
Heterogenous Dating Service with Application to Rumor Spreading

Olivier Beaumont
LaBRI – University of Bordeaux, INRIA Futurs

351 cours de la Libération,
FR-33405 Talence, France

obeaumon@labri.fr

Philippe Duchon
LaBRI – University of Bordeaux

351 cours de la Libération,
FR-33405 Talence, France

duchon@labri.fr

Miroslaw Korzeniowski∗

Wroclaw University of Technology
ul. Wybrzeze Wyspianskiego 27,

PL-50370 Wroclaw, Poland
Miroslaw.Korzeniowski@pwr.wroc.pl

Abstract

Peer-to-Peer overlay networks have proven their ef-
ficiency for storing and retrieving data at large scale,
but new services are required to take the actual per-
formances of resources into account. In this paper, we
describe a fully decentralized algorithm, called "dating
service" meant to organize communications in a fully
heterogeneous network, that ensures that communica-
tion capabilities of the nodes are not exceeded. We prove
that with high probability, this service ensures that a
constant fraction of all possible communications is or-
ganized. Interestingly enough, this property holds true
even if a node is not able to choose another node uni-
formly at random. In particular, the dating service can
be implemented over existing DHT-based systems. In
order to illustrate the expressiveness and the usefulness
of proposed service, we also present a possible practi-
cal application of the dating service. As an illustration,
we propose an algorithm for rumor spreading that en-
ables to broadcast a unit-size message to all the nodes
of a P2P system in logarithmic number of steps with high
probability.

∗The author is partially supported by Emerging Technologies Pro-
gramme of the EU under EU Contract 001907 DELIS ”Dynamically
Evolving, Large Scale Information Systems” and by MNiSW grant
number PBZ/MNiSW/07/2006/46. The work was done when the au-
thor was in LaBRI and INRIA Futurs in Bordeaux.

1. Introduction and Related Work

Peer-to-Peer overlay networks have proven their ef-
ficiency for storing and retrieving data. Structured
Peer-to-Peer networks based on Distributed Hash Ta-
bles (DHT for short) such as Pastry [9] or Chord [10],
provide efficient mechanisms for routing in time loga-
rithmic in the number of nodes in the system, but due
to hashing, their use is limited to exact query searches.
New services are therefore highly required in the con-
text of large scale distributed networks. Moreover, het-
erogeneity in terms of communication resources is not
taken into account and all resources play a symmetric
role, whatever their capacity, whereas large scale plat-
form exhibit a high level of heterogeneity, in terms of
both processing and communication resources.

In this paper, we describe a distributed algorithm,
called dating service which can be used e.g. to orga-
nize communication in a heterogeneous network, so that
communication capabilities of nodes are not exceeded.
The abstract purpose of our scheme is to randomly join
demands and supplies of some resource of many nodes
into couples. In a round it produces a matching between
demands and supplies which is of linear expected size
(compared to optimal one) and is chosen uniformly at
random from all matchings of this size.

We illustrate the usefulness of this dating service by
designing an application to rumor spreading in a het-
erogenous network, where demand and supply of a sin-
gle node mean its incoming and outgoing bandwidth, re-
spectively.

The only result similar to ours of which we are aware
is on choosing a random peer in a distributed hash ta-

ble [6] by King and Saia. The authors give a method
with which a peer can choose another one so that the
distribution is uniform. The algorithm works in loga-
rithmic time (expected and with high probability) and
can also be run by many peers in a round yielding a lin-
ear number of connections distributed like balls thrown
into n bins. Since in such models, when the number of
balls is also n, some bins get Ω(log n/ log log n) balls,
in some situations our scheme has an advantage here, as
it respects incoming bandwidths.

The usual setting for rumor spreading (see for exam-
ple [5]) is that a single node knows the rumor originally
and wants to broadcast it to everyone else. The commu-
nication is organized in rounds and the algorithm only
decides (usually in some random fashion) which nodes
send messages to which nodes in each round. This al-
lows for extensions such as rumors appearing in the net-
work in course of time and also dynamics of the net-
works, including node failures. The rumor is assumed
to have a unit size, i.e. it takes exactly one round to send
it from a node to another node. In our scheme we use
additional small bandwidth for maintenance, that is for
the dating service.

Traditional algorithms, named PUSH, PULL and
PUSH&PULL, (also described in [5]) work as follows.
In each round each node chooses another node uni-
formly at random. In the PUSH model the first one sends
a rumor to the second one. In the PULL model it is the
other way around. In case of PUSH&PULL scheme the
nodes exchange rumors. Main results of [5] are not only
bounding time to O(log n) but also bounding total com-
munication cost to O(n · log log n).

The results presented in this paper strongly differ
from existing ones on rumor spreading. First, the al-
gorithm we propose can be implemented over existing
DHT systems such as Pastry [9] or Chord [10]. These
systems provide efficient mechanism to deal with new
and leaving nodes, even in the presence of high churn
rate. This feature is necessary in the case of large scale
platforms, where the set of participating nodes changes
quickly over time. Thus, since dating service lies on
top of a DHT, it can be implemented in practice. More-
over, it is known that DHT like systems are not perfectly
balanced and some nodes are allocated more work than
others. Nevertheless, we prove that the dating service is
able to generate a random linear size matching between
demands and supplies even if the DHT is not perfectly
balanced.

The randomness property is essential when dealing
with rumor spreading algorithm and all existing rumor
spreading algorithms with logarithmic complexity rely
on the possibility of choosing a random node in the net-
work. However, the rumor spreading algorithm we pro-

pose ensures this property in practice, and is able to deal
with heterogeneous networks, without violating incom-
ing and outgoing communication capabilities, contrarily
to what happens with PUSH, PULL and PUSH&PULL
algorithms for rumor spreading. We prove that if the
message starts from a node with sufficiently large out-
going bandwidth (at least Ω(log n)), nodes with at least
average bandwidth Ω(m/n), where m is the sum of
bandwidths of all nodes, will receive the message after
only O(log n/ log(m/n)) rounds with high probability,
which opens the way for hierarchical content distribu-
tion, where nodes receive different messages according
to their communication capabilities.

To the best of our knowledge, this paper represents
the first attempt to prove theoretical results on an imple-
mentable scheme for rumor spreading on heterogeneous
platforms.

The paper is organized as follows. In Section 2, we
describe the dating service and prove that it organizes a
linear number of dates between supplies and demands at
each round. Then, we present in Section 3 an application
of the dating service to rumor spreading and prove that
our algorithms spread a unit-size message onto a fully
heterogeneous platform in logarithmic time in the size
of the network. The practical implementation of the dat-
ing service is analyzed in Section 4.1 and its results are
assessed through a set of simulations in Section 4.2 and
Section 4.3.

2. Dating service

2.1. Algorithm

The dating service is a tool which provides some ser-
vice to some applications. We describe it as a routine
running completely independently of any applications,
which means that we have two separate networks, one
for the dating service and one for an application and the
latter can send requests to the former and receive an-
swers.

The purpose of the dating service is to produce ran-
dom matchings between two types of requests which,
for convenience, we name supplies and demands. The
routine works in rounds and in each round all peers of
the application send information about their supplies and
demands to the dating service, their requests are joined
into couples and the peers can use these connections
somehow and proceed to the next round.

In our description of the dating service, nodes tak-
ing part in providing the service are called servers, to
distinguish them from their role as users. Note that this
difference between servers and nodes only stands to ease
the description of the dating service. In practice, all the

nodes will be used as servers and none of them are more
important than others. In Section 4.1, we describe how
one can implement such a dating service in a distributed
hash table.

The centralized dating service based on a single
server would work as follows. All nodes of an appli-
cation would submit information about all their supplies
and demands to the server, the server would choose uni-
formly at random a maximum matching and send infor-
mation about connections to all nodes of the application.
Producing a matching chosen uniformly at random is ac-
tually trivial: it is sufficient to permute uniformly at ran-
dom both sequences of supplies and demands and match
the i-th supply with the i-th demand for all i between 1
and min{#supplies,#demands}.

In the distributed setting, where the whole set of
nodes is used to produce the random matching, the
service works as follows. Each node sends each re-
quest, either demand or supply to a random server cho-
sen according to a fixed probability distribution P =
(p1, p2, ...pn). Then, the server is responsible to build a
local random matching between the demands and sup-
plies it has received. Note that the fact that the prob-
ability distribution of the servers is not a priori uniform
(even if it is desirable for load balancing) has a strong in-
fluence on the effective possibility of implementing the
dating service on a large scale platform. The actual im-
plementation will be discussed in Section 4.1.

A pseudo-code of the dating service for a single
round is shown in Algorithm 1.

Algorithm 1 Dating service(probability distribution
P = (p1, ...pn))

for each node i in parallel do
for each unit of supply or demand at i do

send a request to a random server chosen accord-
ing to P

for each server j in parallel do
r← number of demand requests at j
s← number of supply requests at j
q← min{r, s}
choose uniformly at random without replacement q
requests of each type
generate a uniformly chosen random perfect match-
ing of the chosen requests
for each of the r + s received requests do

if the request is among the 2q chosen requests
then

send information about the partner to the cre-
ator

else
send to the creator information about no date

Note that in the above description, it is not neces-
sary that the random choice of servers be uniform – only
that all requests are sent using the same distribution P .
This randomness is a load-balancing factor; as an ex-
treme case, sending all requests to a single server would
result in a centralized scheme.

2.2. Notations

Throughout this paper we use the classical notations
of O() and Ω(), where O(f(n)) means at most c · f(n)
for constant c > 0 and sufficiently large n and Ω(f(n))
means at least c ·f(n) for constant c > 0 and sufficiently
large n.

Together with the above notations we also use the
term with high probability (in short: whp) in the fol-
lowing way: a random variable X(n) is bounded by
O(f(n)) with high probability means that for any con-
stant �, Pr[X > c · f(n)] ≤ 1

n� , where the constant c
depends only on �. The term for Ω() notation is defined
similarly.

2.3. Theoretical Analysis

Denote the total number of demands by m and the
total supplies by m′. For the analysis, we assume that
m ≤ m′ (otherwise, just switch the symmetric roles of
supply and demand); thus, m is the maximum number
of dates that a centralized service would be able to orga-
nize in a round. In [1] we have shown that if m = Ω(n)
then the number of dates organized by the dating ser-
vice is Ω(m) on expectation and with high probability,
i.e. it is by at most a constant factor worse than what a
centralized dating service would produce.

Our first lemma in the analysis of the dating service is
intuitively obvious from the construction; its proof can
be found in [1].

Lemma 1. Conditioned on the total number of dates in
a round of the dating service being k, the set of matches
produced is a uniform random k-matching of the sets of
demands and supplies.

The second lemma states that, provided the number
of servers is not too large compared to the supply or de-
mand (whichever is larger), the dating service matches,
on average, a constant fraction of the rarer type of re-
quests with the other type.

Lemma 2. Let X = X(m,m′, n, P) denote the num-
ber of dates organized by the dating service in a sin-
gle round. Assume that m′ ≥ m and m′ ≥ cn for
some positive constant c. Then there exists a constant
β = β(c) > 0 such that, for any P ,

E(X) ≥ βm. (1)

Proof. Let n′ = max(m′, n), and c = m′/n. Send-
ing a request to a random server chosen according to P
is equivalent to having a fixed partition of the interval
(0, 1) into n intervals of lengths p1, . . . , pn, and send-
ing each request to the server corresponding to the in-
terval containing a random variable which is uniformly
distributed in (0, 1). Now split each such interval into a
number (possibly zero) of “good” intervals of length ex-
actly 1

4n′ and one “bad” shorter interval; the total length
of “bad” intervals is thus less than n

4n′ ≤ 1
4 , so that the

total number of “good” intervals is at least 3n′. X is
at least the number of dates one obtains by considering
only those produced by requests sent to these 3n′ “good”
intervals and ignoring any request sent to a “bad” inter-
val.

The expected number of “good” intervals which re-
ceive at least one demand request is at least 5m′/8 (con-
sider the m′ requests as being sent sequentially: when
sending the k-th request, there are at least 3n′ − k + 1
empty intervals, for a probability at least 3n′−k

4m′ ≥
3
4 − k

4m′ of hitting one of them; summing these prob-
abilities and taking the worst case m′ = n′, we obtain
the 5m′/8 bound). As a consequence, with probabil-
ity at least 1/4, at least m′/2 of these intervals get at
least one request. Assuming this is the case, consider
the m supply requests as being sent sequentially: the k-
th request has probability at least m′/2−k+1

4n′ of hitting
a “good” interval which received a demand request but
has not yet received a supply request, thus generating a
date. Summing over the first m

2 ≤ m′
2 such requests,

the (conditional) expected number of dates is at least
m.c
16

(
1− m

2m′
) ≥ m. c

32 , which proves (1) for β = c
64 .

(We make no effort to optimize the constant β, but sim-
ulations and calculations based on unproved Poisson ap-
proximations indicate that the result remains true with
much larger values of β; for instance, β(1) = 0.46
seems to work.)

In [1], we prove that the result of Lemma 2 also holds
with high probability, provided m is also Ω(n).

Together, Lemmas 1 and 2 yield the following:

Lemma 3. Assume m ≤ m′ = Ω(n). Then, in any
round of the dating service, each unit of supply has con-
stant probability of being matched to a unit of demand.

Even though the events of different demands having
dates in a single round are dependent, the events of a
single demand getting a date over different, independent
rounds are not. Thus, the following corollary easily fol-
lows.

Corollary 4. If the assumptions of Lemma 3 hold for
each round, each single unit of supply gets matched with
a demand within O(log n) rounds with high probability.

3. Rumor spreading

In this section we describe and analyze an applica-
tion of the dating service to rumor spreading. The basic
problem is as follows. In the beginning there is a single
peer which knows some information — the rumor. We
are looking for a scheme which spreads the rumor in the
whole network as fast as possible. PUSH and PULL
algorithms mentioned in Section 1 do it in O(log n)
rounds. We describe a scheme based on the dating ser-
vice which achieves the same bound, but makes effi-
cient use of heterogeneous bandwidths by speeding up
the process for average (or higher) bandwidth peers.

Incoming and outgoing bandwidths of peers are lim-
ited: to each peer i is associated an incoming band-
width bin(i) and an outgoing bandwidth bout(i), which
means that peer i is able to receive bin(i) unit size mes-
sages and to send (simultaneously) bout(i) unit size mes-
sages during each round. For easier notation we define
the total incoming and outgoing bandwidths as Bin =∑n

i=1 bin(i) and Bout =
∑n

i=1 bout(i). The smaller
of the two we denote as m, i.e. m = min{Bin, Bout}.
Messages involved in the organization and realization of
the dating service itself are assumed to be much shorter
than this unit size, and are not so restricted. In order
to consider peers with very different capabilities, the ra-

tios maxi bin(i)
mini bin(i) and maxi bout(i)

mini bout(i) are not a priori bounded.
On the other hand, we assume that for a given peer, the
ratio between its incoming and outgoing bandwidths is
bounded by a constant C:

∀i, 1
C
≤ bin(i)

bout(i)
≤ C.

In order to organize communications, we rely on the
dating service. The application is quite straightforward:
after the dating service produces a set of pairs (incom-
ing,outgoing link), nodes connected in such pairs com-
municate. This means that the first node of each pair
sends a rumor to the second one, provided that it has
anything to send. We prove below that using such a
scheme, all nodes will know the rumor after at most a
logarithmic (in n) number of rounds.

Theorem 5. With high probability, the rumor spreading
process based on the dating service sends the rumor to
all nodes in O(log n) rounds.

Proof. We split the analysis into three phases, depend-
ing on the total outgoing bandwidths of currently in-
formed peers; we denote this bandwidth in round t by
It:

1. from I0 ≥ 1 until It = Ω(max(m
n , log n));

2. from the end of phase 1 until It ≥ m/2;

3. from the end of phase 2 until all peers are informed.

In the following we show that each phase separately
takes O(log n) rounds. For the first two phases we will
need the following definition and lemma:

Definition 6. Fix a constant α < 1. Take all It links
outgoing from informed peers and consider them in any
fixed order. We say that a link is successful in round
t, if (i) one of its outgoing requests is matched with an
incoming request from a peer not previously contacted
(not even by any informed link already considered in
round t) and (ii) the outgoing bandwidth of the con-
tacted peer is at least α · m

n

For such a definition of success we now prove a lower
bound on the probability that a given link is successful
in a given round during phases 1 and 2.

Lemma 7. Fix α = 1/4 in the previous definition and
let β denote the fraction of dates organized by the dating
service. Then, in every round t, under the condition that
It+1 ≤ m

2 , an outgoing link is successful with probabil-

ity at least β
4C2 .

Proof. In the reasoning below we condition on the num-
ber of dates in the current round being at least β · m,
which happens with high probability.

We consider two cases:

1. m = Bout ≤ Bin

2. m = Bin ≤ Bout

In the first case, the probability for an outgoing link
of getting a date is at least β. Consider all uninformed
peers which have outgoing bandwidth at most α · m

n .
Their total bandwidth is at most α ·m, so the total un-
informed outgoing bandwidth we would like to hit is at
least (1− 1

2−α)·m = m
4 . The total incoming bandwidth

of these peers is at least m
4C , whereas the total incoming

bandwidth of all peers is at most C · m, so based on
Lemma 1, the probability of hitting one of these “inter-
esting” peers is at least 1

4C2 . The joint probability of
getting a date and hitting a correct peer is thus at least

β
4C2 .

In the second case the reasoning is similar, except that
an outgoing link has a probability of getting a date in
round t at least β

C and that the total incoming bandwidth
is at most m. Thus, the resulting probability of success
is also at least β

4C2 .

Now we are able to bound the length of the first
phase.

Lemma 8. The first phase ends in at most O(log n) time
steps, with high probability.

Proof. We know that there is at least one outgoing link
from a peer which initially has the message. Each round
of phase 1, this same link has a lower bounded probabil-
ity of success; since rounds are independent, the number
of rounds until this link gets at least d · log n successes
is at most d′ · log n, with high probability.

For the second phase we show that in each round
we multiply by a constant factor (strictly larger than
1) the number of informed outgoing links, with high
probability. Since we start with at least m

n such links,
O(log(1+m/n) n) rounds would then suffice to come to
m
2 informed links. The precise statement is formulated

as follows:

Lemma 9. In each round of phase 2, with high probabil-
ity, a constant fraction of connections succeeds. Phase
2 lasts O(log n/ log(1 + m

n)) rounds.

Proof. Let It ≥ Ω(log n) be the number of informed
outgoing links in round t. Each of them succeeds
with probability pt = Ω(1) (though not independently),
which exactly means that, on expectation, a constant
fraction of them are successful. In order to prove that
this constant fraction holds with high probability, we use
the Independent Bounded Differences Inequality as de-
scribed in [7, Theorem 3.1].

We start by conditioning on the total number of dates
in the current round being k (this k is at least β · m
with high probability). Then the set of matched out-
going links from informed peers is independent of the
set of matched incoming links to uninformed peers, and
the cardinality of the first set follows the hypergeometric
distribution with parameters (k,Bout, It).

Dates can be faithfully simulated using a relatively
low number of independent random variables, as fol-
lows: number all outgoing links 1 to Bout in an arbitrary
order with the only condition that those from informed
peers are numbered 1 to It, and take k independent
uniform random permutations σ1, . . . , σk of [[1, Bout]].
Similarly, number all incoming links 1 to Bin in an ar-
bitrary order, and take k independent uniform random
permutations σ′

1, σ
′
k of [[1, Bin]].

Now the outgoing (resp. incoming) end of each date
can be chosen as follows: the i-th matched link is the
first element in permutation σi (resp. σ′

i) that is not
among the i− 1 first matched links.

The total number of successes in the round thus ap-
pears as a function of 2k independent random variables,
and changing just one of these random variables can
only result in changing at most one of the matched
links (though it can result in changing an arbitrary num-
ber of matches, at most one unmatched link can be-
come matched); as a consequence, changing one of the
permutations can change the total number of successes

by at most 1. Thus, we can apply the Independent
Bounded Differences Inequality with constant c = 1,
which proves that, if µ = µ(It, k) is the expected num-
ber of successes, S is the number of successes, and X is
the number of dates, we get

Pr(|S − µ| ≥ t|X = k) ≤ 2e−t2/k

Taking t =
√

a · k · log n above yields an upper
bound of O(n−a). Since k = Ω(log n) and we can
choose the constant to be as large as we need it (by
changing the constant in the Ω() in the definition of
phase 1), this proves that, with high probability, the de-
viation of number of successes from its expectation is
less than a constant fraction of its expectation.

The claim on the duration of phase 2 follows: with
high probability, we have Ω(It) successes in each round
t of phase 2, which means that It+1 ≥ (1 + γ m

n) · It

(where γ > 0 is the constant – which we make no at-
tempt to make explicit or optimize – in the “constant
proportion of successes” claim) with high probability.
Since phase 2 ends when It has been multiplied by a
factor of

m/2
max

(
m
n , log n

) = min
(

n

2
,

m

2 log n

)
,

we get a high probability upper bound on the duration of
phase 2 of

O

(
log (min(n,m/n))

log(1 + m/n)

)
.

Finally, we bound the length of the last phase.

Lemma 10. With high probability, it takes at most
O(log n) rounds to send the rumor to all the uninformed
peers, if we start with Ω(m) outgoing connections be-
longing to informed peers.

Proof. Consider a single uninformed peer, it has at least
one incoming link. Reversing the roles of incoming and
outgoing links from the proof of Lemma 8, we see that,
each round, each such incoming link has constant prob-
ability of having a date with an outgoing link from an in-
formed peer; thus, with high probability, d · log n rounds
suffice for such a date, for an appropriate constant d.
Taking a union bound on the probabilities for each unin-
formed peer to remain uninformed, we see that phase 3
ends in O(log n) rounds with high probability.

Overall, Lemmas 8, 9, and 10, yield Theorem 5

We now come to the real strength of the dating ser-
vice concerning heterogenous networks. Assume that
the network is heterogenous and such that m > n log n,
i.e. the average bandwidth is larger than log n even
though there may still be some weak peers (with low
bandwidth) in the network. If the rumor starts at a
peer with at least average bandwidth, that is at least
Ω(m/n), then all other peers of average bandwidth re-

ceive the rumor after O
(

log n
log(1+m/n)

)
, with high proba-

bility. This means time O
(

log n
log log n

)
for average band-

width Ω(log n) and constant time for average bandwidth
Ω(
√

n).

Theorem 11. Assume m = Ω(n log n). If the peer
which has the rumor initially has bandwidth at least
Ω(m/n), then all peers with bandwidth Ω(m/n) receive

the rumor within O
(

log n
log(m/n)

)
rounds, with high prob-

ability.

Proof. Notice that Phase 1 is finished before any com-
munication begins. As shown in Lemma 9, phase 2 lasts

O
(

log n
log(1+m/n)

)
rounds. Thus, we only need to show

that after Phase 2 has finished, all average peers receive

the rumor within O
(

log n
log(1+m/n)

)
rounds.

Consider a single uninformed peer with incoming de-
gree Ω(log n). Basing on the proof of Lemma 9 we
know that a constant fraction of its requests for receiving
are fulfilled with high probability. Each of the incoming
messages contains the rumor with probability at least
1/2, so in a single round such a peer does not get the
rumor with probability inversely polynomial in n. After
constant number of rounds such a peer is informed with
high probability.

Even if the rumor starts in a weak peer, we still have
some chance:

Corollary 12. Assume again that m = Ω(n log n).
Independently of the bandwidth of the peer on which

the rumor starts, it takes on expectation O
(

log n
log(m/n)

)
rounds to deliver the rumor to all peers with at least av-
erage bandwidths, provided that the average bandwidth
is m/n ≥ Ω(log n).

Proof. Just notice that the single peer which knows the
rumor initially in each round has constant probability
of sending the message to an average peer. This takes
constant number of rounds on expectation. Afterwards,
with high probability all the average peers are informed

in O
(

log n
log(m/n)

)
rounds by Theorem 11

4. Practical considerations and simulation
results

4.1. Dating Service in Peer-to-Peer Net-
works

In this subsection we describe how one can imple-
ment the dating service scheme in Peer-to-Peer net-
works. The idea is to use a distributed hash table (DHT;
see for example [10, 8, 3, 9]). These schemes connect
peers into networks and provide good (poly-logarithmic
in the size of the network) routing strategies and self-
adapt to the dynamics of the network (joining and leav-
ing nodes). Building new services on top of DHTs is
therefore highly recommendable.

The most important functionality for the dating ser-
vice is the way that data is stored in such a network. In
all designs, there is an underlying virtual space (most of-
ten a (0, 1] ring) which is partitioned among the peers.
When a data item is inserted into a point in this virtual
space, it is assigned to the peer responsible for this point.

One can easily adapt this to implement the dating ser-
vice as follows. Whenever a request must be sent to a
P -random server, the sending peer simply picks a ran-
dom key in the virtual space according to some com-
mon distribution (in the case of a (0, 1] ring this is sim-
ply a uniform random variable on (0, 1]), and uses the
DHT scheme to route the request to the responsible peer,
which acts as a dating service server; thus, the distribu-
tion of peer responsibilities in the virtual key space pro-
vides the common P distribution.

This distribution will typically not be uniform, since
some nodes will be responsible for larger intervals than
others. It is worth noting that all the proofs proposed
in previous sections do not assume a perfect load bal-
ance between nodes. Indeed, the property stating that
the dating service builds a random uniformly chosen
random matching between supplies and demands is still
valid, even if the DHT is badly balanced. This property
strongly differs from what is needed in the case of al-
gorithms based on the possible random uniform choice
of a distant node. In this case, sophisticated and costly
techniques must be added to the DHT in order to choose
random distant nodes uniformly [6]. In Section 4.3,
we compare our rumor spreading scheme to PUSH and
PULL schemes that require the ability of choosing a ran-
dom distant node.

The only consequence, in the scheme we propose, of
a load imbalance in the DHT is that some nodes will
be responsible for organizing more dates than others.
Of course the dating service routine needs only small
messages but it is still better to spread the work among
many peers than to send everything to a single server.

Even if one organises a DHT in the simplest way where
nodes choose places on a (0, 1] ring uniformly at ran-
dom, the largest interval assigned to a peer will be of
length O(log(n)/n) with high probability. This means
that the expected fraction of requests received by a sin-
gle peer (the maximum load of a peer) will exceed the
average by an at most logarithmic factor. The dating
service benefits also from such properties of DHTs as
low congestion and routing time when routing even a
linear number of messages to random places. Since the
construction of the random matching is fully distributed
among nodes, the cost at each node is very low. This is
because it corresponds to building a matching between
supplies and demands received at this node, and their
expected number is 1. Therefore, a load imbalance in
the DHT does not affect at all the randomness of the
constructed matching and it only slightly affects the pro-
cessing cost of the distributed computation of the match-
ing.

To ensure that the dating service performs efficiently,
the number of at least one type of requests (supply or de-
mand) must be at least linear in the number of servers.
To guarantee this condition, only peers with at least one
request should act as servers in the dating service; de-
pending on the application, this may mean peers have
to maintain more than one DHT structure (possibly with
the same virtual coordinates), at least one of which will
not include all the peers. With this precaution, we ensure
that m ≥ n/2 or m′ ≥ n/2, which is what is needed in
our analysis.

In order to validate the usefulness and the efficiency
of the proposed dating service, we performed a set of
simulations. In the simulations dedicated to the dating
service itself (Section 4.2), in order to obtain a practi-
cal implementation on a large scale platform, we rely
on Distributed Hash Tables (see for example [8, 10]).
Routing in DHTs takes time Θ(log n) or close and since
we use it in each round, it would mean that each round
takes such time. One can use pipelining of dates, that
is send requests for dates in each round even before
receiving the answers for the previous one. Thus, af-
ter Θ(log n) time steps, answers will start coming each
round. This means that for k rounds of dating service we
need time Θ(log n+k). On the other hand, for the anal-
ysis of rumor spreading (Section 4.3), we use a setting
where a distant node can be chosen uniformly at ran-
dom. As simulation results for the dating service (Sec-
tion 4.2) prove, this disadvantages our rumor spread-
ing algorithm, since the expected number of dates is
larger when using DHT-based systems. Nevertheless, all
other rumor spreading schemes we consider (i.e. PUSH,
PULL and PUSH and PULL) rely on the possibility of
choosing a uniform random nodes.

4.2. Simulations for dating service

In the simulations meaning to check the actual num-
ber of dates in a round there were n nodes (for n ∈
{10, 102, 103, 104, 105}) and they generated n requests
of each type. We performed two sets of simulations. In
the first one, denoted by uniform in what follows, we
assume each node has the ability of choosing uniformly
at random distant nodes to send its demands and sup-
plies. As already noted in Section 4.1, the dating service
can also be efficiently implemented over a DHT. Corre-
sponding results are denoted by DHT in what follows.

For uniform distribution of requests (p1 = = pn)
we ran 104 or 103 rounds to calculate the average and
standard deviation. The experiments were performed on
a single computer — therefore for n ∈ {104, 105}) we
were able to run only 103 rounds. The average num-
ber of arranged dates appears to be always slightly more
than 0.47 · n.

To check how our process behaves in a DHT setting,
we generated a DHT and then ran 104 or 103 rounds.
Again we calculated averages and standard deviations.
For the final result we took only one DHT out of 200
generated — the one that showed the worst average. The
number of dates for these worst found DHTs are above
0.52·n. For the best ones they reach as high as 0.67·n for
n = 10 but are close to 0.55 · n for the largest n = 104.
In this case we were not able to run the experiments for
n = 105. The results are summarized in Figure 1.

It is worth noting that the dating service performs
better (i.e. organizes more dates) when using DHT.
This property is not surprising. Indeed, in the DHT set-
ting, load balancing is worse than in the uniform setting.
Even if balancing the load is highly desirable, having
nodes responsible for organizing more dates makes the
system more efficient. An extreme case of load imbal-
ance is the centralized case, where all nodes send their
demands and supplies to the same node. In this case,
this node would be overloaded since it would be respon-
sible for finding a random matching of size n and would
receive 2n messages, but the number of organized dates
would be optimal (i.e. n).

4.3. Simulations for rumor spreading

In order to check how our dating service behaves in
rumor spreading in comparison to other schemes, we
performed another set of simulations.

In order to compare the scheme we propose to ex-
isting schemes, such as PUSH, PULL and PUSH and
PULL algorithms (see [5] for a survey), we only con-
sidered the fully homogeneous case, where each node
sends exactly one request of each type (supply and de-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 a
rr

an
ge

d
da

te
s

Number of nodes

Uniform
DHT-like

Figure 1. Simulation results for dating ser-
vice for both DHT and Uniform settings

mand). This corresponds to a fully homogeneous plat-
form, where each node is able to send and to receive ex-
actly one unit size message at each round. Although the
rumor spreading algorithm can be used in a much more
general setting, where each node is associated to incom-
ing and outgoing bandwidths, we restrict our set of sim-
ulations to the homogeneous case, for the sake of com-
parison with existing schemes. Similarly, for all simula-
tions, we assume that each node is able to choose a dis-
tant node uniformly at random, what corresponds to the
uniform setting for dating service simulation presented
above. Again, this assumption is necessary for the sake
of comparison since all existing algorithms rely of this
ability, what requires complex schemes if implemented
over a DHT [6]. The extra cost needed to perform this
random choice is not taken into account, whereas the
scheme we propose can be efficiently implemented us-
ing a DHT. It is also worth noting that, as mentioned
in Section 4.2, the dating service is even more efficient
when based on a DHT rather than on random choices.

In the following simulations, the number of nodes
ranges from 10 to 100, 000 and we compare the fol-
lowing algorithms: simple PUSH, simple PULL, simple
PUSH and PULL, fair PULL and PUSH and fair PULL.
In the fair PULL version, a node that has been chosen as
source by several distant nodes only satisfies one request
at each round, so that communications capabilities of the
sending node are not exceeded. We compared them with
rumor spreading based on dating service using uniform
organization of dates. Again, in order to calculate aver-
ages and standard deviations, we performed each exper-
iment 104 or 103 times.

The averages together with standard deviations are
shown in Figure 2. We can see that all the algo-
rithms, including the one based on the dating service,
exhibit a logarithmic number of rounds. The order of
the algorithms from the best to the worst is as follows:
PUSH and PULL, PUSH and fair PULL, PULL, fair

 0

 10

 20

 30

 40

 50

 60

 10 100 1000 10000 100000

R
ou

nd
s

fo
r

ru
m

or
 s

pr
ea

di
ng

Number of nodes

dating
push

fair pull
pull

push + fair pull
push + pull

Figure 2. Simulation results for rumor
spreading

PULL, PUSH, dating service. The following comment
is needed here: notice that PUSH and PULL methods
benefit from double communication in each round - one
for PUSH and one for PULL. Also the unfair versions
of the algorithms may benefit from much higher band-
width, when many nodes PULL an informed node at
the same time. Therefore, we should actually compare
the rumor spreading based on the dating service only
with the PUSH and fair PULL methods. It roughly 50%
slower than them.

Nevertheless, recall that the algorithm we propose
can be efficiently implemented in practice using a
DHT whereas the practical implementation of all other
schemes require the ability of choosing a distant node
uniformly at random, and the extra cost induced by this
operation [6] is not taken into account in these simula-
tion results. Moreover, the rumor spreading algorithm
we propose has been designed for heterogeneous plat-
forms, where each participating node is associated to
an incoming and an outgoing bandwidth. The simula-
tion results presented here are for the fully homogeneous
case (and even in this case, only the PUSH and the fair
PULL versions satisfy this constraint in practice) for the
sake of fair comparison only.

We therefore think that it is a fair price to pay for
possibility of distributed implementation and for the ex-
tension to the much more realistic heterogenous case for
large scale platforms.

5. Conclusion and Future Work

In this paper, we described a fully decentralized algo-
rithm, called “dating service” which can be used to orga-
nize communications in a fully heterogeneous network,
in a way that ensures that communication capabilities of
the peers are not exceeded. We proved that with high
probability, this service ensures that a constant fraction
of all possible communications is organized even if it is

impossible to choose nodes uniformly at random. As an
illustration, we presented a practical design of the dating
service based on currently available DHT systems. We
also showed an application of the dating service in ru-
mor spreading. We proved that it behaves well and copes
well with heterogenous networks. It is worth stressing
that in rumor spreading in a heterogenous network peers
with higher bandwidths get the rumor faster whereas the
weaker peers are still not forgotten.

We strongly believe that the dating service can be
used as a building block for many distributed services
where nodes offer and request for resources. The first
possible extension consists in considering the case of
rumor mongering (or equivalently the broadcast of a
large message). In this context, the message is split into
smaller parts and is sent in a pipelined fashion through
the network. In this case, we can make a deeper use of
the dating service mechanism, since both incoming and
outgoing bandwidths can be used efficiently. The most
challenging problem consists in organizing the commu-
nications, so as to ensure that each part of the message
is received exactly once. To achieve this goal, random-
ized network coding techniques [4] have proven their
efficiency [2]. The dating service may also be used in
distributed replicated storage systems. In this context,
each node offers room (in terms of block) to store re-
mote objects and requests room to store remotely its lo-
cal objects. In this case, the dating service may be used
to organize block exchanges between nodes.

As already stressed, the first main advantages of the
dating service scheme is that it can be implemented over
existing DHT-based systems, without requiring the abil-
ity to perform sophisticated requests such as the choice
of a uniform random node. The second main advantage
is that it can be used in non uniform settings, where the
number of demands and supplies differ at all nodes. This
corresponds, in the case of rumor spreading, to fully het-
erogeneous platforms, where each node is associated to
an incoming and outgoing bandwidth. To the best of
our knowledge, this paper represents the first attempt to
prove theoretical results on an implementable scheme
for rumor spreading on heterogeneous platforms.

References

[1] O. Beaumont, P. Duchon, and M. Korzeniowski.
Heterogenous dating service with application
to rumor spreading. Research Report RR-
6168, INRIA, Apr. 2007. Available at the url
http://www.labri.fr/perso/obeaumon/
publis/datingservice.pdf.

[2] S. Deb, M. Médard, and C. Choute. Algebraic gos-
sip: A network coding approach to optimal multiple ru-

mor mongering. IEEE ACM Transaction on networking,
pages 2486 – 2507, 2006.

[3] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao.
Distributed Object Location in a Dynamic Network. In
Proc. of the 14th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pages 41–52, 2002.

[4] T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger.
On randomized network coding. In T. Ho, M. Medard,
J. Shi, M. Effros, and D. R. Karger, editors, Proceedings
of 41st Annual Allerton Conference on Communication,
Control, and Computing, 2003.

[5] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vock-
ing. Randomized rumor spreading. In IEEE Symposium
on Foundations of Computer Science, pages 565–574,
2000.

[6] V. King and J. Saia. Choosing a random peer. In Proc. of
the 23rd ACM Symp. on Principles of Distributed Com-
puting (PODC), pages 125–130, 2004.

[7] C. McDiarmid. Concentration, volume 16 of Algorithms
and Combinatorics, pages 195–248. Springer, 1998.

[8] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and
S. Shenker. A Scalable Content Addressable Network.
In Proc. of the ACM SIGCOMM, pages 161–172, 2001.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. Lecture Notes in Computer Sci-
ence, 2218:329–350, 2001.

[10] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In Proc. of
the ACM SIGCOMM, pages 149–160, 2001.

