
Bandwidth-centric allocation of independent tasks
on heterogeneous platforms

O. Beaumont+, L. Carter++, J. Ferrante++, A. Legrand+ and Y. Robert+

(+) LIP, UMR CNRS–ENS Lyon–INRIA 5668
Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France

e-mail: Firstname.Lastname@ens-lyon.fr

(++) Computer Science Department, University of California, San Diego
9500 Gilman Drive, La Jolla, California 92093-0114 U.S.A.

{carter,ferrante}@cs.ucsd.edu

Abstract

In this paper, we consider the problem of allocating a
large number of independent, equal-sized tasks to a het-
erogeneous ”grid” computing platform. We use a tree to
model a grid, where resources can have different speeds
of computation and communication, as well as different
overlap capabilities. We define a base model, and show
how to determine the maximum steady-state through-
put of a node in the base model, assuming we already
know the throughput of the subtrees rooted at the node’s
children. Thus, a bottom-up traversal of the tree deter-
mines the rate at which tasks can be processed in the
full tree. The best allocation is bandwidth-centric: if
enough bandwidth is available, then all nodes are kept
busy; if bandwidth is limited, then tasks should be allo-
cated only to the children which have sufficiently small
communication times, regardless of their computation
power.

1 Introduction

Mapping and scheduling tasks onto heterogeneous
platforms has received considerable attention in recent
years (see the survey papers of Berman [2] and Feitel-
son [5]). In this paper, we deal with the problem of allo-
cating a large number of independent, equal-sized tasks
to a heterogeneous “grid” computing platform. We al-
low a quite general model of computation, where the
various resources that make up the grid can have not
only different computation and communication speeds,
but can even have different capabilities in terms of how
much various communication tasks can be overlapped

with computation. Our model is motivated by prob-
lems that are addressed by collaborative computing
efforts such as SETI@home [8], factoring large num-
bers [3], the Mersenne prime search [7], and those dis-
tributed computing problems organized by companies
such as Entropia [4].

We model a collection of heterogeneous resources
and the communication links between them as the
nodes and edges of an undirected graph. We assume
that between any pair of nodes, there is only one path,
that is, the graph is acyclic. Each node is a comput-
ing resource (a processor, or a cluster, or whatever)
capable of computing and/or communicating with its
neighbors at (possibly different) rates. To accurately
determine the bandwidth experienced by an applica-
tion, a tool such as the Network Weather Service [9] or
Remos [6] can be used.

Given n independent, identical tasks to be allocated
on the grid, we assume that their data is initially lo-
cated on (or generated by) a single node. We make
this node the root of the graph, which, being acyclic,
is now a tree. The root processor decides which tasks
to execute itself, and how many tasks to forward to
each of its children. Each child faces in turn the same
dilemma: determine how many tasks to execute, and
how many to delegate to each child. Due to hetero-
geneity, the children may receive different amounts of
work.

In this paper, we show how each node locally can
attain the best allocation of tasks to resources that
maximizes the steady-state throughput, or tasks pro-
cessed per unit time, throughout the tree. We also show
that this best allocation is bandwidth-centric: if enough
bandwidth is available to the node, then all children are

1

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

kept busy; if bandwidth is limited, then tasks should be
allocated only to children which have sufficiently fast
communication times, in order of fastest communica-
tion time. Counter-intuitively, the maximum through-
put in the tree is achieved by delegating tasks to chil-
dren as quickly as possible, and not by seeking their
fastest solution.

In Section 2 we define our base model of communi-
cation and computation. We give in Section 3 a simple
algorithm that finds the optimal allocation of tasks in
this base model. We give some remarks and conclusions
in Section 4.

The extended version of this paper [1] introduces
several other models of communication and computa-
tion, and elaborates on the reduction of the allocation
problem in any of the other models to a problem in
the base model. Furthermore, we present in [1] simu-
lation results of several demand-driven task allocation
policies that show that our bandwidth-centric method
obtains better results than allocating tasks to all pro-
cessors on a first-come, first serve basis. Finally, we
refer the reader to [1] for a comprehensive discussion
of related work.

2 The base model

The target architectural/application framework is
represented by a node-weighted edge-weighted tree T =
(V,E, w, c) as illustrated in Figure 1. Each node PiεV
represents a computing resource of weight wi, meaning
that node Pi requires wi units of time to execute one
task. Each edge e : Pi → Pj is labeled by a value cij

which represents the time needed by node Pi (the one
closer to the root) to communicate the data for one
task to node Pj (one of its children) plus the time for
the child to return the result when it is finished. For
the purpose of computing steady-state behavior, it does
not matter what fraction of the communication time is
spent sending a problem and what fraction is spent re-
ceiving the results. To simplify the exposition, we will
henceforth assume that all the time is spent sending
the task’s data to the child, and no time is needed to
communicate the results back.

The only assumptions on the values wi and cij we
make are that they are integers with wi > 0 and
cij ≥ 0. We disallow wi = 0, since it would permit a
node to perform an infinite number of tasks, and we re-
strict ourselves to integers (or equivalently to rational
numbers) since with arbitrary real numbers, it could
happen that no periodic could be within an additive
constant of the optimal schedule asymptotically.

There are several scenarios for the operation of the
processors, which are surveyed in [1]. Due to the lack

c1,3

c0,1

c1,8

c0,2

c1,7c1,6c1,4 c1,5

c8,9 c8,10c8,11

w0

w1 w2

w4 w7w5 w8

w9 w10

w3 w6

w11

Figure 1. A tree labeled with node (computa-
tion) and edge (communication) weights.

of space, we concentrate on the full overlap, single-port
model, where a processor node can simultaneously re-
ceive data from its parent, perform some (independent)
computation, and send data to one of its children. At
any given time-step, there are at most two communica-
tions taking place, one from the parent and/or one to
a single child. This model is representative of a large
class of modern machines, and is called the base model.

There are n independent tasks to be executed on the
tree. Each task requires wi units of time when executed
by node Pi. So the smaller wi, the faster the processor
node Pi.

Initially, the data for all tasks is stored in the root
processor. It takes cij units of time for node Pi to send
(the data for) one task to its child Pj . In other words, if
a task is resident on node Pi at time-step t, and if Pi ini-
tiates the communication to Pj at that time-step, then
the task will be available to Pj at time t + cij . Tasks
are atomic, their computation or communication can-
not be preempted. A task represents the granularity of
the application.

Given a weighted tree, one might want to determine
how many tasks should be executed by each node so
that the overall computation time is minimized. This
is a difficult problem, and in fact cannot be answered
without knowing more about the network than is in
our model, such as the network latencies. Instead, we
will answer a related question. As is well-known, a
computation consists of a start-up or initialization in-
terval where some processors are not running at the full
speed that can be sustained, then a steady-state interval
where all processors are running at the maximum speed

2

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

that the network can sustain, and a clean-up interval
when some but not all processors are finished. Dur-
ing the steady-state interval, the operation of the tree
is periodic, with b tasks executed every t time units.
Both the start-up and clean-up times are bounded, no
matter how many tasks there are. The question we will
answer is what is the rate or throughput, R = b/t, of
processing tasks in the steady-state interval. This an-
swer can be used to give the execution time of the full
application within an additive constant.

In steady state, the tree operates as a single (virtual)
node whose computational weight wtree = t

b = 1
R is to

be minimized. The major contribution of this paper is
to determine the best allocation of tasks to processors,
according to the criterion of minimizing wtree, for any
input tree.

c1 ckc2

c−1

w1 w2 wk

Figure 2. Fork graph.

3 Solution for the base model

3.1 Fork graph

We start with simple fork graphs before dealing with
arbitrary tree graphs. A fork graph, as shown in Fig-
ure 2, consists of a node P0 and its k children P1 . . . Pk.
In the base model, P0 can communicate with a single
child at a time: it needs ci units of time to communi-
cate a task to child Pi. Concurrently, P0 can receives
data from its own parent, say P−1, requiring c−1 time
per task. We give three examples in Figures 3, 4 and 5:
in the first, all children operate at full rate, and in the
latter two, the communication bandwidth is the limit-
ing factor.

Proposition 1 With the above notations, the minimal
value of wtree for the fork graph is obtained as follows:

1. Sort the children by increasing communication
times. Re-number them so that c1 ≤ c2 . . . ≤ ck.

2. Let p be the largest index so that
∑p

i=1
ci

wi
≤ 1. If

p < k let ε = 1−
∑p

i=1
ci

wi
, otherwise let ε = 0.

3. Then wtree = max
(

c−1,
1

1
w0

+
∑p

i=1
1

wi
+ ε

cp+1

)

P0 Recv

P1

P2

P3

P0 Send
1 1 2

1

54 3

P0

P3P1 P2

Figure 3. First example without saturation of
the communication bandwidth: all children
can be kept fully active

P0 Recv

P1

P2

P3

P0 Send
1 1 2

2

54 3

P0

P3P1 P2

Figure 4. Second example with saturation of
the communication bandwidth: some chil-
dren are partially idle due to the low band-
width between P0 and its parent

Intuitively, the processors cannot consume more
tasks than sent by P−1, hence the first term of the
maximum, i.e. c−1. For the second term, when p = k
the result is expected: it basically says that children
can be fed with tasks fast enough so that they are all
kept computing steadily. However if p < k the result
is surprising: in the situation when the communica-
tion bandwidth is limited, some children will partially
starve: these are those with slow communication rates,
whatever their processing speeds. In other words, a
slow processor with a fast communication link is to be
preferred to a fast processor with a slow communica-
tion link.

Proof Suppose the optimal periodic schedule has a
fixed, steady state pattern of period T : starting at
time-step t0, the whole pattern of computations and
communications repeats every T time-units, i.e. at
time-step t0 + T , t0 + 2T , and so on. At the end of
the proof, we will give upper bounds on t0 and T for
(one particular) asymptotically optimal schedule.

During this period of T units of time, let x−1 denote
the amount of time the node spends receiving tasks
from its own parent P−1, x0 be the time spent comput-
ing, x1 be the time sending tasks to child P1, x2 units
of time sending tasks to child P2, . . . , and xk units of
time sending tasks to child Pk. Because of periodicity
and integral costs, all of the xi’s are integers.

Because of the overlap hypothesis, the computation
of x0 tasks by P0 doesn’t diminish either the number

3

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

P0 Send

P0 Recv

P1

P2

P3

1 1 2

1

134
P3

P0

P2P1

Figure 5. Third example with saturation of the
communication bandwidth: child P3 is par-
tially idle due to its high computation speed

x−1 it can receive from P−1 nor x1, x2, . . . , xk. We have
the following constraints for x0: 0 ≤ x0 ≤ T , x0 should
be a multiple of w0. The number of tasks that will be
processed by P0 is x0

w0
.

We have similar constraints on x−1: 0 ≤ x−1 ≤ T ,
x−1 should be a multiple of c−1. The number of tasks
that are sent to P0 is x−1

c−1
.

There are more constraints on x1, . . . , xk. For 1 ≤
i ≤ k, 0 ≤ xi ≤ T , and xi should be a multiple of
ci. The single-port hypothesis translates into x1 +x2 +
. . .+xk ≤ T . The number of tasks received by child Pi

is xi

ci
; it can process these tasks within the time frame

iff xi

ci
× wi ≤ T . Note that Pi should not receive more

tasks than it can process.
There is a final constraint that ensures the steady-

state of the whole process: the number of tasks sent
to the fork-join graph, i.e. x−1

c−1
, should be equal to the

number of tasks that it can consume, i.e. x0
w0

+
∑k

i=1
xi

ci
.

This last quantity is exactly the quantity that we want
to maximize.

Let us summarize the situation as a linear program-
ming problem, where the objective function is the num-
ber of tasks consumed within the T units of time:

Maximize x0
w0

+
∑k

i=1
xi

ci

subject to


0 ≤ xi ≤ T for − 1 ≤ i ≤ k
xi

ci
× wi ≤ T for 1 ≤ i ≤ k∑k
i=1 xi ≤ T

x−1
c−1

= x0
w0

+
∑k

i=1
xi

ci

Because everything is linear in T , we can normalize
the problem and set T = 1: we now look for nonnega-
tive rational values x−1, x0, x1, . . . , xk such that

x−1 ≤ 1
x0 ≤ 1∑k

i=1 xi ≤ 1
xi ≤ ci

wi
for 1 ≤ i ≤ k

x−1
c−1

= x0
w0

+
∑k

i=1
xi

ci

We can further normalize these equations by intro-
ducing the rates Ri: R−1 = x−1

c−1
is the rate of tasks

per second received from the parent P−1, R0 = x0
w0

is
the rate they are executed in the parent node P0, and
Ri, for 1 ≤ i ≤ k, is the rate they are sent to and
executed on the i-th child. We obtain the following
formulation of the problem of determining the optimal
task allocation for the base model:

Base Problem: Maximize
∑k

i=0 Ri, subject to
(B0) R−1 =

∑k
i=0 Ri

(B1) R−1c−1 ≤ 1
(B2) Ri ≤ 1

wi
for 0 ≤ i ≤ k

(B3)
∑k

i=1 Rici ≤ 1

Note that moving from the xi’s to the rates Ri’s
has a technical advantage: the new formulation nicely
encompasses the case where some communication time
ci is zero (which might be appropriate, for instance, for
a shared-memory multiprocessor).

Let R be the solution of the Base Problem. We
claim that R = min

(
1

c−1
, 1

w0
+ S

)
(unless c−1 = 0, in

that case R = 1
w0

+ S) , where S is the solution to the
following problem:

Auxiliary problem: Maximize
∑k

i=1 Ri, subject to
(i) Riwi ≤ 1 for 1 ≤ i ≤ k

(ii)
∑k

i=1 Rici ≤ 1

Because the auxiliary problem is less constrained
than the original one, we immediately have that 1

w0
+

S ≥ R. We also have 1
c−1

≥ R, because of (B0)

and (B1), hence min
(

1
c−1

, 1
w0

+ S
)
≥ R. To show

the reverse inequality, there are two cases, according
to the value of min

(
1

c−1
, 1

w0
+ S

)
. Assume first that

min
(

1
c−1

, 1
w0

+ S
)

= 1
c−1

. Let (R1, . . . , Rk) be the op-

timal solution of the auxiliary problem: S =
∑k

i=1 Ri

and 1
w0

+ S ≥ 1
c−1

. Let α =
1

c−1
1

w0
+S

≤ 1. Then(
1

c−1
, α

w0
, αR1, . . . , αRk

)
is a solution to the base prob-

lem whose objective function is equal to 1
c−1

. Therefore
1

c−1
≤ R.

Assume now that min
(

1
c−1

, 1
w0

+ S
)

= 1
w0

+ S. Let
(R1, . . . , Rk) be the optimal solution of the auxiliary
problem: S =

∑k
i=1 Ri and 1

w0
+S ≤ 1

c−1
. Let R0 = 1

w0

and R−1 =
∑k

i=0 Ri. Then (R−1, R0, R1, . . . , Rk) is a
solution to the base problem (note that (B1) is satisfied
because of the hypothesis). Hence 1

w0
+ S ≤ R. This

concludes the reduction to the auxiliary problem.

4

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

We can now come to the solution of the auxiliary
problem. As in the statement of the theorem, let p be
the largest index so that

∑p
i=1

ci

wi
≤ 1. Let R∗

i = 1
wi

for 1 ≤ i ≤ p. If p < k, let R∗
p+1 = ε

cp+1
, where

ε = 1 −
∑p

i=1
ci

wi
. If p + 1 < k, let R∗

i = 0 for p + 2 ≤
i ≤ k. We claim that (R∗

i) is the optimal solution of
the optimization problem:

• First, it is indeed a solution. We have R∗
p+1 ≤

1
wp+1

when p < k. This comes directly from the

definition of p: since
∑p+1

i=1
ci

wi
> 1, we have ε =

1 −
∑p

i=1
ci

wi
<

cp+1
wp+1

, hence ε
cp+1

≤ 1
wp+1

. As for

(ii),
∑j

i=1 Rici =
∑j

i=1
ci

wi
≤ 1 for all j ≤ p, by

definition of p. And if p < k,
∑p+1

i=1 Rici = 1, by
definition of Rp+1.

• Second, it is the solution that maximizes the objec-
tive function. To see this, consider all the optimal
solutions, i.e. all the solutions that achieve the op-
timal value of the objective function. Among these
optimal solutions, consider one solution (R∗

i) such
that R1 is maximal. Assume by contradiction that
R1 < R∗

1 = 1
w1

. Then there exists at least one
index j > 2 such that Rj > R∗

j , otherwise the
solution would not be optimal. Now, since the ci

are sorted, we have c1 ≤ cj . We do not change the
value of the objective function if we let R1 = R1+τ
and Rj = Rj−τ , where τ is an arbitrary small non-
negative rational number. However, we do have a
new solution to the optimization problem, because
(R1 + τ)c1 + (Rj − τ)cj ≤ R1c1 + Rjcj . Hence we
have an optimal solution with a larger R1 than
the original one, a contradiction. Hence we have
shown that there exist optimal solutions such that
R1 = R∗

1. We restrict to such solutions without
loss of generality and we iterate the process: we
finally derive that (R∗

i) is an optimal solution.

The optimal solution of the auxiliary problem is

S =
k∑

i=1

Ri =
p∑

i=1

1
wi

+
ε

cp+1

The optimal solution of the base problem is

R = min
(

1
c−1

,
1
w0

+ S

)
Finally, wtree = 1

R , which establishes our claim.
To conclude the proof, we only need to provide val-

ues for t0 and T . Since we know the optimal solution
(R∗

i), we choose T such that an integral number of tasks
can be processed by each processor. We have R∗

i = 1
wi

for 0 ≤ i ≤ p, hence T must be a multiple of each wi,
0 ≤ i ≤ p. Since R∗

p+1 = ε
cp+1

, T should be a multiple
of cp+1. Note that Tε is an integer if T is a multiple
of each wi, 0 ≤ i ≤ p. Finally, T should be larger than
c−1. A valid value (though not necessarily the smallest
possible value) for T is

T = lcm(w0, w1, . . . , wp, c−1, cp+1).

It is not surprising that c1, . . . , cp do not appear in
the expression for T , because the choice of ε ensures
that ci ≤ wi for 1 ≤ i ≤ p. Finally, we can con-
struct a schedule that enters the steady-state behavior
with t0 = T : to see this, perform exactly the same
pattern of communications but no computation at all
from time-step 0 to t0 − 1 = T − 1; each processor is
then provided with exactly as many tasks as required
to enter its steady-state.

A less formal (but much shorter) proof of Propo-
sition 1 is the following: sorting the ci and feeding
as many tasks as possible to the children taken in
that order maximizes the number of tasks that are
communicated to the children, hence the number
of tasks that are processed by the children. Add
those processed by the parent, and take the mini-
mum with the input rate to derive the optimal value.

Note that the proof in Proposition 1 is fully con-
structive: the number of tasks to be computed by the
parent and to be sent to each child is directly computed
from the optimal solution (R∗

i).

3.2 Arbitrary tree graphs

The best allocation of tasks to processor nodes is
determined using a bottom-up traversal of the tree:

Proposition 2 Let G = (V,E, w, c) be an arbitrary
tree graph. The minimal value of wtree for the whole
graph is obtained as follows:

1. Consider any sub-tree consisting of several leaves
and their parent. Replace this tree with a single
node whose weight is given by Proposition 1

2. Iterate the process until there remains a single
node.

Then the minimal value is equal to the weight of the
single node.

Proof The proof is immediate: in steady state, a fork
graph consisting of a parent and several leaves behaves
exactly as a single node of weight determined by Propo-
sition 1. For the root node, we can assume a link from
a virtual parent with infinite capacity, i.e. c−1 = 0.

5

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

We can give (possibly unnecessarily large) bounds
on the period and start-up times. The period T of an
arbitrary tree is at most the least common multiple
of the periods of each fork graph encountered in the
bottom-up traversal of the tree. And a bound on the
start-up time is this period T times the maximum
depth of the tree. This time corresponds to a start-up
strategy in which during the first T time units, we
send a period’s worth of work to the depth one
nodes (but don’t execute any tasks), in the next T
time units we propagate this work to the depth two
nodes and replenish the depth one nodes, and so on.

Again, the proof is fully constructive, and the opti-
mal task allocation is computed using the bottom-up
approach.

4 Conclusion and discussion

In this paper, we considered the problem of allocat-
ing a large number of independent, equal-sized tasks
to a heterogeneous collection of computing resources.
We assume the data for the tasks is initially located
on a single resource. Such problems arise in collabora-
tive computing efforts. This paper makes the following
contributions to this problem:

• We suggest that it is natural to model the com-
puting resources as a tree, whose nodes can have
different speeds of computation and communica-
tion. Our model also allows nodes to have dif-
fering capabilities in terms of allowing overlap of
computation and communication.

• For one particular model of overlap capabilities
— the base model which allows computation and
communication in two directions to overlap — we
give an explicit solution to the problem of de-
termining the allocation of tasks to nodes in the
tree that maximizes the number of tasks executed
per unit time in steady-state. This optimal so-
lution is bandwidth-centric: tasks should be allo-
cated to nodes in order of fastest communication
time. This result may be counter-intuitive, it says
the speed of the processors is irrelevant to choosing
which processors to send tasks to.

In the extended version of the paper [1], we mention
how other models of overlap capability can be reduced
to the base model. The reductions work on a node-by-
node basis, so it is simple to handle a heterogeneous
system with nodes having not only differing speeds but
also differing capabilities.

In [1] we also present simulation results of demand-
driven task allocation heuristics. These results show

that our bandwidth-centric method, where tasks are
allocated only to nodes with sufficiently fast commu-
nication times, obtains better results than allocating
tasks to all processors on a first-come, first serve basis.
Even better results are given by giving a low priority
to the processors that, in the optimal solution, are idle
part of the time.

Our model does not directly address the dynamically
changing nature of the grid, nor does it consider the
total execution time from sending out the first task
to receiving the result from the very last. Although
both of these are important considerations, this paper
nonetheless suggests a simple and powerful heuristic:
allocation of tasks at each node should be bandwidth-
centric. In other words, given limited bandwidth, tasks
should be allocated locally at each node with priority
given to how fast they can be communicated from the
node to a child, and not based on the computational
speed of the child.

References

[1] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and
Y. Robert. Bandwidth-centric allocation of indepen-
dent tasks on heterogeneous platforms. Technical Re-
port 2001-25, LIP, ENS Lyon, France, June 2001. Avail-
able at www.ens-lyon.fr/ ∼yrobert.

[2] F. Berman. High-performance schedulers. In I. Foster
and C. Kesselman, editors, The Grid: Blueprint for a
New Computing Infrastructure, pages 279–309. Morgan-
Kaufmann, 1999.

[3] J. Cowie, B. Dodson, R.-M. Elkenbracht-Huizing, A. K.
Lenstra, P. L. Montgomery, and J. Zayer. A world wide
number field sieve factoring record: on to 512 bits. In
K. Kim and T. Matsumoto, editors, Advances in Cryp-
tology - Asiacrypt ’96, volume 1163 of LNCS, pages
382–394. Springer Verlag, 1996.

[4] Entropia. URL: http://www.entropia.com.
[5] D. Feitelson. High performance cluster computing. vol-

ume 1: Architecture and systems. In R. Buyya, editor,
The Grid: Blueprint for a New Computing Infrastruc-
ture, pages 519–533. Prentice Hall PTR, 1999.

[6] B. Lowenkamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource query in-
terface for network-aware applications. In Proceedings
of the Seventh International Symposium on High Per-
formance Distributed Computing, 1998.

[7] Prime. URL: http://www.mersenne.org.
[8] SETI. URL: http://setiathome.ssl.berkeley.edu.
[9] R. Wolski, N. T. Spring, and J. Hayes. The network

weather service: a distributed resource performance
forecasting service for metacomputing. Future Genera-
tion Computer Systems, 15(10):757–768, 1999.

6

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

