Load Balancing Strategies for Dense Linear Algebra Kernels on Heterogeneous Two-dimensional Grids

Olivier Beaumont, Vincent Boudet, F abrice Rastello and Yes Robert
LIP, UMR CNRS-ENS Lyon-INRIA 5668
Ecole Normale Sup érieure de Lyon
F-69364 Lyon Cedex 07
Firstname.Lastname@ens-lyon.fr

Abstract

We study the implementation of dense linear algebra computations, such as matrix multiplication and linear system solvers, on two-dimensional (2D) grids of heterogene ousprocessors. F or these op erations, $2 D$-grids are the key to scalability and efficiency. The uniform blo ck-cyclic data distribution scheme commonly use d for homogene ous collections of processors limits the performance of these operations on heterogene ous grids to the speed of the slowest processor. We present and study more sophisticated data allocation strate gies that balance the lo ad on hetengene ous 2D-grids with espect to the performance of the processors. The usefulness of these str ate gies is demonstate d by simulation measur ements for a hetero gene ous network of workstations.

Key words: heterogeneous network, heterogeneous grid, different-speed processors, loadbalancing, data distribution, data allocation, n umerical libraries.

1. Introduction

Heterogeneous netw orks of w orkstations (HNOWs) are ubiquitous in university departments and companies. They represent the typical poor man's parallel computer: running a large PVM or MPI experiment (possibly all night long) is a cheap alternative to buying supercomputer hours. The idea is to make use of all available resources, namely slov er madhines as well as more recent ones. In addition, parallel machines used in a multi-user environment exhibit the very characteristics of a HNOW: different loads imply different processor speeds when running a parallel application, even though all processors are iden tical. Note that multi-
user parallel machines are in teresting in this con text because they may exhibit a better communication-tocomputation ratio than Ethernet-based netw orks.

The major limitation to programming heterogeneous platforms arises from the additional difficulty of balancing the load when using processors running at different speed. In this paper, we explore several possibilities to implement linear algebra kernels on HNOWs. We ha ve beenexploring data allocation strategies for HNOWs arranged as a uni-dimensional (linear) array in previous papers [5, 6]. Arranging the processors along a tw o-dimensional grid turns out to be surprisingly difficult. There are tw o complicated problems to sole: (i) ho wto arrange the heterogeneous processors along a 2D-grid; (ii) how to distribute matrix blocks to the processors once the grid is built. The major contribution of this paper is to provide an efficient solution to both problems, thereby pro viding the required framewrk to build an extension of the ScaLAPA CK library [3 capable of running on top of HNOWs or non-dedicated parallel machines.

The rest of the paper is organized as follo ws. In Section 2 w e discussthe framework for implementing our heterogeneous kernels, and w ebriefly review the existing literature. In Section 3 we summarize existing algorithms for matrix multiplication and dense linear solv ers on 2D (homogeneous) grids. In Section 4 we propose data allocation strategies for implementing the previous kernels on 2D heterogeneous grids. We give some final remarks and conclusions in Section 5. Note that w edo not report an y MPI experiments in this paper: these are available in the companion paper [4].

2. F ramevork

2.1. Static Versus Dynamic Strategies

Because w eha vea library designer's approach, we target static strategies to allocate data and computations to the processors. In fact, distributing the computations (together with the associated data) can be performed either dynamically or statically ,or a mixture of both. On one hand, we may think that dynamic strategies are likely to perform better, because the machine loads will be self-regulated, hence selfbalanced, if processors pick up new tasks just as they terminate their current computation. How ev er, data dependences, communication costs and con troloverhead may w ell lead to slow the whole process do wn to the pace of the slow estprocessors. On the other hand, static strategies will suppress (or at least minimize) data redistributions and control o verhead during execution. F urthermore, in the cortext of a numerical library ,static allocations seem to be necessary for a simple and efficient data allocation.

How ev er, to be successful, static strategies must obey a more refined model than standard block-cyclic distributions: such distributions are well-suited to processors of equal speed but lead to a great load imbalance betw een processors of differert speed.

2.2. Machine Model

Our machine model is either a heterogeneous netw ork of w orkstations of different speeds, or a parallel computer with multiple users. In this latter case, w eassume different loads on the different processors, thereby considering the parallel computer as a heterogeneous machine (and calling it a HNOW as well). In both cases, we have to model the communication links. F or HNOWS interconnected with a standard Ethernet net w ork, all commnications are inherently sequential, while for Myrinet or switc hednet w orks, independent communications can take place in parallel. In all cases, w e consider that the communications performed by one processor are sequential.

In any case, we will configure the HNOW as a (virtual) 2D grid for scalability reasons [7]. We come back to this point in Section 3 when describing the w ellkno wnbloc kedmatrix multiplication and LU or QR decomposition algorithms.

2.3. Related Work

Due to the lack of space, w erefer to the extended version of this paper ${ }^{1}$ for a discussion of related work.

3. Linear Algebra Kernels on 2D Grids

In this section webriefly recall the algorithms implemented in the ScaLAPA CKlibrary [3] on 2D homogeneous grids. Then we discuss how to modify the tw o-dimensional blok-cyclic distribution which is used in ScaLAPA CK to cope with 2D heterogeneous grids.

3.1. Matrix-matrix Multiplication

3.1.1 Homogeneous Grids

F or the sale of simplicity we restrict to the multiplication $C=A B$ of tw o squaren $\times n$ matrices A and B. In that case, ScaLAPA CK uses the outer product algorithm described in [1, 13, 15]. Consider a 2 D processor grid of size $p \times q$.

Assume first that $n=p=q$. In that case, the three matrices share the same lay out o ver the 2 D grid: processor $P_{i, j}$ stores $a_{i, j}, b_{i, j}$ and $c_{i, j}$. Then at each step k,

- each processor $P_{i, k}$ (for all $i \in\{1, . ., p\}$) horizontally broadcasts $a_{i, k}$ to processors $P_{i, *}$.
- each processor $P_{k, j}$ (for all $j \in\{1, . ., q\}$) vertically broadcasts $b_{k, j}$ to processors $P_{*, j}$.
so that each processor $P_{i, j}$ can independently compute $c_{i, j}+=a_{i, k} \times b_{k, j}$.

This algorithm is used in the current version of the ScaLAPA CK library because it is scalable, efficiert and it does not need any initial permutation (unlike Cannon's algorithm [15]). Moreover, on a homogeneous grid, broadcasts are performed as independent ring broadcasts (along the rows and the columns), hence they can be pipelined.

Of course, ScaLAPA CK uses a bloc kedversion of this algorithm to squeeze the most out state-of-the-art processors with pipelined arithmetic units and multilev el memory hierarc hy[12, 7]. Each matrix coefficien t in the description abo veis replaced by a $r \times r$ square bloc k , where optimal values of r depend on the communication-to-computation ratio of the target computer.

Finally, a lev el of virtualization is added: usually, the number of bloc ks $\left\lceil\frac{n}{r} \times\right\rceil\left\lceil\frac{n}{r}\right\rceil$ is much greater than

[^0]the n unber of processors $p \times q$. Thus blocks are scattered in a cyclic fashion along both grid dimensions, so that each processor is responsible for updating several bloc ks at eadı step of the algorithm.

3.1.2 Heterogeneous Grids

Suppose now we have a $p \times q$ grid of heterogeneous processors. Instead of distributing the $r \times r$ matrix blocks cyclically along each grid dimension, we distribute blo ck panels cyclically along each grid dimension. A bloc k panel is a rectangle of consecutive $B_{p} \times B_{q} r \times r$ bloc ks. See Figure 1 for an example with $B_{p}=4$ and $B_{q}=3$: this panel of $12 r \times r$ bloc ks will be distributed cyclically along both dimensions of the 2D grid. The previous cyclic dimension for homogeneous grids obviously corresponds to the case $B_{p}=p$ and $B_{q}=q$. Now, the distribution of individual blocks is no longer purely cyclic but remains periodic. We illustrate in Figure 2 ho w blodk panels are distributed on the 2D-grid.

Figure 1. A block panel with $B_{p}=4$ and $B_{q}=3$. Each processor is labeled by its cycle-time, i.e the (normalized) time it needs to compute one $r \times r$ block: the processor labeled 1 is twice faster than the one labeled 2 , hence it is assigned twice more blocks within each panel.

How many $r \times r$ bloc ks should be assigned to each processor within a panel ? Intuitiv ely, as in the case of uni-dimensional grids, the workload of each processor (i.e. the number of bloc kper panel it is assigned to) should be inversely proportional toits cycle-time. In the example of Figure 1, we have a 2×2 grid of processors of respective cycle-time $t_{1,1}=1, t_{1,2}=2, t_{2,1}=3$ and $t_{2,2}=6$. The allocation of the $B_{p} \times B_{q}=4 \times 3=12$ bloc ks of the panel perfectly balances the load amongst the four processors.

There is an important condition to enforce when assigning blocks to processors within a block panel. We w ant each processor ithe grid to communicate only with its four direct neighbors. This implies that each

1	1	2	1	1	2	1	1	2	1
1	1	2	1	1	2	1	1	2	1
1	1	2	1	1	2	1	1	2	1
3	3	6	3	3	6	3	3	6	3
1	1	2	1	1	2	1	1	2	1
1 1 2	1	1	2	1	1	2	1		
1	1	2	1	1	2	1	1	2	1
3	3	6	3	3	6	3	3	6	3
1	1	2	1	1	2	1	1	2	1
1	1	2	1	1	2	1	1	2	1

Figure 2. Allocating 4×3 panels on a 2×2 grid (processors are labeled by their cycle-time). There is a total of 10×10 matrix blocks.
processor in a grid row is assigned the same number of matrix rows. Similarly, eac h processor in a grid column must be assigned the same number of matrix columns. If these conditions do not hold, additional communications will be needed, as illustrated in Figure 3.

T ranslated in terms of $r \times r$ matrix blocks, the above conditions mean that each processor $P_{i j}, 1 \leq j \leq q$ in the i-th grid row must receive the same number r_{i} of bloc ks. Similarly, $P_{i j}, 1 \leq i \leq p$ must receive c_{j} bloc ks. This condition does hold in the example of Figure 2, hence each processor only communicates with its direct neighbors.

Unfortunately, and in con trast with the unidimensional case, the additional constraints induced by the communication pattern may well prev ent to achiev e a perfect load balance amongst processors. Coming bac kto Figure 1, w e did achiev ea perfect load balance, owing to the fact that the processor cycle-times could be arranged in the rank-1 matrix

$$
\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right) .
$$

F or instance, dange the cycle-time of $P_{2,2}$ in to $t_{22}=$ 5. If we keep the same allocation as in Figure 1, P_{22} remains idle every sixth time-step. Note that there is no solution to perfectly balance the work. Indeed, let r_{1}, r_{2}, c_{1} and c_{2} be the number of blocks assigned to each row and column grid. Processor $P_{i j}$ computes $r_{i} \times c_{j}$ bloc ks in time $r_{i} \times c_{j} \times t_{i j}$. To have a perfect
load balance, we have to fulfill the following equations:

$$
\begin{gathered}
r_{1} \times t_{11} \times c_{1}=r_{1} \times t_{12} \times c_{2}=r_{2} \times t_{21} \times c_{1}=r_{2} \times t_{22} \times c_{2} \\
\text { that is } r_{1} c_{1}=2 r_{1} c_{2}=3 r_{2} c_{1}=6 r_{2} c_{2} .
\end{gathered}
$$

We deriv ec $c_{1}=2 c_{2}$, then $r_{1}=3 r_{2}=\frac{5}{2} r_{2}$, hence a contradiction. Note that we have not taken in to account the additional condition $\left(r_{1}+r_{2}\right) \times\left(c_{1}+c_{2}\right)=12$, stating that there are 12 bloc ks within a bloc kpanel: it is impossible to perfectly load-balance the work, whatev er the size of the panel.

If w erelax the constraints on the communication pattern, we can achiev ea perfect load-balance as follo ws: first we balance the load in each processor column independently (using the uni-dimensional scheme); next w ebalance the load betw een columns (using the uni-dimensional scheme again, w eigh ting each column by the in verse of the harmonic mean of the cycle-times of the processors within the column, see belo w). This is the "heterogeneous block cyclic distribution" of Kalinov and Lastov etky [14], which leads to the solution of Figure 3. Because processor $P_{2,2}$ has two west neighbors instead of one, at each step of the algorithm it is involv edin tw ohorizontal broadcasts instead of one.

\bullet	\bullet
\bullet	\bullet
1	2
1	5
1	2
3	2
1	2
1	2
1	2
3	5

Figure 3. The distribution of Kalinov and Lastovetky. Two consecutive columns are represented here. Processors have two west neighbors instead of one.

We use the example to explain with further details ho w the heterogeneous blodk cyclic distribution of Kalino v and Lastovetky [14] w orks. First they balance the load in each processor column independently, using the uni-dimensional scheme. In the example there are tw o processors in the first grid column with cycle-times $t_{11}=1$ and $t_{21}=3$, so P_{11} should receive three times more matrix rows than P_{21}. Similarly for the second
grid column, P_{12} (cycle-time $t_{12}=2$) should receiv e 5 out of ev ery 7 matrix rows, while P_{22} (cycle-time $\left.t_{22}=5\right)$ should receive the remaining 2 rows. Next how to distribute matrix columns? The first grid column operates as a single processor of cycle-time $2 \frac{1}{1+\frac{1}{3}}=\frac{3}{2}$. The second grid column operates as a single processor of cycle-time $2 \frac{1}{\frac{1}{2}+\frac{1}{5}}=\frac{20}{7}$. So out of ev ery 61 matrix columns we assign 40 to the first processor column and 21 to the second processor column.

Because w eha vea library designer's approach, we do not wan t the n ulmer of horizontal and vertical communications to depend upon the data distribution. F or large grids, the number of horizontal neighbors of a giv en processor cannot be bounded a priori if w euse Kalinov and Lastovetky's approach. We enforce the grid communication pattern (each processor only communicates with its four direct neighbors) to minimize communication overhead. The price to pay is that we ha ve to sole a difficult optimization problem to loadbalance the work as efficiently as possible. Solving this optimization problem is the objective of Section 4.

3.2. The LU and QR Decompositions

We first recall the ScaLAPA CKalgorithm for the LU or QR decompositions on a homogeneous 2D-grid. We discuss next how to implement them on a heterogeneous 2 D -grid.

3.2.1 Homogeneous Grids

In this section we briefly review the direct parallelization of the right-looking varian t of the LU decomposition. We assume that the matrix A is distributed onto a tw o-dimensional grid of (virtual) homogeneous processors. We use a CYCLIC(b) decomposition in both dimensions. The right-looking varian t is naturally suited to parallelization and can be briefly described as follows: Consider a matrix A of order N and assume that the LU factorization of the $k \times b$ first columns has proceeded with $k \in\left\{0,1, \ldots \frac{N-1}{b}\right\}$. During the next step, the algorithm factors the next panel of r columns, pivoting if necessary. Next the pivots are applied to the remainder of the matrix. The low er trapezoid factor just computed is broadcast to the other process columns of the grid using an increasing-ring topology, so that the upper trapezoid factor can be updated via a triangular solve. This factor is then broadcast to the other process rows using a minimum spanning tree topology, so that the remainder of the matrix can be updated by a rank-r update. This process contin ues recursively with the updated matrix. In other words, at each step, the current panel of columns is factored into L and the
trailing submatrix \bar{A} is updated. The key computation is this latter rank- b update $\bar{A} \leftarrow \bar{A}-L U$ that can be implemented as follows:

1. The column processor that owns L broadcasts it horizontally (so there is a broadcast in each processor ro w)
2. The row processor that owns U broadcasts it vertically (so there is a broadcast in each processor column)
3. Each processor locally computes its portion of the update

The communication volume is thus reduced to the broadcast of the two row and column panels, and ma$\operatorname{trix} \bar{A}$ is updated in place (this is kno wn as an outer -product parallelization). Load balance is very good. The simplicity of this parallelization, as well as its expected good performance, explains why the righ tlooking varian ts ha ve beenhrosen in ScaLAPA CK [7 . See [11, 7, 2] for a detailed performance analysis of the righ t-looking varian ts, that demonstrates their good scalability property. The parallelization of the QR decomposition is analogous $[9,8]$.

3.2.2 Heterogeneous Grids

F or the implemertation of the LU and QR decomposition algorithms on a heterogeneous 2 D grid, we modify the ScaLAPA CKCYCLIC(r) distribution very similarly as for the matrix-matrix multiplication problem. The intuitiv ereason is the follo wing: as pointed out before, the core of the LU and QR decompositions is a rank- r update, hence the techniques for the outerproduct matrix algorithm naturally apply.

We still use block panels made up with several $r \times r$ matrix blocks. The block panels are distributed cyclically along both dimensions of the grid. The only modification if that the order of the blocks within a block panel becomes important.

Consider the previous example with four processors laid along a 2×2 grid as follows:

$$
\left(\begin{array}{cc}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right) .
$$

Say we use a panel with $B_{p}=8$ ad $B_{q}=6$, i.e. a panel composed of 48 blocks. Using the methods described belo w (see Section 4), ve assign the blocks as follows:

- Within each panel column, the first processor row receiv es 6 bloc ks and the second processor rows receiv es 2 blodss
- Out of the 6 panel columns, the first grid column receiv es 4 and the second grid column receive 2 of them

This allocation is represented in Figure 4. We need to explain how w e hae allocated the six panel columns. F or the matrix multiplication problem, the ordering of the blocks within the panel was not important, because all processors execute the same amount of (independen t) computations at eak step of the algorithm. F or the LU and QR decomposition algorithms, the ordering of the columns is quite important. In the example, the first processor column operates like 6 processors of cycle-time 1 and 2 processors of cycle-time 3 , which is equivalen t to a single processor A of cycle-time $\frac{3}{20}$; the second processor column operates like 6 processors of cycle-time 2 and 2 processors of cycle-time 5 , which is equivalen t to a single processor B of cycle-time $\frac{5}{17}$. The uni-dimensional algorithm allocates the six panel columns as $A B A A B A$, and we retriev e the allocation of Figure 4.

Figure 4. Allocation of the blocks within a block panel with $B_{p}=8$ and $B_{q}=6$. Each processor of the 2×2 grid is labeled by its cycle-time.

T oconclude this section, w eha vea difficult loadbalancing problem to solve. First we do not know which is the best layout of the processors, i.e. ho w to arrange them to build an efficient 2D grid. In some cases (rank-1 matrices) we are able to load-balance the w orkperfectly, but in most cases it is not the case. Next, once the grid is built, we have to determine the n umber of bloc ksthat are assigned to eac h processor within a bloc k panel. Again, this must be done so
as to load-balance the w ork, because processors have different speeds. Finally, the panels are cyclically distributed along both grid dimensions. The rest of the paper is dev oted to a solution to this difficult loadbalancing problem.

4. Solving the 2D Heterogeneous Grid Allocation Problem

4.1. Problem Statement and Formulation

Consider n processors $P_{1}, P_{2}, \ldots, P_{n}$ of respective cycle-times $t_{1}, t_{2}, \ldots, t_{n}$. The problem is to arrange these processors along a tw o-dimensionalgrid of size $p \times q \leq n$, in order to compute the product $Z=X Y$ of tw o $N \times N$ matrices as fast as possible. We need some notations to formally state this objective.

Consider a given arrangement of $p \times q \leq n$ processors along a tw o-dimensional grid of $\operatorname{size} p \times q$. Let us ren umber the processors as $P_{i j}$, with cycle-time $t_{i j}, 1 \leq$ $i \leq p, 1 \leq j \leq q$. Assume that processor $P_{i j}$ is assigned a bloc k of r_{i} rows and c_{j} columns of data elements, meaning that it is responsible for computing $r_{i} \times c_{j}$ elements of the Z matrix: see Figure 5 for an example.

Figure 5. Allocating computations to processors on a 3×4 grid.

There are two (equivalen t) w ays to compute the efficiency of the grid:

- Processor $P_{i j}$ is scheduled to evaluate rectangular data block $r_{i} \times c_{j}$ of the matrix Z, which it will process within $r_{i} \times c_{j} \times t_{i j}$ units of time. The total execution time $T_{\text {exe }}$ is tak en o ver all processors:

$$
T_{e x e}=\max _{i, j}\left\{r_{i} \times t_{i j} \times c_{j}\right\}
$$

$T_{\text {exe }}$ must be normalized to the average time $T_{\text {ave }}$ needed to process a single data element: since
there is a total of N^{2} elements to compute, we enforce that $\sum_{i=1}^{p} r_{i}=N$ and that $\sum_{j=1}^{q} c_{j}=N$. We get

$$
T_{\text {ave }}=\frac{\max _{i, j}\left\{r_{i} \times t_{i j} \times c_{j}\right\}}{\left(\sum_{i=1}^{p} r_{i}\right) \times\left(\sum_{j=1}^{q} c_{j}\right)} .
$$

We are looking for the minimum of this quantity over all possible integer v alues r_{i} and c_{j}. We can simplify the expression for $T_{\text {ave }}$ by searc hing for (nonnegative) rational values r_{i} and c_{j} which sum up to 1 (instead of N):
Objective $\mathrm{Obj}_{1}: \min _{\left(\sum_{i} r_{i}=1 ; \sum_{j} c_{j}=1\right)}\left\{r_{i} \times t_{i j} \times c_{j}\right\}$
Given the rational values r_{i} and c_{j} returned by the solution of the optimization problem $O b j_{1}$, w escale them by the factor N to get the final solution. We may haveto round up some values, but wedo so while preserving the relation $\sum_{i=1}^{p} r_{i}=\sum_{j=1}^{q} c_{j}=N$. Stating the problem as $O p t_{1}$ renders its solution generic, i.e. independent of the parameter N.

- Another way to tac kle the problem is the follewing: what is the largest number of data elements that can be computed within one time unit? Assume again that each processor $P_{i j}$ of the $p \times q$ grid is assigned a block of r_{i} rows and c_{j} columns of data elements. We need to haver $\times t_{i j} \times c_{j} \leq 1$ to ensure that $P_{i j}$ can process its bloc kwithin one cycle. Since the total number of data elements being processed is $\left(\sum_{i=1}^{p} r_{i}\right) \times\left(\sum_{j=1}^{q} c_{j}\right)$, we get the (equivalen t) optimization problem:
Objective Obj_{2} : $\max _{r_{i} \times t_{i j} \times c_{j} \leq 1}\left\{\left(\sum_{i} r_{i}\right) \times\left(\sum_{j} c_{j}\right)\right\}$
Again, the rational values r_{i} and c_{j} returned by the solution of the optimization problem Obj_{2} can be scaled and rounded to get the final solution.
Although there are $p+q$ variables r_{i} and c_{j}, there are only $p+q-1$ degrees of freedom: if we multiply all r_{i} 's by the same factor λ and divide all c_{j} by λ, nothing changes in Obj_{2}. In other words, we can impose $r_{1}=1$, for instance, without loss of generality.
We can further manipulate Obj_{2} as follo ws:

$$
\begin{aligned}
& \max _{r_{i} \times t_{i j} \times c_{j} \leq 1}\left\{\left(\sum_{i=1}^{p} r_{i}\right) \times\left(\sum_{j=1}^{q} c_{j}\right)\right\} \\
& =\max _{r_{i}}\left\{\sum_{c_{j} \text { with } r_{i} \times t_{i j} \times c_{j} \leq 1}\left\{\left(\sum_{i=1}^{p} r_{i}\right) \times\left(\sum_{j=1}^{q} c_{j}\right)\right\}\right\} \\
& =\max _{r_{i}}\left\{\left(\sum_{i=1}^{p} r_{i}\right) \times \max _{c_{j}{\operatorname{with} r_{i} \times t_{i j} \times c_{j} \leq 1}^{q}}^{\left.\left.\left.\max _{j=1}^{q} c_{j}\right)\right\}\right\}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\max _{r_{i}}\left\{\left(\sum_{i=1}^{p} r_{i}\right) \times \max _{c_{j} \leq \frac{1}{r_{i} \times t_{i j}}}\left\{\left(\sum_{j=1}^{q} c_{j}\right)\right\}\right\} \\
& =\max _{r_{i}}\left\{\left(\sum_{i=1}^{p} r_{i}\right) \times\left(\sum_{j=1}^{q} \min _{i}\left\{\frac{1}{r_{i} \times t_{i j}}\right\}\right)\right\} \\
& =\max _{r_{i}}\left\{\left(\sum_{i=1}^{p} r_{i}\right) \times\left(\sum_{j=1}^{q} \frac{1}{\max _{i}\left\{r_{i} \times t_{i j}\right\}}\right)\right\}
\end{aligned}
$$

We obtain an expression with only p variables (and $p-1$ degrees of freedom). This last expression does not look very friendly, though. Solving this optimization problem, optimally or through an heuristic, is the main objective of Section 4.3.

The 2D load-balancing problem In the next sections we giv e a solution to the 2D load-balancing problem which can be stated as follo ws: giv en $n=p \times q$ processors, how to arrange them along a 2D grid of size $p \times q$ so as to optimally load-balance the w ork of the processors for the matrix-matrix multiplication problem. Note that solving this problem will in fact lead to the solution of many linear algebra problems, including dense linear system solvers.

The problem is even more difficult to tackle than the optimization problem stated above, because we do not assume the processors arrangement as giv en. We searc h among all possible arrangements (layouts) of the $p \times q$ processors as a $p \times q$ grid, and for each arrangement we must solve the optimization problem $O b j_{1}$ or $O b j_{2}$.

We start with a useful result to reduce the number of arrangements to be searched. Next we deriv e an algorithm to solve the optimization problem $O b j_{1}$ or $O b j_{2}$ for a fixed (given) arrangement. Despite the reduction, w estill ha vean exponential number of arrangements to searc h for. Even w orse, for a fixed arrangement, our algorithm exhibits an exponential cost. Therefore we introduce a heuristic to give a fast but sub-optimal solution to the 2D load-balancing problem.

Conjecture Because of its highly combinatorial nature, we believe that (the decision problem associated to) the 2D load-balancing problem is NP-complete.

4.2. Reduction to Non-Decreasing Arrangements

The arrangement of the processors along the grid is a degree of freedom of the problem. F or example when using a Myrinet netw ork [$1 \emptyset$ we can define every desired topology for a fixed degree (number of neighbors) of the interconnection graph. Hence, finding a good arrangement is a key step of the load-balancing problem.

In this section, we sho w that we do not ha veto consider all the possible arrangements; instead, we reduce the search to "non-decreasing arrangements". A non-decreasing arrangement on a $p \times q$ grid is defined as follo ws: in ev ery grid row, the cycle-times are increasing: $t_{i j} \leq t_{i, j+1}, 1 \leq j \leq q-1$. Similarly, in ev ery grid column, the cycle-times are increasing: $t_{i j} \leq t_{i+1, j}, 1 \leq i \leq p-1$.

Theorem 1 There exists a non-increasing arrangement which is optimal.

Proof See the extended version of the paper.

4.3. Solution for a Given Arrangement

In this section, we show how to solve the optimization problem $O b j_{1}$ or $O b j_{2}$ for a giv en arrangement. F or small size problems, all the possible non-decreasing arrangements can be generated, hence we have an exponential but feasible solution to the 2D load balancing problem. Let σ be a given arrangement on a $p \times q$ grid, and let r_{1}, \ldots, r_{p} and c_{1}, \ldots, c_{q} be the solution to the optimization problem $O b j_{1}$

4.3.1 Spanning Trees

Consider the optimization problem Obj_{1}. We have to maximize the quadratic expression $\left(\sum_{1 \leq i \leq p} r_{i}\right)\left(\sum_{1 \leq j \leq q} c_{j}\right)$ under $p \times q$ inequalities $r_{i} t_{i j} c_{j} \leq 1$. We hav e $p+q-1$ degrees of freedom. The objective of this section is to sho wthat for at least $p+q-1$ inequalities are in fact equalities. We use a graph-oriented approach to this purpose.

We consider the follo wing bipartite graph $\mathcal{G}=$ $(\mathcal{V}, \mathcal{E})$. There are $p+q$ vertices labeled with r_{i} and c_{j} and the graph is complete. The weigh t of the edge $\left(r_{i}, c_{j}\right)$ is $t_{i j}$. Given a spanning tree $\mathcal{T}=\left(\mathcal{V}, \mathcal{E}^{\prime}\right)$ of the graph \mathcal{G}, if w estart from $r_{1}=1$, w ecan (uniquely) determine all the values of the r_{i} and c_{j} by follo wing the edges of \mathcal{T}, enforcing the equalities

$$
\forall\left(r_{i}, c_{j}\right) \in \mathcal{E}^{\prime}, \quad r_{i} t_{i, j} c_{j}=1
$$

The spanning tree \mathcal{T} is said to be ac ceptableif and only if all the remaining inequalities are satisfied: $\forall\left(r_{i}, c_{j}\right) \in$ $\mathcal{E}, \quad r_{i} t_{i, j} c_{j}=1$.. The value of an acceptable spanning tree is $\left(\sum r_{i}\right)\left(\sum c_{j}\right)$. We claim that the solution of $O b j_{1}$ is obtained with the acceptable spanning tree of maximal value. This leads to the following algorithm:

Algorithm We generate all the spanning trees of \mathcal{G}. F or a given tree \mathcal{T}, w e first impose that $r_{1}=1$, then by walking on the tree we find the values for the other r_{i} and c_{j}. F or example, if c_{3} is connected to r_{1} in \mathcal{T}, then w etake $c_{3}=\frac{1}{r_{1} t_{13}}$. When weha vea value for all r_{i} and c_{j}, w echec kif the tree is acceptable. Finally, w eselect the acceptable tree that maximizes $\sum_{1 \leq i \leq p} r_{i} \sum_{1 \leq j \leq q} c_{j}$.

The correctness of this algorithm is shown in the extended version of the paper, where we also give ananlytical solution for a 2×2 grid. Given an arrangement, w e are able to compute the solution to the optimization problem. The cost is exponential because there is an exponential n umber of spanning trees to chec k for acceptability. Still, our method is constructive, and can be used for problems of limited size.

4.3.2 Rank-1 Matrices

If the matrix $\left(t_{i j}\right)_{1 \leq i \leq p, 1 \leq j \leq q}$ is a rank-1 matrix, then the optimal arrangement for the 2D load-balancing problem is easy to determine. Assume without loss of generality that $t_{11}=1$. We let $r_{1}=c_{1}=1, r_{i}=\frac{1}{t_{i 1}}$ for $2 \leq i \leq p$ and $c_{j}=\frac{1}{t_{1 j}}$ for $2 \leq i \leq q$. All the $p \times q$ inequalities $r_{i} t_{i j} c_{j}$ are equalities, which means that all processors are fully utilized:

$$
r_{i} t_{i j} c_{j}=\frac{1}{t_{i 1}} t_{i j} \times \frac{1}{t_{j 1}} t_{i j}=1,
$$

because the 2×2 determinant $\left|\begin{array}{cc}t_{11} & t_{1 j} \\ t_{i 1} & t_{i j}\end{array}\right|$ is zero (with $t_{11}=1$). No idle time occurs with such a solution, the load-balancing is perfect.

Unfortunately, giv en $p \times q$ in tegers, it is v ery difficult to kno wwhether they can be arranged into a rank-1 matrix of size $p \times q$. If suc h an arrangemert do not exist, we can ittuitiv ely sa y that the optimal arrangemenis the "closest one" to a rank-1 matrix.

4.4. Polynomial Heuristic

In this section, we studya polynomial heuristic to find an arrangement of the processors (and a solution to the corresponding optimization problem) that leads to a good load-balancing. The polynomial heuristic is based on the approximation of the arrangement matrix by a rank-1 matrix, for which the problem can easily be solved (see 4.3.2).

4.4.1 Arrangement of the processors

We are given the processors cycle times as input to the heuristic. We arrange the processors cycle times in the
matrix T as follo ws

$$
\left\{\begin{array}{ll}
\forall i, \quad \forall 1 \leq j<q, & t_{i, j} \leq t_{i, j+1} \\
\forall 1 \leq i<p, & t_{i, q} \leq t_{i+1,1}
\end{array} .\right.
$$

This arrangement usually leads to an arrangement ma$\operatorname{trix} T$ which is close to a rank-1 matrix.
F or instance, if w econsider the case of 9 processors with cycle times $1,2, \ldots, 9$, the arrangement matrix T we obtain is

$$
T=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

4.4.2 Computing the r_{i} 's and the c_{j} 's

As noticed abo ve(see 4.3.2), the computation of the r_{i} 's and the c_{j} 's is ob vious when T is a rank- 1 matrix. Our aim is to approximate T by a rank- 1 matrix and then to compute the r_{i} 's and the c_{j} 's corresponding to this matrix. Let us denote by $U S V^{t}=T^{i n v}$ the singular value decomposition of $T^{i n v}$, where $T^{i n v}=$ $\left(\frac{1}{t_{i, j}}\right)_{i, j}$. It is kno wnthat the best approximation (in the sense of the l^{2}-norm) of $T^{i n v}$ by a rank- 1 matrix is giv en b ys $a b^{t}$, where a and b are respectively the left and right singular vectors associated to s, the largest singular value of $T^{i n v}$. Thus, if we set

$$
\begin{cases}\forall i, & r_{i}=s a_{i} \\ \forall j, & c_{j}=b_{j}\end{cases}
$$

w e can expect that

$$
\forall i, j, \quad r_{i} t_{i, j} c_{j} \simeq 1
$$

We consider $T^{i n v}$ rather than T since the approximation by the rank- 1 matrix is usually better on the largest components. This way, we better approximate the components of T corresponding to processors with low time cycle. In order to ensure that the inequalities $r_{i} t_{i, j} c_{j} \leq 1$ are fulfilled, we divide each c_{j} by the largest component of the j th column of the matrix $r_{i} t_{i, j} c_{j}$. Then, in order to avoididle time, w edivide each r_{i} by the largest component of the i th ro w of the matrix $r_{i} t_{i, j} c_{j}$. Thus, we obtain two vectors r and c satisfying $\forall i, j, r_{i} t_{i, j} c_{j} \leq 1$, and such that

$$
\left\{\begin{array}{ll}
\forall i, \exists j & r_{i} t_{i, j} c_{j}=1 \\
\forall j, \exists i & r_{i} t_{i, j} c_{j}=1
\end{array} .\right.
$$

Consider again the matrix

$$
T=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

We obtain $r=\left(\begin{array}{l}1.1661 \\ 0.3675 \\ 0.2100\end{array}\right), \quad c=\left(\begin{array}{l}0.6803 \\ 0.4288 \\ 0.2859\end{array}\right)$, and
$B=\left(r_{i} t_{i, j} c_{j}\right)_{i, j}=\left(\begin{array}{ccc}0.7933 & 1 & 1 \\ 1 & 0.7879 & 0.6303 \\ 1 & 0.7203 & 0.5402\end{array}\right)$.
The mean value of B is 0.8302 , what means that on average, the processors nork 83.02% of time, and the value of the objective function $\left(\sum r_{i}\right)\left(\sum c_{j}\right)$ is 2.4322 .

4.4.3 Iterative refinement

In this section, w epropose an iterativ erefinement in order to obtain a better arrangement of the processors (and a better solution to the corresponding optimization problem). In order to determine the new arrangement matrix, we compute the matrix $T^{o p t}=\left(\frac{1}{r_{i} c_{j}}\right)_{i, j}$. $T^{o p t}$ is a rank- 1 matrix whose components are the processor cycle times that are optimal with respect to the vectors r and c computed in 4.4.2. In the case of our example, we obtain

$$
T^{o p t}=\left(\begin{array}{ccc}
1.2606 & 2.0000 & 3.0000 \\
4.0000 & 6.3464 & 9.5195 \\
7.0000 & 11.1061 & 16.6592
\end{array}\right)
$$

This suggests to choose another arrangement matrix T for the processor cycle times, that better fits to the matrix $T^{o p t}$. More precisely, we deriv e the new matrix T from the following conditions

$$
\forall i, j, k, l, \quad t_{i, j} \leq t_{k, l} \Longleftrightarrow t_{i, j}^{o p t} \leq t_{k, l}^{o p t} .
$$

Then, w ecompute the r_{i} 's and the c_{j} 's as sho wn in 4.4.2 and we restart the process. We consider that the process has converged when no modification occurs in the matrix T. In our example, after the second step, the arrangement matrix T becomes

$$
T=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 7 \\
6 & 8 & 9
\end{array}\right)
$$

and the value of the objective function $\left(\sum r_{i}\right)\left(\sum c_{j}\right)$ is 2.5065 (instead of 2.4322). Conv ergence is obtained after three steps. The value of the objective function $\left(\sum r_{i}\right)\left(\sum c_{j}\right)$ is then 2.5889 and the corresponding arrangement matrix is

$$
T=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 6 & 8 \\
5 & 7 & 9
\end{array}\right)
$$

4.4.4 Numerical results

In this section, we present the results of our algorithm for processors with random cycle times in $[0,1]$. We
consider the arrangement of n^{2} processors into a $n \times n$ grid. Figure 6 displays the evolution with n of the average work load (the mean value of B) of the processors, when convergence has been reached. Figure 7 displays the ev olution with n of the ratio

$$
\tau=\frac{\left(\left(\sum r_{i}\right)\left(\sum c_{j}\right)\right)_{\text {after conv ergence }}}{\left(\left(\sum r_{i}\right)\left(\sum c_{j}\right)\right)_{\text {after the first step }}}-1
$$

Finally, Figure 8 displays the ev olution with n of the average number of steps necessary to reach con vergence.

Figure 6. Average workload.

Figure 7. Evolution of the ratio τ.

Figure 8. Number of iterations.

4.4.5 Concluding remarks on the polynomial heuristic

The polynomial heuristic gives satisfying results. Nevertheless, the algorithm does not converge to an optimal solution with respect to the optimization problem. Moreover, it seems that the number of steps of the iterativ e process grovs with n, and therefore inv olv es more than $O\left(n^{3}\right)$ flops with n^{2} processors (nevertheless, one usually obtain satisfying results after a few steps only).

5. Conclusion

In this paper, we ha vediscussed static allocation strategies to implement matrix-matrix products and dense linear system solvers on heterogeneous computing platforms. Extending the standard ScaLAPA CK bloc k-cyclic distribution to heterogeneous 2D grids turns out to be surprisingly difficult. In most cases, a perfect balancing of the load betw een all processors cannot be achiev ed,and deciding ho wto arrange the processors along the 2 D grid is a challenging problem. But we have formally stated the optimization problem to be solved, and we have presented both an exact solution (with exponential cost) and a polynomial heuristic.

References

[1] R. Agarwal, F. Gustavson, and M. Zubair. A high performance matrix m ultiplication algorithm on a distributed-memory parallel computer, using overlapped communication. IBM J. Research and Development, 38(6):673-681, 1994.
[2] L. Blac kford, J. Choi, A. Cleary , J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. P etitet, K. Stanley ,D. Walk er, and R. C. Whaley. Scalapack: A portable linear algebra library for distributed-memory computers - design issues and performance. In Sup ercomputing '96IEEE Computer Society, 1996.
[3] L. S. Blac kford, J. Choi, A. Cleary ,E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walk er, and R. C. Whaley. Sc aLAPA CK Users' Guide SIAM, 1997.
[4] V. Boudet, A. P etitet, F. Rastello, and Y. Robert. Data allocation strategies for dense linear algebra kernels on heterogeneous tw o-dimensional grid. InPar allel and Distributed Computing and Systems confer ence (PDCS'99), pages 561-569. IASTED Press, 1999.
[5] V. Boudet, F. Rastello, and Y. Robert. Algorithmic issues for (distributed) heterogeneous computing platforms. In R. Buyya and T. Cortes, editors, Cluster Computing Technolo gies, Envionments, and Applications (CC-TEA'99). CSREA Press, 1999. Extended version a vailable as LIP Æchnical Report RR-99-19.
[6] V. Boudet, F. Rastello, and Y. Robert. A proposal for a heterogeneous cluster ScaLAPA CK (dense linear solv ers). In H. R. Arabnia, editor, International Conference on Par alleland Distributed Processing T echniques and Applications (PDPTA'99). CSREA Press, 1999. Extended version a vailable as LIP Echnical Report RR-99-17.
[7] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouc ho v, A. Retitet, K. Stanley, D. Walk er, and R. C. Whaley. ScaLAPA CK:A portable linear algebra library for distributed memory computers - design issues and performance. Computer Physics Communications, 97:1-15, 1996. (also LAPA CK Wbrking Note \#95).
[8] J. Choi, J. Dongarra, S. Ostroucho v, A. P etitet, D. Walk er, and R. C. Whaley. The design and implementation of the ScaLAPA CK LU, QR, and Cholesky factorization routines. Scientific Programming, 5:173184, 1996.
[9] E. Chu and A. George. QR factorization of a dense matrix on a hypercube multiprocessor. SIAM Journal on Scientific and Statistical Computing, 11:990-1028, 1990.
[10] D. E. Culler and J. P. Singh. Par allel Computer Achitecture: A Har dwar e/SoftwarApproach. Morgan Kaufmann, San Francisco, CA, 1999.
[11] J. Dongarra, R. van de Geijn, and D. Walk er. Scalability issues in the design of a library for dense linear algebra. Journal of Parallel and Distributed Computing, 22(3):523-537, 1994.
[12] J. J. Dongarra and D. W. Walk er. Soft w are libraries for linear algebra computations on high performance computers. SIAM Review, 37(2):151-180, 1995.
[13] G. Fox, S. Otto, and A. Hey. Matrix algorithms on a hypercube i: matrix multiplication. Par allel Computing, 3:17-31, 1987.
[14] A. Kalinov and A. Lasto vetsky. Heterogeneous distribution of computations while solving linear algebra problems on netw orks of heterogeneous computers. In P. Sloot, M. Bubak, A. Hoekstra, and B. Hertzberger, editors, HPCN Europe 1999, LNCS 1593, pages 191200. Springer Verlag, 1999.
[15] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Par allel Computing. The Benjamin/Cummings Publishing Company, Inc., 1994.

[^0]: ${ }^{1}$ Av ailable atwww.ens-lyon.fr/~yrobert.

