
Load Balancing Strategies for Dense Linear Algebra Kernels

on Heterogeneous Two-dimensional Grids

Olivier Beaumont, Vincent Boudet, F abrice Rastello and Yves Robert

LIP, UMR CNRS{ENS Lyon{INRIA 5668

Ecole Normale Sup�erieure de Lyon

F - 69364 Lyon Cedex 07

Firstname.Lastname@ens-lyon.fr

Abstract

We study the implementation of dense linear algebra
computations, such as matrix multiplication and linear
system solvers, on two-dimensional (2D) grids of het-
erogene ousprocessors. F or these op erations,2D-grids
are the key to scalability and eÆciency. The uniform
block-cyclic data distribution scheme commonly use d
for homogene ous collections of processors limits the
performance of these operations on heterogene ous grids
to the speed of the slowest processor. We present and
study more sophisticated data allocation strategies that
balance the lo ad on heterogene ous 2D-grids with resp ect
to the performance of the processors. The usefulness
of these str ategies is demonstrated by simulation mea-
sur ements for a heterogene ous network of workstations.

Key words: heterogeneous network, hetero-

geneous grid, di�erent-speed processors, load-

balancing, data distribution, data allocation,

n umerical libraries.

1. Introduction

Heterogeneous netw orks ofw orkstations (HNOWs)
are ubiquitous in university departments and compa-
nies. They represent the typical poor man's parallel
computer: running a large PVM or MPI experiment
(possibly all night long) is a cheap alternative to buy-
ing supercomputer hours. The idea is to make use of all
available resources, namely slow er machines as well as
more recent ones. In addition, parallel machines used
in a multi-user environment exhibit the very c haracter-
istics of a HNOW: di�erent loads imply di�erent pro-
cessor speeds when running a parallel application, even
though all processors are iden tical. Note that multi-

user parallel machines are in teresting in this con text
because they may exhibit a better communication-to-
computation ratio than Ethernet-based netw orks.

The major limitation to programming heteroge-
neous platforms arises from the additional diÆculty of
balancing the load when using processors running at
di�erent speed. In this paper, we explore several possi-
bilities to implement linear algebra kernels on HNOWs.
We ha ve beenexploring data allocation strategies for
HNOWs arranged as a uni-dimensional (linear) array in
previous papers [5, 6]. Arranging the processors along a
tw o-dimensional grid turns out to be surprisingly diÆ-
cult. There are tw o complicated problems to solve: (i)
ho w to arrange the heterogeneous processors along a
2D-grid; (ii) how to distribute matrix blocks to the pro-
cessors once the grid is built. The major contribution
of this paper is to provide an eÆcient solution to both
problems, thereby pro viding the required framework to
build an extension of the ScaLAPA CK library [3] ca-
pable of running on top of HNOWs or non-dedicated
parallel machines.

The rest of the paper is organized as follo ws. In
Section 2 w e discussthe framework for implementing
our heterogeneous kernels, and w ebrie
y review the
existing literature. In Section 3 we summarize existing
algorithms for matrix multiplication and dense linear
solv ers on 2D (homogeneous) grids. In Section 4 w e
propose data allocation strategies for implementing the
previous kernels on 2D heterogeneous grids. We giv e
some �nal remarks and conclusions in Section 5. Note
that w edo not report an yMPI experiments in this
paper: these are available in the companion paper [4].

1

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



2. F ramework

2.1. Static Versus Dynamic Strategies

Because w eha vea library designer's approach, w e
target static strategies to allocate data and computa-
tions to the processors. In fact, distributing the com-
putations (together with the associated data) can be
performed either dynamically or statically ,or a mix-
ture of both. On one hand, w emay think that dy-
namic strategies are likely to perform better, because
the machine loads will be self-regulated, hence self-
balanced, if processors pick up new tasks just as they
terminate their current computation. How ev er,data
dependences, communication costs and con trol over-
head may w ell lead to slow the whole process do wn
to the pace of the slow estprocessors. On the other
hand, static strategies will suppress (or at least mini-
mize) data redistributions and control o verhead during
execution. F urthermore, in the context of a numerical
library ,static allocations seem to be necessary for a
simple and eÆcient data allocation.

How ev er,to be successful, static strategies must
obey a more re�ned model than standard block-cyclic
distributions: suc h distributions are well-suited to pro-
cessors of equal speed but lead to a great load imbal-
ance betw een processors of di�erent speed.

2.2. Machine Model

Our machine model is either a heterogeneous net-
w orkof w orkstationsof di�erent speeds, or a paral-
lel computer with multiple users. In this latter case,
w eassume di�erent loads on the di�erent processors,
thereby considering the parallel computer as a hetero-
geneous machine (and calling it a HNOW as well). In
both cases, we have to model the communication links.
F or HNOWS interconnected with a standard Ethernet
net w ork, all communications are inherently sequential,
while for Myrinet or switc hednet w orks,independent
communications can take place in parallel. In all cases,
w e consider that the communications performed by one
processor are sequential.

In any case, we will con�gure the HNOW as a (vir-
tual) 2D grid for scalability reasons [7]. We come back
to this point in Section 3 when describing the w ell-
kno wnbloc kedmatrix multiplication and LU or QR
decomposition algorithms.

2.3. Related Work

Due to the lack of space, w erefer to the extended
version of this paper 1 for a discussion of related work.

3. Linear Algebra Kernels on 2D Grids

In this section w ebrie
y recall the algorithms im-
plemented in the ScaLAPA CKlibrary [3] on 2D ho-
mogeneous grids. Then we discuss how to modify the
tw o-dimensional block-cyclic distribution which is used
in ScaLAPA CK to cope with 2D heterogeneous grids.

3.1. Matrix-matrix Multiplication

3.1.1 Homogeneous Grids

For the sake of simplicity we restrict to the multiplica-
tion C = AB of tw o squaren � n matrices A and B.
In that case, ScaLAPA CK uses the outer product algo-
rithm described in [1, 13 , 15]. Consider a 2D processor
grid of size p� q.

Assume �rst that n = p = q. In that case, the
three matrices share the same layout o ver the 2D grid:
processor Pi;j stores ai;j , bi;j and ci;j . Then at eac h
step k,

� eac h processorPi;k (for all i 2 f1; ::; pg) horizon-
tally broadcasts ai;k to processors Pi;�.

� eac h processorPk;j (for all j 2 f1; ::; qg) vertically
broadcasts bk;j to processors P�;j .

so that each processor Pi;j can independently compute
ci;j+ = ai;k � bk;j .

This algorithm is used in the current version of the
ScaLAPA CK library because it is scalable, eÆcient and
it does not need any initial permutation (unlike Can-
non's algorithm [15 ]). Moreover, on a homogeneous
grid, broadcasts are performed as independent ring
broadcasts (along the rows and the columns), hence
they can be pipelined.

Of course, ScaLAPA CKuses a bloc kedversion of
this algorithm to squeeze the most out state-of-the-art
processors with pipelined arithmetic units and multi-
lev el memory hierarc hy[12 , 7]. Each matrix coeÆ-
cien t in the description abo veis replaced by a r � r

square bloc k, where optimal values of r depend on
the communication-to-computation ratio of the target
computer.

Finally, a lev el of virtualization is added: usually,
the number of bloc ksdn

r
�edn

r
e is muc h greater than

1Av ailable atwww.ens-lyon.fr/~yrobert.

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



the n umber of processors p� q. Thus blocks are scat-
tered in a cyclic fashion along both grid dimensions, so
that each processor is responsible for updating several
bloc ks at each step of the algorithm.

3.1.2 Heterogeneous Grids

Suppose now we have a p�q grid of heterogeneous pro-
cessors. Instead of distributing the r� r matrix blocks
cyclically along each grid dimension, we distribute block
panels cyclically along eac h grid dimension. A bloc k
panel is a rectangle of consecutive Bp�Bq r�r bloc ks.
See Figure 1 for an example with Bp = 4 and Bq = 3:
this panel of 12 r � r bloc ks will be distributed cycli-
cally along both dimensions of the 2D grid. The previ-
ous cyclic dimension for homogeneous grids obviously
corresponds to the case Bp = p and Bq = q. Now,
the distribution of individual blocks is no longer purely
cyclic but remains periodic. We illustrate in Figure 2
ho w block panels are distributed on the 2D-grid.

1 1 2

1 1 2

1 1 2

3 3 6

Bq = 3

Bp = 4

Figure 1. A block panel with Bp = 4 and
Bq = 3. Each processor is labeled by its
cycle-time, i.e the (normalized) time it needs
to compute one r� r block: the processor la-
beled 1 is twice faster than the one labeled 2,
hence it is assigned twice more blocks within
each panel.

How many r � r bloc ks should be assigned to each
processor within a panel ? In tuitiv ely, as in the case of
uni-dimensional grids, the workload of each processor
(i.e. the number of bloc kper panel it is assigned to)
should be inversely proportional toits cycle-time. In
the example of Figure 1, we have a 2�2 grid of proces-
sors of respective cycle-time t1;1 = 1, t1;2 = 2, t2;1 = 3
and t2;2 = 6. The allocation of the Bp�Bq = 4�3 = 12
bloc ks of the panel perfectly balances the load amongst
the four processors.

There is an important condition to enforce when as-
signing blocks to processors within a block panel. We
w an t eac h processor inthe grid to communicate only
with its four direct neighbors. This implies that each

1 1

11

1 1

3 3 6

2

2

2

1 1

11

1 1

3 3 6

2

2

2 1 1

11

1 1

3 3 6

2

2

2

1 1

11

1 1

3 3 6

2

2

2 1 1

11

1 1

3 3 6

2

2

2 1

1

1

3

1

1

1

3

1 1

11

1 1

3 3 6

2

2

2

1 1

11 2

2 1

1

1 1

11 2

21 1

11 2

2

Figure 2. Allocating 4�3 panels on a 2�2 grid
(processors are labeled by their cycle-time).
There is a total of 10� 10 matrix blocks.

processor in a grid row is assigned the same number of
matrix rows. Similarly, eac h processor in a grid column
must be assigned the same number of matrix columns.
If these conditions do not hold, additional communica-
tions will be needed, as illustrated in Figure 3.

T ranslated in terms ofr�r matrix blocks, the above
conditions mean that each processor Pij , 1 � j � q in
the i-th grid row must receive the same number ri of
bloc ks.Similarly, Pij , 1 � i � p must receive cj bloc ks.
This condition does hold in the example of Figure 2,
hence each processor only communicates with its direct
neighbors.

Unfortunately, and in con trast with the uni-
dimensional case, the additional constraints induced by
the communication pattern may well prev ent to achiev e
a perfect load balance amongst processors. Coming
bac kto Figure 1, w edid achiev ea perfect load bal-
ance, owing to the fact that the processor cycle-times
could be arranged in the rank-1 matrix

�
t11 t12
t21 t22

�
=

�
1 2
3 6

�
:

For instance, change the cycle-time of P2;2 in to t22 =
5. If we keep the same allocation as in Figure 1, P22
remains idle every sixth time-step. Note that there is
no solution to perfectly balance the work. Indeed, let
r1, r2, c1 and c2 be the number of blocks assigned to
eac h row and column grid. Processor Pij computes
ri � cj bloc ks in timeri � cj � tij . To have a perfect

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



load balance, we have to ful�ll the following equations:

r1�t11�c1 = r1�t12�c2 = r2�t21�c1 = r2�t22�c2

that is r1c1 = 2r1c2 = 3r2c1 = 6r2c2:

We deriv ec1 = 2c2, then r1 = 3r2 =
5
2r2, hence a con-

tradiction. Note that we have not taken in to account
the additional condition (r1+r2)�(c1+c2) = 12, stat-
ing that there are 12 bloc kswithin a bloc kpanel: it
is impossible to perfectly load-balance the work, what-
ev er the size of the panel.

If w e relax the constraints on the communication
pattern, w e can achiev ea perfect load-balance as
follo ws: �rst w e balance the load in eac h proces-
sor column independently (using the uni-dimensional
scheme); next w ebalance the load betw eencolumns
(using the uni-dimensional scheme again, w eigh ting
eac h column by the inverseof the harmonic mean of
the cycle-times of the processors within the column, see
belo w).This is the \heterogeneous block cyclic distri-
bution" of Kalinov and Lastovetky [14], which leads to
the solution of Figure 3. Because processor P2;2 has
two west neighbors instead of one, at each step of the
algorithm it is involv edin tw ohorizontal broadcasts
instead of one.

1

1

1

1

1

1

53

2

2

2

2

2

3

5

2

Figure 3. The distribution of Kalinov and Las-
tovetky. Two consecutive columns are rep-
resented here. Processors have two west
neighbors instead of one.

We use the example to explain with further details
ho w the heterogeneous block cyclic distribution of Kali-
no v and Lastovetky [14 ] w orks. First they balance
the load in each processor column independently, using
the uni-dimensional scheme. In the example there are
tw o processors in the �rst grid column with cycle-times
t11 = 1 and t21 = 3, so P11 should receive three times
more matrix rows than P21. Similarly for the second

grid column, P12 (cycle-time t12 = 2) should receiv e
5 out of ev ery 7 matrix rows, while P22 (cycle-time
t22 = 5) should receive the remaining 2 rows. Next how
to distribute matrix columns? The �rst grid column
operates as a single processor of cycle-time 2 1

1+ 1

3

= 3
2 .

The second grid column operates as a single processor
of cycle-time 2 1

1

2
+ 1

5

= 20
7 . So out of ev ery 61 matrix

columns we assign 40 to the �rst processor column and
21 to the second processor column.

Because w eha vea library designer's approach, w e
do not wan t the n umber of horizontal and vertical com-
munications to depend upon the data distribution. F or
large grids, the number of horizontal neighbors of a
giv enprocessor cannot be bounded a priori if w euse
Kalinov and Lastovetky's approach. We enforce the
grid communication pattern (each processor only com-
municates with its four direct neighbors) to minimize
communication overhead. The price to pay is that we
ha ve to solve a diÆcult optimization problem to load-
balance the work as eÆciently as possible. Solving this
optimization problem is the objective of Section 4.

3.2. The LU and QR Decompositions

We �rst recall the ScaLAPA CKalgorithm for the
LU or QR decompositions on a homogeneous 2D-grid.
We discuss next how to implement them on a hetero-
geneous 2D-grid.

3.2.1 Homogeneous Grids

In this section we brie
y review the direct paralleliza-
tion of the right-looking varian t of the LU decomposi-
tion. We assume that the matrix A is distributed onto
a tw o-dimensional grid of (virtual)homogeneous pro-
cessors. We use a CYCLIC(b) decomposition in both di-
mensions. The right-looking varian t is naturally suited
to parallelization and can be brie
y described as fol-
lows: Consider a matrix A of order N and assume that
the LU factorization of the k � b �rst columns has pro-
ceeded with k 2

�
0; 1; : : : N�1

b

	
. During the next step,

the algorithm factors the next panel of r columns, piv-
oting if necessary. Next the pivots are applied to the re-
mainder of the matrix. The low er trapezoid factor just
computed is broadcast to the other process columns of
the grid using an increasing-ring topology, so that the
upper trapezoid factor can be updated via a triangu-
lar solv e. This factor is then broadcast to the other
process rows using a minimum spanning tree topology,
so that the remainder of the matrix can be updated
by a rank-r update. This process continues recursively
with the updated matrix. In other words, at each step,
the current panel of columns is factored into L and the

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



trailing submatrix �A is updated. The key computation
is this latter rank-b update �A  �A � LU that can be
implemented as follows:

1. The column processor that owns L broadcasts it
horizontally (so there is a broadcast in each pro-
cessor ro w)

2. The row processor that owns U broadcasts it ver-
tically (so there is a broadcast in eac h processor
column)

3. Each processor locally computes its portion of the
update

The communication volume is thus reduced to the
broadcast of the two row and column panels, and ma-
trix �A is updated in place (this is kno wn as an outer
-product parallelization). Load balance is very good.
The simplicity of this parallelization, as w ell as its
expected good performance, explains why the righ t-
looking varian ts ha ve been chosen in ScaLAPA CK [7].
See [11, 7, 2] for a detailed performance analysis of the
righ t-looking varian ts,that demonstrates their good
scalability property. The parallelization of the QR de-
composition is analogous [9, 8].

3.2.2 Heterogeneous Grids

For the implementation of the LU and QR decomposi-
tion algorithms on a heterogeneous 2D grid, we modify
the ScaLAPA CKCY CLIC(r) distribution very simi-
larly as for the matrix-matrix multiplication problem.
The in tuitiv ereason is the follo wing: as pointed out
before, the core of the LU and QR decompositions is
a rank-r update, hence the techniques for the outer-
product matrix algorithm naturally apply.

We still use block panels made up with several r� r
matrix blocks. The block panels are distributed cycli-
cally along both dimensions of the grid. The only mod-
i�cation if that the order of the blocks within a block
panel becomes important.

Consider the previous example with four processors
laid along a 2� 2 grid as follows:

�
t11 t12
t21 t22

�
=

�
1 2
3 5

�
:

Say we use a panel with Bp = 8 ad Bq = 6, i.e. a panel
composed of 48 blocks. Using the methods described
belo w (see Section 4), we assign the blocks as follows:

� Within each panel column, the �rst processor row
receiv es 6 bloc ksand the second processor rows
receiv es 2 blocks

� Out of the 6 panel columns, the �rst grid column
receiv es 4 and the second grid column receive 2 of
them

This allocation is represented in Figure 4. We need to
explain how w e have allocated the six panel columns.
F or the matrix multiplication problem, the ordering of
the blocks within the panel was not important, because
all processors execute the same amount of (indepen-
den t) computations at each step of the algorithm. F or
the LU and QR decomposition algorithms, the order-
ing of the columns is quite important. In the example,
the �rst processor column operates like 6 processors of
cycle-time 1 and 2 processors of cycle-time 3, which
is equivalen t to a single processorA of cycle-time 3

20 ;
the second processor column operates like 6 processors
of cycle-time 2 and 2 processors of cycle-time 5, which
is equivalen t to a single processorB of cycle-time 5

17 .
The uni-dimensional algorithm allocates the six panel
columns as ABAABA, and we retriev e the allocation
of Figure 4.

1 112 1 2

1 112 1 2

1 112 1 2

1 112 1 2

1 112 1 2

1 112 1 2

3

335 3 53

3 5 3 5 3

Bq = 6

Bp = 8

Figure 4. Allocation of the blocks within a
block panel with Bp = 8 and Bq = 6. Each
processor of the 2 � 2 grid is labeled by its
cycle-time.

T oconclude this section, w eha vea diÆcult load-
balancing problem to solv e. First w e do not kno w
which is the best layout of the processors, i.e. ho w
to arrange them to build an eÆcient 2D grid. In some
cases (rank-1 matrices) we are able to load-balance the
w orkperfectly ,but in most cases it is not the case.
Next, once the grid is built, we have to determine the
number of bloc ksthat are assigned to eac h processor
within a bloc k panel. Again, this must be done so

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



as to load-balance the w ork,because processors have
di�erent speeds. Finally, the panels are cyclically dis-
tributed along both grid dimensions. The rest of the
paper is dev otedto a solution to this diÆcult load-
balancing problem.

4. Solving the 2D Heterogeneous Grid

Allocation Problem

4.1. Problem Statement and Formulation

Consider n processors P1; P2; : : : ; Pn of respective
cycle-times t1; t2; : : : ; tn. The problem is to arrange
these processors along a tw o-dimensionalgrid of size
p�q � n, in order to compute the product Z = XY of
tw oN �N matrices as fast as possible. We need some
notations to formally state this objective.

Consider a given arrangement of p�q � n processors
along a tw o-dimensional grid of sizep � q. Let us re-
number the processors as Pij , with cycle-time tij , 1 �
i � p; 1 � j � q. Assume that processor Pij is assigned
a bloc kof ri rows and cj columns of data elements,
meaning that it is responsible for computing ri � cj
elements of the Z matrix: see Figure 5 for an example.

P14

P34P32P31

P11 P12 P13

P23

P33

P22P21

c1 c2 c4

r3

r1

r2

c3

P24

Figure 5. Allocating computations to proces-
sors on a 3� 4 grid.

There are tw o (equivalen t) w ays to compute the ef-
�ciency of the grid:

� Processor Pij is scheduled to evaluate rectangular
data block ri � cj of the matrix Z, which it will
process within ri�cj�tij units of time. The total
execution time Texe is tak en o ver all processors:

Texe = max
i;j
fri � tij � cjg:

Texe must be normalized to the average time Tave
needed to process a single data element: since

there is a total of N2 elements to compute, w e
enforce that

Pp

i=1 ri = N and that
Pq

j=1 cj = N .
We get

Tave =
maxi;jfri � tij � cjg

(
Pp

i=1 ri)�
�Pq

j=1 cj

� :

We are looking for the minimum of this quantity
over all possible integer v aluesri and cj . We can
simplify the expression for Tave by searc hing for
(nonnegative) rational values ri and cj which sum
up to 1 (instead of N):
Objective Obj1: min

(
P

i ri=1;
P

j cj=1)
fri � tij � cjg

Given the rational values ri and cj returned by
the solution of the optimization problem Obj1,
w e scale them by the factor N to get the �nal
solution. We may ha veto round up some val-
ues, but w edo so while preserving the relationPp

i=1 ri =
Pq

j=1 cj = N . Stating the problem as
Opt1 renders its solution generic, i.e. independent
of the parameter N .

� Another way to tac kle the problem is the following:
what is the largest number of data elements that
can be computed within one time unit? Assume
again that each processor Pij of the p � q grid is
assigned a block of ri rows and cj columns of data
elements. We need to ha veri � tij � cj � 1 to
ensure that Pij can process its bloc kwithin one
cycle. Since the total number of data elements

being processed is (
Pp

i=1 ri)�
�Pq

j=1 cj

�
, we get

the (equivalen t) optimization problem:

Objective Obj2: max
ri�tij�cj�1

f(
X
i

ri)� (
X
j

cj)g

Again, the rational values ri and cj returned by
the solution of the optimization problem Obj2 can
be scaled and rounded to get the �nal solution.

Although there are p+ q variables ri and cj , there
are only p+q�1 degrees of freedom: if we multiply
all ri's by the same factor � and divide all cj by
�, nothing changes in Obj2. In other w ords,w e
can impose r1 = 1, for instance, without loss of
generality.

We can further manipulate Obj2 as follo ws:

max
ri�tij�cj�1

f(

pX
i=1

ri)� (

qX
j=1

cj)g

= max
ri
f max
cjwithri�tij�cj�1

f(

pX
i=1

ri)� (

qX
j=1

cj)gg

= max
ri
f(

pX
i=1

ri)� max
cjwithri�tij�cj�1

f(

qX
j=1

cj)gg

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



= max
ri
f(

pX
i=1

ri)� max
cj�

1

ri�tij

f(

qX
j=1

cj)gg

= max
ri
f(

pX
i=1

ri)� (

qX
j=1

min
i
f

1

ri � tij
g)g

= max
ri
f(

pX
i=1

ri)� (

qX
j=1

1

maxifri � tijg
)g

We obtain an expression with only p variables (and
p�1 degrees of freedom). This last expression does
not look very friendly, though. Solving this opti-
mization problem, optimally or through an heuris-
tic, is the main objective of Section 4.3.

The 2D load-balancing problem In the next sec-
tions we giv e a solution to the 2D load-balancing prob-
lem which can be stated as follo ws: giv enn = p � q

processors, how to arrange them along a 2D grid of size
p � q so as to optimally load-balance the w ork of the
processors for the matrix-matrix multiplication prob-
lem. Note that solving this problem will in fact lead to
the solution of many linear algebra problems, including
dense linear system solvers.

The problem is even more diÆcult to tackle than the
optimization problem stated above, because we do not
assume the processors arrangement as giv en.We searc h
among all possible arrangements (layouts) of thep� q

processors as a p�q grid, and for each arrangement we
must solve the optimization problem Obj1 or Obj2.

We start with a useful result to reduce the number of
arrangements to be searched. Next we deriv e an algo-
rithm to solve the optimization problem Obj1 or Obj2
for a �xed (given) arrangement. Despite the reduction,
w estill ha vean exponential number of arrangements
to searc h for. Even w orse, for a �xed arrangement,
our algorithm exhibits an exponential cost. Therefore
we introduce a heuristic to give a fast but sub-optimal
solution to the 2D load-balancing problem.

Conjecture Because of its highly combinatorial na-
ture, we believe that (the decision problem associated
to) the 2D load-balancing problem is NP-complete.

4.2. Reduction to Non-Decreasing Arrangements

The arrangement of the processors along the grid
is a degree of freedom of the problem. F or example
when using a Myrinet netw ork [10] we can de�ne every
desired topology for a �xed degree (number of neigh-
bors) of the in terconnection graph. Hence, �nding a
good arrangement is a key step of the load-balancing
problem.

In this section, w e sho w that w e do not ha veto
consider all the possible arrangements; instead, we re-
duce the search to \non-decreasing arrangements". A
non-decreasing arrangement on a p � q grid is de�ned
as follo ws: in ev ery grid row, the cycle-times are in-
creasing: tij � ti;j+1; 1 � j � q � 1. Similarly,
in ev ery grid column, the cycle-times are increasing:
tij � ti+1;j ; 1 � i � p� 1.

Theorem 1 There exists a non-increasing arrange-
ment which is optimal.

Proof See the extended version of the paper. �

4.3. Solution for a Given Arrangement

In this section, we show how to solve the optimiza-
tion problem Obj1 or Obj2 for a giv en arrangement.
F or small size problems, all the possible non-decreasing
arrangements can be generated, hence we have an ex-
ponential but feasible solution to the 2D load balancing
problem. Let � be a given arrangement on a p�q grid,
and let r1; : : : ; rp and c1; : : : ; cq be the solution to the
optimization problem Obj1

4.3.1 Spanning Trees

Consider the optimization problem Obj1. We
ha ve to maximize the quadratic expression
(
P

1�i�p ri)(
P

1�j�q cj) under p � q inequalities
ritijcj � 1. We have p+ q� 1 degrees of freedom. The
objective of this section is to sho w that for at least
p + q � 1 inequalities are in fact equalities. We use a
graph-oriented approach to this purpose.

We consider the follo wing bipartite graph G =
(V ; E). There are p + q vertices labeled with ri and
cj and the graph is complete. The weigh t of the edge
(ri; cj) is tij . Given a spanning tree T = (V ; E 0) of the
graph G, if w estart from r1 = 1, w ecan (uniquely)
determine all the values of the ri and cj by follo wing
the edges of T , enforcing the equalities

8(ri; cj) 2 E
0; riti;jcj = 1:

The spanning tree T is said to be acceptableif and only
if all the remaining inequalities are satis�ed: 8(ri; cj) 2
E ; riti;jcj = 1:. The value of an acceptable spanning
tree is (

P
ri)(
P

cj). We claim that the solution of
Obj1 is obtained with the acceptable spanning tree of
maximal value. This leads to the following algorithm:

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



Algorithm We generate all the spanning trees of G.
F or a given tree T , w e �rst impose thatr1 = 1, then
by walking on the tree we �nd the values for the other
ri and cj . F or example, if c3 is connected to r1 in
T , then w etak e c3 = 1

r1t13
. When w eha vea value

for all ri and cj , w e chec k if the tree is acceptable.
Finally, w eselect the acceptable tree that maximizesP

1�i�p ri
P

1�j�q cj .
The correctness of this algorithm is shown in the ex-

tended version of the paper, where we also give anan-
lytical solution for a 2�2 grid. Given an arrangement,
w e are able to compute the solution to the optimization
problem. The cost is exponential because there is an
exponential n umber of spanning trees to chec k for ac-
ceptability. Still, our method is constructive, and can
be used for problems of limited size.

4.3.2 Rank-1 Matrices

If the matrix (tij)1�i�p;1�j�q is a rank-1 matrix, then
the optimal arrangement for the 2D load-balancing
problem is easy to determine. Assume without loss
of generality that t11 = 1. We let r1 = c1 = 1, ri =

1
ti1

for 2 � i � p and cj =
1
t1j

for 2 � i � q. All the p� q

inequalities ritijcj are equalities, which means that all
processors are fully utilized:

ritijcj =
1

ti1
tij �

1

tj1
tij = 1;

because the 2�2 determinant

���� t11 t1j
ti1 tij

���� is zero (with
t11 = 1). No idle time occurs with such a solution, the
load-balancing is perfect.

Unfortunately, giv enp�q in tegers, it is v ery diÆcult
to kno wwhether they can be arranged in to a rank-1
matrix of size p�q. If suc h an arrangement do not exist,
w e can intuitiv ely sa y that the optimal arrangement is
the \closest one" to a rank-1 matrix.

4.4. Polynomial Heuristic

In this section, w e studya polynomial heuristic to
�nd an arrangement of the processors (and a solution
to the corresponding optimization problem) that leads
to a good load-balancing. The polynomial heuristic is
based on the approximation of the arrangement matrix
by a rank-1 matrix, for which the problem can easily
be solved (see 4.3.2).

4.4.1 Arrangement of the processors

We are given the processors cycle times as input to the
heuristic. We arrange the processors cycle times in the

matrix T as follo ws
�
8i; 81 � j < q; ti;j � ti;j+1

81 � i < p; ti;q � ti+1;1
:

This arrangement usually leads to an arrangement ma-
trix T which is close to a rank-1 matrix.
F or instance, if w econsider the case of 9 processors
with cycle times 1; 2; : : : ; 9, the arrangement matrix T

w e obtain is

T =

0
@ 1 2 3

4 5 6
7 8 9

1
A :

4.4.2 Computing the ri's and the cj's

As noticed abo ve(see 4.3.2), the computation of the
ri's and the cj 's is ob vious whenT is a rank-1 matrix.
Our aim is to approximate T by a rank-1 matrix and
then to compute the ri's and the cj 's corresponding
to this matrix. Let us denote by USV t = T inv the
singular value decomposition of T inv, where T inv =
( 1
ti;j

)i;j . It is kno wnthat the best approximation (in

the sense of the l2-norm) of T inv by a rank-1 matrix is
giv en b ysabt, where a and b are respectively the left
and right singular vectors associated to s, the largest
singular value of T inv. Thus, if we set

�
8i; ri = sai
8j; cj = bj

;

w e can expect that

8i; j; riti;jcj ' 1:

We consider T inv rather than T since the approxi-
mation by the rank-1 matrix is usually better on the
largest components. This way, we better approximate
the components of T corresponding to processors with
low time cycle. In order to ensure that the inequalities
riti;jcj � 1 are ful�lled, we divide each cj by the largest
component of the jth column of the matrix riti;jcj .
Then, in order to avoid idle time, w edivide eac h ri
by the largest component of the ith ro w of the matrix
riti;jcj . Thus, we obtain two vectors r and c satisfying
8i; j; riti;jcj � 1 , and such that

�
8i; 9j riti;jcj = 1
8j; 9i riti;jcj = 1

:

Consider again the matrix

T =

0
@ 1 2 3

4 5 6
7 8 9

1
A :

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



We obtain r =

0
@ 1:1661

0:3675
0:2100

1
A, c =

0
@ 0:6803

0:4288
0:2859

1
A ; and

B = (riti;jcj)i;j =

0
@ 0:7933 1 1

1 0:7879 0:6303
1 0:7203 0:5402

1
A :

The mean value of B is 0:8302, what means that on
average, the processors work 83:02% of time, and the
value of the objective function (

P
ri)(
P

cj) is 2:4322.

4.4.3 Iterative re�nement

In this section, w epropose an iterativ ere�nement in
order to obtain a better arrangement of the processors
(and a better solution to the corresponding optimiza-
tion problem). In order to determine the new arrange-
ment matrix, we compute the matrix T opt = ( 1

ri cj
)i;j .

T opt is a rank-1 matrix whose components are the pro-
cessor cycle times that are optimal with respect to the
vectors r and c computed in 4.4.2. In the case of our
example, we obtain

T opt =

0
@ 1:2606 2:0000 3:0000

4:0000 6:3464 9:5195
7:0000 11:1061 16:6592

1
A :

This suggests to choose another arrangement matrix
T for the processor cycle times, that better �ts to the
matrix T opt. More precisely, we deriv e the new matrix
T from the following conditions

8i; j; k; l; ti;j � tk;l () t
opt
i;j � t

opt
k;l :

Then, w ecompute the ri's and the cj 's as sho wn in
4.4.2 and we restart the process. We consider that the
process has converged when no modi�cation occurs in
the matrix T . In our example, after the second step,
the arrangement matrix T becomes

T =

0
@ 1 2 3

4 5 7
6 8 9

1
A

and the value of the objective function (
P

ri)(
P

cj)
is 2:5065 (instead of 2:4322). Convergence is obtained
after three steps. The value of the objective function
(
P

ri)(
P

cj) is then 2:5889 and the corresponding ar-
rangement matrix is

T =

0
@ 1 2 3

4 6 8
5 7 9

1
A :

4.4.4 Numerical results

In this section, we present the results of our algorithm
for processors with random cycle times in [0; 1]. We

consider the arrangement of n2 processors into a n�n

grid. Figure 6 displays the evolution with n of the aver-
age work load (the mean value of B) of the processors,
when convergence has been reached. Figure 7 displays
the ev olution withn of the ratio

� =
((
P

ri)(
P

cj))after convergence

((
P

ri)(
P

cj))after the �rst step
� 1:

Finally, Figure 8 displays the ev olution with n of the
average number of steps necessary to reac h con ver-
gence.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

size of of the grid

av
er

ag
e 

w
or

k 
lo

ad

Figure 6. Average workload.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

size of of the grid

ra
tio

Figure 7. Evolution of the ratio � .

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

size of of the grid

av
er

ag
e 

nu
m

be
r 

of
 it

er
at

io
ns

Figure 8. Number of iterations.

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



4.4.5 Concluding remarks on the polynomial

heuristic

The polynomial heuristic gives satisfying results. Nev-
ertheless, the algorithm does not converge to an opti-
mal solution with respect to the optimization problem.
Moreover, it seems that the number of steps of the iter-
ativ e process grows with n, and therefore involv es more
than O(n3) 
ops with n2 processors (nevertheless, one
usually obtain satisfying results after a few steps only).

5. Conclusion

In this paper, w eha vediscussed static allocation
strategies to implement matrix-matrix products and
dense linear system solvers on heterogeneous comput-
ing platforms. Extending the standard ScaLAPA CK
bloc k-cyclic distribution to heterogeneous 2D grids
turns out to be surprisingly diÆcult. In most cases,
a perfect balancing of the load betw een all processors
cannot be achiev ed,and deciding ho wto arrange the
processors along the 2D grid is a challenging problem.
But we have formally stated the optimization problem
to be solved, and we have presented both an exact solu-
tion (with exponential cost) and a polynomial heuristic.

References

[1] R. Agarwal, F. Gustavson, and M. Zubair. A high
performance matrix m ultiplication algorithm on a
distributed-memory parallel computer, using over-
lapped communication. IBM J. Research and Devel-
opment, 38(6):673{681, 1994.

[2] L. Blac kford, J. Choi, A. Cleary , J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. P etitet, K. Stanley ,D. Walk er, and R. C. Wha-
ley. Scalapack: A portable linear algebra library for
distributed-memory computers - design issues and per-
formance. In Sup ercomputing '96. IEEE Computer So-
ciety, 1996.

[3] L. S. Blac kford, J. Choi, A. Cleary ,E. D'Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walk er, and R. C.
Whaley. ScaLAPA CK Users' Guide. SIAM, 1997.

[4] V. Boudet, A. P etitet, F. Rastello, and Y. Robert.
Data allocation strategies for dense linear algebra ker-
nels on heterogeneous tw o-dimensional grid. InPar al-
lel and Distributed Computing and Systems confer ence
(PDCS'99), pages 561{569. IASTED Press, 1999.

[5] V. Boudet, F. Rastello, and Y. Robert. Algorithmic
issues for (distributed) heterogeneous computing plat-
forms. In R. Buyya and T. Cortes, editors, Cluster
Computing Technolo gies, Environments, and Applica-
tions (CC-TEA'99). CSREA Press, 1999. Extended
version a vailable as LIP Technical Report RR-99-19.

[6] V. Boudet, F. Rastello, and Y. Robert. A proposal
for a heterogeneous cluster ScaLAPA CK (dense linear
solv ers). In H. R. Arabnia, editor, International Con-
ference on Par alleland Distributed Pr ocessingT ech-
niques and Applications (PDPTA'99). CSREA Press,
1999. Extended version a vailable as LIP Technical Re-
port RR-99-17.

[7] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Os-
trouc ho v, A. Petitet, K. Stanley, D. Walk er, and R. C.
Whaley. ScaLAPA CK:A portable linear algebra li-
brary for distributed memory computers - design is-
sues and performance. Computer Physics Communi-
cations, 97:1{15, 1996. (also LAPA CK Working Note
#95).

[8] J. Choi, J. Dongarra, S. Ostroucho v, A. P etitet,
D. Walk er, and R. C. Whaley. The design and imple-
mentation of the ScaLAPA CK LU, QR, and Cholesky
factorization routines. Scienti�c Programming, 5:173{
184, 1996.

[9] E. Chu and A. George. QR factorization of a dense
matrix on a hypercube multiprocessor. SIAM Journal
on Scienti�c and Statistical Computing, 11:990{1028,
1990.

[10] D. E. Culler and J. P. Singh. Par allel Computer Ar-
chitecture: A Har dwar e/Software Approach. Morgan
Kaufmann, San Francisco, CA, 1999.

[11] J. Dongarra, R. van de Geijn, and D. Walk er. Scala-
bility issues in the design of a library for dense linear
algebra. Journal of Parallel and Distributed Comput-
ing, 22(3):523{537, 1994.

[12] J. J. Dongarra and D. W. Walk er. Soft w are libraries
for linear algebra computations on high performance
computers. SIAM Review, 37(2):151{180, 1995.

[13] G. Fox, S. Otto, and A. Hey. Matrix algorithms on a
hypercube i: matrix multiplication. Par allel Comput-
ing, 3:17{31, 1987.

[14] A. Kalinov and A. Lasto vetsky .Heterogeneous dis-
tribution of computations while solving linear algebra
problems on netw orks of heterogeneous computers. In
P . Sloot, M. Bubak, A. Hoekstra, and B. Hertzberger,
editors, HPCN Europe 1999, LNCS 1593, pages 191{
200. Springer Verlag, 1999.

[15] V. Kumar, A. Grama, A. Gupta, and G. Karypis.
Introduction to Par allel Computing. The Ben-
jamin/Cummings Publishing Company, Inc., 1994.

0-7695-0574-0/2000 $10.00 � 2000 IEEE 


