report RR-99-17.
P. Boulet, J. Dongarra, Y. Robert, and F. Vivien.
Static tiling for heterogeneous computing plat-
forms. Parallel Computing, 25:547-568, 1999.
M. Cierniak, M. J. Zaki, and W. Li. Customized
dynamic Ioad baIancing for a network of worksta-
tions. Journal of Parallel and Distributed Comput-
ing, 43:156-162, 1997.
I. Foster and C. Kesselman. Globus: A metacom-
puting infrastructure toolkit. Intl J. Supercomputer
Applications, 11 (2): 115-128, 1997.
I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999.
G. Fox, S. Otto, and A. Hey. Matrix algorithms
on a hypercube i: matrix multiplication. Parallel
Computing, 3:17-31, 1987.
A. Kalinov and A. Lastovetsky. Heterogeneous
distribution of computations while solving linear
algebra problems on networks of heterogeneous
computers. In P. Sloot, M. Bubak, A. Hoekstra,
and B. Hertzberger, editors, HPCN Europe 1999,
LNCS 1593, pages 191-200. Springer Verlag, 1999.
V. Kumar, A. Grama, A. Gupta, and G. Karypis.
Introduction to Parallel Computing. The Ben-
jamin/Cummings Publishing Company, Inc., 1994.

298

