
Broadcast Trees for Heterogeneous Platforms

O. Beaumont
LaBRI, UMR CNRS 5800

Bordeaux, France
Olivier.Beaumont@labri.fr

L. Marchal and Y. Robert
LIP, UMR CNRS-INRIA 5668

ENS Lyon, France
{Loris.Marchal,Yves.Robert}@ens-lyon.fr

Abstract

In this paper, we deal with broadcasting on heteroge-
neous platforms. Typically, the message to be broadcast
is split into several slices, which are sent by the source
processor in a pipeline fashion. A spanning tree is used
to implement this operation, and the objective is to find
the tree which maximizes the throughput, i.e. the aver-
age number of slices sent by the source processor ev-
ery time-unit. We introduce several heuristics to solve
this problem. The good news is that the best heuristics
perform quite efficiently, reaching more than 70% of the
absolute optimal throughput, thereby providing a sim-
ple yet efficient approach to achieve very good perfor-
mance for broadcasting on heterogeneous platforms.

1. Introduction

Broadcasting in computer networks is the focus of a
vast literature. The one-to-all broadcast, or single-node
broadcast [19], is the most primary collective commu-
nication pattern: initially, only the source processor has
the data that needs to be broadcast; at the end, there is a
copy of the original data residing at each processor. Par-
allel applications and algorithms often require to send
identical data to all other processors, in order to dis-
seminate global information (typically, input data such
as the problem size or application parameters). Numer-
ous broadcast algorithms have been designed for paral-
lel machines such as meshes, hypercubes, and variants
(see among others [14, 29, 27, 18]). The MPI_Bcast rou-
tine [25] is widely used, and particular care has been
given to its efficient implementation on a large variety
of platforms [13].

For short-size broadcasts, a single message is sent
by the source processor, and forwarded across the net-
work. A spanning tree is used to implement this opera-

tion. However, finding the best spanning tree, i.e. the tree
which minimizes the total execution time of the broad-
cast, is a difficult problem; it turns out NP-complete even
for the uttermost basic telephone model (problem ND49
in [12]).

For broadcasting larger messages, pipelining strate-
gies are mandatory to optimize the total execution time.
At the application level, the source message is split into
a number of slices, which are routed in a pipelined fash-
ion from the source processor to all other nodes1. There
is more freedom here: either we decide to route all the
slices along the same spanning tree, or we use several
spanning trees simultaneously. In the latter case, each
tree is used to broadcast a distinct fraction of the total
message. Each message fraction will itself be divided
into slices, to be sent in a pipeline fashion along the cor-
responding tree. Of course the implementation becomes
more complex: the communications along the different
trees must be orchestrated so as to take resource conflicts
into account (e.g., if two trees share a physical link, the
slices from both trees have to share the available band-
width).

We summarize the three previous approaches, la-
beled STA, STP and MTP, in the following table.

STA Single Tree, Only for
Atomic small messages

STP Single Tree, Allows pipelining
Pipelined along the tree

MTP Multiple Tree, Powerful, but difficult
Pipelined to design/implement

Numerous heuristics are available in the literature for
the STA problem, such as Fastest Node First [1] and
Fastest Edge First [8]. For the STA problem, there is

1 Note that a message slice can itself be further divided into packets
by the system or network layer, but (i) this is transparent to the
user and (ii) this is accounted for by using an affine cost model for
communications, see Section 2.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

a single message to broadcast, and the objective is to
find a tree that minimizes the total execution time (the
makespan). For the STP problem, there is a large num-
ber of message slices to broadcast, and the objective
is to find a tree that maximizes the throughput, i.e. the
average number of slices sent by the source proces-
sor every time-unit. The problem of throughput max-
imization can be viewed as a relaxation of the prob-
lem of makespan minimization, because the initializa-
tion and clean-up phases are ignored. Still, the problem
of throughput maximization remains NP-hard (see prob-
lem ND1 in [12] and the reduction in [6]). To the best
of our knowledge, little work has been conducted on
the design and experimental evaluation of polynomial
heuristics for the STP problem. One major goal of this
paper is to fill the void.

At first sight, the MTP problem looks more com-
plicated than the STP problem: finding a set of trees
that can be used simultaneously, without link conflict,
to maximize the total throughput that can be achieved,
seems more difficult than finding a single tree. Surpris-
ingly, the optimal solution to the MTP problem can be
computed in in polynomial time [5, 6]. However, the
latter result is mostly of theoretical interest, because
it requires a very complicated algorithm to extract the
set of spanning trees that achieves the optimal through-
put. Even after deriving the set of trees, it would be
quite time-consuming to implement the fractioning of
the original message, and the reconstruction of the so-
lution at every node. However, the first step of the ap-
proach is both simple and fast: it consists in computing
the optimal throughput that can be achieved (only the
value of the throughput, not the trees needed to achieve
it) by solving a linear program over the rationals, us-
ing standard tools such as Maple [9]. This is of great
practical interest, because the knowledge of the opti-
mal throughput enables to quantify the absolute per-
formance of the STP heuristics, and to assess how far
they are from the optimal2. The good news is that the
best STP heuristics reach around 70% of the optimal,
thereby providing a simple yet efficient way to achieve
very good performance for broadcasting on heteroge-
neous platforms.

The rest of the paper is organized as follows. First,
Section 2 reviews several platform models, and provides
the framework that will be used throughout the paper.
In Section 3, we introduce a first set of heuristics for

2 Recall that computing the optimal solution for the STP problem
requires exponential time, unless P=NP. This explains the detour
via MTP.

the STP problem (i.e. using a single spanning tree for
pipelining the broadcast message). These heuristics are
derived from classical graph algorithms. Next, in Sec-
tion 4, we briefly recall the linear program computing
the optimal solution for the MTP problem. We use the
solution of this linear program to construct a second set
of heuristics for the STP problem. We report some ex-
perimental data to compare all these heuristics in Sec-
tion 5. We briefly survey related work in Section 6 (an
extended version of related work can be found in [7]).
Finally, we state some concluding remarks in Section 7.

2. Models and framework

2.1. Models

The target architectural platform is represented by a
directed graph P = (V,E). Note that this graph may
well include cycles and multiple paths. For the sake of
generality, we assume that the graph is directed, so that
all links are unidirectional (but using two opposite edges
would model a bidirectional link).

Consider two adjacent processors Pu and Pv in the
graph (hence the link eu,v : Pu → Pv belongs to the
set of physical links E). Assume that Pu sends a mes-
sage of size L to Pv . There are several models in the
literature, which we summarize through the general sce-
nario depicted in Figure 1.

Tu,v(L)

su,v

αu,v

βu,v · L
link eu,v

receiving processor Pv

sending processor Pu

time

ru,v

su,v · L

ru,v · L

Figure 1: Sending a message of size L

Here are some notations to analyze the communica-
tion from Pu to Pv:

• The time where Pu is busy sending the message
is expressed as an affine function sendu,v(L) =
su,v + L · su,v . The start-up time su,v corresponds
to the software and hardware overhead paid to initi-
ate the communication. The link capacity su,v cor-

2

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

responds to the inverse of the transfer rate which
can be achieved (say, from main memory of Pu to
a network card able to buffer the message).

• Similarly, the time where Pv is busy receiving the
message is expressed as an affine function of the
message length L, namely recvu,v(L) = ru,v +L ·
ru,v .

• The total time for the communication, which cor-
responds to the total occupation time of the link
eu,v : Pu → Pv , is also expressed as an affine
function Tu,v(L) = αu,v + L · βu,v . The param-
eters αu,v and βu,v correspond respectively to the
start-up cost and to the inverse of the link band-
width.

Simpler models do not make the distinction be-
tween the three occupation times sendu,v(L) (emis-
sion by Pu), Tu,v(L) (occupation of eu,v : Pu → Pv)
and recvu,v(L) (reception by Pv). Such models use
su,v = ru,v = αu,v and su,v = ru,v = βu,v . This
amounts to assume that the sender Pu and the re-
ceiver Pv are blocked throughout the communica-
tion. In particular, Pu cannot send any message to
another neighbor Pw during Tu,v(L) time-steps. How-
ever, some system/platform combinations may allow
Pu to proceed to another send operation before the en-
tire message has been received by Pv . To account for
this situation, more complex models would use differ-
ent functions for sendu,v(L) and Tu,v(L), with the ob-
vious condition that sendu,v(L) � Tu,v(L) for all mes-
sage sizes L (this implies su,v � αu,v and su,v � βu,v).
Similarly, Pv may be involved only at the end of
the communication, during a time period recvu,v(L)
smaller than Tu,v(L).

Here is a summary of the general framework: assume
that Pu initiates a communication of size L to Pv at
time-step t = 0:

• Link eu,v : Pu → Pv is busy from t = 0 to t =
Tu,v(L) = αu,v + L · βu,v

• Processor Pu is busy from t = 0 to
t = sendu,v(L) = su,v + L · su,v , where
su,v � αu,v and su,v � βu,v

• Processor Pv is busy from t = Tu,v(L) −
recvu,v(L) to t = Tu,v(L), where
recvu,v(L) = ru,v + L · ru,v , ru,v � αu,v

and ru,v � βu,v

In the following, we review some models that have
been introduced in the literature. Multi-port models al-
low parallel sends (and parallel receive) while One-

port models assume that a sending processor is blocked
throughout the communication.

2.2. Multi-port models

Banikazemi et al [2] propose a model which is very
close to the general model presented above. They use
affine functions to model the occupation time of the pro-
cessors and of the communication link. The only mi-
nor difference is that they assume that the time inter-
vals where Pu is busy sending (of duration sendu,v(L))
and where Pv is busy receiving (of duration recvu,v(L))
do not overlap, so that they write

Tu,v(L) = sendu,v(L) + linku,v(L) + recvu,v(L).

In [2] a methodology is proposed to instantiate the
six parameters of the affine functions sendu,v(L),
linku,v(L) and recvu,v(L) on a heterogeneous plat-
form. The authors point out that these parameters actu-
ally differ for each processor pair and depend upon the
CPU speeds.

A simplified version of the general model has been
proposed by Bar-Noy et al [3]. In this variant, the time
during which an emitting processor Pu is blocked does
not depend upon the receiver Pv (and similarly the
blocking time in reception does not depend upon the
sender. In addition, only fixed-size messages are con-
sidered in [3], so that this model writes

Tu,v = sendu + linku,v + recvv. (1)

The models of Banikazemi et al [2] and Bar-Noy et
al [3] are called multi-port because they allow a send-
ing processor to initiate another communication while a
previous one is still on-going on the network. However,
both models insist that there is an overhead time to pay
before being engaged in another operation, so there are
not allowing for fully simultaneous communications.

2.3. One-port model

In the one-port model, a processor can send and re-
ceive in parallel, but at most to a given neighbor in each
direction. If Pu sends a message to Pv , both Pu and Pv

are blocked throughout the communication: with previ-
ous notations su,v = ru,v = αu,v and su,v = ru,v =
βu,v .

The one-port model is used by Bhat et al [8] for
fixed-size messages. They advocate its use because “cur-
rent hardware and software do not easily enable multi-
ple messages to be transmitted simultaneously”. Even

3

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

if non-blocking multi-threaded communication libraries
allow for initiating multiple send and receive operations,
they claim that all these operations “are eventually seri-
alized by the single hardware port to the network". Ex-
perimental evidence of this fact has recently been re-
ported by Saif and Parashar [24], who report that asyn-
chronous MPI sends get serialized as soon as message
sizes exceed a few megabytes. Their result hold for two
popular MPI implementations, MPICH on Linux clus-
ters and IBM MPI on the SP2.

2.4. Framework

Let P = (V,E) be the platform graph, and p = |V |
be the number of nodes. The source node Ps initially
holds all the data to be broadcast. All the other nodes Pu,
1 � u � p, u �= s, are destination nodes which must re-
ceive all the data sent by Ps . We assume that the total
size of the data to be broadcast is large, say from a few
megabytes to larger values.

As discussed in Section 1, a natural strategy is to
pipeline the broadcast along a single spanning tree. At
the application level, the large message will be split into
several slices which will be broadcast consecutively, in a
pipeline fashion, so that first slices will reach the leaves
of the tree while the source node is still emitting the
last slices. The usefulness of pipelining a large num-
ber of slices has been demonstrated by van de Geijn et
al. [28, 4] when communicating over LANs et WANs.
Including such pipelining strategies in MPICH-G2 if the
focus of on-going work [16].

We let L denote the size of a slice, which should be
set at the application level. When the value of L has
been fixed, we have a series of same-size messages to be
broadcast consecutively by Ps . The objective is to find a
spanning tree with good throughput, where the through-
put is defined as the average number of message slices
sent by Ps every time-unit. Because the number of slices
is assumed to be large, we can safely neglect the initial-
ization and clean-up phases: as soon as the first slices are
circulated along the tree, every node operates in steady-
state.

3. Platform-based heuristics for STP

3.1. One-port model

In this section, we describe several heuristics for the
STP problem: given a platform graph and a source pro-
cessor, we aim at finding a “good” broadcast tree, that is

a tree where messages can be sent in a pipelined fash-
ion with a good throughput. We consider the pipelined
broadcast of a message divided into slices of same size
L. For every link eu,v : Pu → Pv , we write:

sendu,v(L) = recvu,v(L) = Tu,v(L) = Tu,v.

The edges of platform graph P = (V,E) are weighted
by the time needed to send a message of size L: the
weight of eu,v : Pu → Pv is Tu,v . We design four
heuristics. The first two heuristics start from the plat-
form graph and delete edges until the resulting graph is
a tree, while the third heuristic grows a spanning tree
rooted at the source processor. The fourth one, based on
MPI policy to broadcast a message, is included for sake
of comparison with existing broadcast techniques.

3.1.1. Simple Platform Pruning The idea of this sim-
ple heuristic is to prune the platform graph, deleting
edges with maximum weight, until we obtain a tree
spanning all the nodes: see Algorithm 1.

SIMPLE-PLATFORM-PRUNING(P, Ps)
TreeEdges ← all edges of E
while |TreeEdges|> n − 1 do

L ← edges of TreeEdges sorted by non-
increasing weight Tu,v

for each edge e ∈ L do
if the graph (V,TreeEdges\{e}) is still con-
nected then

TreeEdges ← TreeEdges\{e}
return (V,TreeEdges)

Algorithm 1: The simple platform pruning algorithm

3.1.2. Refined Platform Pruning If we look carefully
at the previous heuristic, we realize that there is no rea-
son to discard all edges with large weight: if a node has
a many children in the tree (say, 10), with all its out-
going edges of medium weight (e.g. 2), it will spend
20 time-units to broadcast each message slice. On the
contrary, a node linked to a single child in a tree by an
edge of larger weight (say 15) will only need 15 time-
units broadcast each message slice. The throughput of
each node is inversely proportional to its weighted out-
going degree, i.e. the sum of the weights of its outgoing
edges in the tree. A more accurate metric in the heuris-
tic would be the weighted out-degree of a node in the
tree rather than the maximum weight of all edges. We
can adapt the previous heuristic to this metric by main-
taining the current weighted out-degree of each node u,
denoted as OutDegree(u), and trying to delete an edge

4

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

from the node which maximizes this metric. This is sum-
marized in Algorithm 2.

REFINED-PLATFORM-PRUNING(P, Ps)
1: TreeEdges ← all edges of E
2: for each u ∈ V do
3: OutDegree(u) ←

∑
v, (u,v)∈E

Tu,v

4: while |TreeEdges| > n − 1 do
5: SortedNodes ← nodes sorted by non-increasing

value of OutDegree(u)
6: for u ∈ SortedNodes do
7: L ← edges sorted by decreasing weight Tu,v

8: for each edge e = (u, v) ∈ L do
9: if the graph (V,TreeEdges\{e}) is still con-

nected then
10: TreeEdges ← TreeEdges\{e}
11: OutDegree(u) ← OutDegree(u) − Tu,v

12: goto 4
13: return (V,TreeEdges)

Algorithm 2: The refined platform pruning algorithm.

3.1.3. Growing a Minimum Weighted Out-Degree
Tree This heuristic is derived from Prim’s algo-
rithm [10] for building a minimum cost spanning tree.
The usual metric for the cost of the tree is the sum
of all its edges. However, as discussed in the previ-
ous heuristic, this is not the good metric for our prob-
lem. Instead, we are interested in minimizing the max-
imum weighted out-degree of each node in the tree.
We can adapt Prim’s algorithm as shown in Algo-
rithm 3.

When we add a new edge (u, v) in the tree, we up-
date the cost of edges (u, w), for all neighbors w of u
not already in the tree. The cost of an edge (u, w) (with
Pu in the tree and Pw not yet in the tree) is defined as
the sum of the weights of the current tree edges outgo-
ing from Pu. By selecting the edge with minimum cost,
we add the edge which increases as little as possible the
maximum weighted out-degree of any node in the tree.

3.1.4. Binomial tree heuristic For the sake of com-
parison with existing strategies for the STP problem,
we introduce another heuristic using a binomial tree.
This heuristic is based on the classical MPI implemen-
tation of the broadcast [25], which constructs a bino-
mial spanning tree based on the index of each proces-
sor, without any topological information. We assume
here that the source has index 0, and we compute a
binomial tree for the first 2m nodes of the platform

GROWING-MIN-WEIGHTED-OUT-DEGREE-TREE(P, Ps)
TreeEdges ← ∅
TreeVertices ← {Ps}
for each edge e = (u, v) do

cost(u, v) ← Tu,v

while TreeVertices �= V do
choose the link (u, v) such that u ∈ TreeVertices ,
v /∈ TreeVertices and cost(u, v) is minimum
TreeVertices ← TreeVertices ∪ {v}
TreeEdges ← TreeEdges ∪ {(u, v)}
for each edge (u, w) /∈ TreeEdges do

cost(u,w) ← cost(u,w) + cost(u, v)
return (TreeVertices,TreeEdges)

Algorithm 3: The growing tree algorithm.

(where m = �log2 |V |�). Each of the remaining nodes
x receives the message from one of the previous nodes
(x− 2m) in the last stage of the tree construction. When
adding a transfer from node u to node v, edge (u, v) may
not exist; in this case, we schedule the transfer through
the shortest path from u to v. This heuristic is described
in Algorithm 4 (we suppose that SHORTEST-PATH(u,v) re-
turns the edges of the shortest path from u to v).

BINOMIAL-TREE(P, Ps)
TreeEdges ← ∅
m = �log2 |V |�
for p = 0 . . . m − 1 do

for X = 0 . . . 2p − 1 do
TreeEdges ← TreeEdges∪

SHORTEST-PATH(X ·2m−p, X ·2m−p+2m−p−1)
for u = 2m . . . |V | − 1 do

TreeEdges ← TreeEdges∪
SHORTEST-PATH(u, u − 2m)

return (V,TreeEdges)

Algorithm 4: The binomial tree algorithm.

3.2. Multi-port

The Growing-Minimum-Weighted-Out-degree-Tree
heuristic can be adapted to the multi-port model. Re-
call that in this model, the occupation of the send-
ing processor is less than the total occupation
of the communication link. According to Equa-
tion 1, the time to transfer a message from Pu to
Pv is Tu,v = sendu + linku,v + recvv . If Pu ini-
tiates several sends, the first and third term sendu

and recvv have to be serialized, while the sec-
ond term linku,v may be parallelized. In gen-

5

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

eral (see proof in [7]), the throughput that a node
Pu can achieve is the inverse of Tperiod , where
Tperiod = max (δout(Pu) × sendu, maxi(Tu,vi

)) and
δout(Pu) is the out-degree of u (the number of its
children in the tree). Therefore, adapting the previ-
ous heuristic to the multi-port model simply amounts
to change the cost of adding a new edge. This is de-
scribed in Algorithm 5.

MULTIPORT-MIN-WEIGHTED-OUT-DEGREE-TREE(P, Ps)
TreeEdges ← ∅
TreeVertices ← {Ps}
for each u ∈ V do

child(u) ← ∅
for all edge e = (u, v) do

cost(u, v) ← Tu,v

while TreeVertices �= V do
choose the link (u, v) such that u ∈ TreeVertices ,
v /∈ TreeVertices and cost(u, v) is minimum
TreeVertices ← TreeVertices ∪ {v}
TreeEdges ← TreeEdges ∪ {(u, v)}
child(u) ← child(u) ∪ {v}
for each edge (u, w) /∈ TreeEdges do

cost(u, v) ← max
(∣∣∣child [u]

∣∣∣ ∗ sendu ,

maxw′∈child[u](Tu,w′)
)

return (TreeVertices,TreeEdges)

Algorithm 5: The multiport growing tree algorithm

4. LP-based heuristics

4.1. Linear program

As pointed out in Section 1, the optimal throughput
for the MTP problem is equal to the solution of the
linear program (2) over the rationals (which we solve
with standard tools such as Maple [9]). In the linear pro-
gram (2), the objective function is the throughput TP.
We let N out(Pu) denote the set of the output neighbors
of Pu, i.e. the set of nodes Pv such that eu,v : Pu →
Pv ∈ E; similarly, N in(Pv) is the set of the input neigh-
bors of Pu, i.e. nodes Pv such that eu,v ∈ E. Also, xu,v

w

denotes the fractional number of message slices which
are sent by Ps to Pw every time-unit, and that transit
on the edge eu,v : Pu → Pv . Of course each proces-
sor will receive the same set of messages in the end, but
the same message may well be forwarded along different
trees to different destinations, hence the need for “track-

ing” the circulation of messages along each edge.

STEADY-STATE BROADCAST ON A GRAPH SSB(G)
MAXIMIZE TP,
SUBJECT TO

(a) ∀u,
∑

Pv∈N out (Ps)
xsource,v

u = TP
(b) ∀u, Pu �= Ps ,∑

Pv∈N in(Pu) xv,u
u = TP

(c) ∀u, v, Pv �= Ps , Pv �= Pu,∑
Pw∈N in(Pv)

xw,v
u =

∑
Pw∈N out (Pv)

xv,w
u

(d) ∀eu,v : Pu → Pv,
nu,v = maxw xu,v

w

(e) ∀eu,v : Pu → Pv,
tu,v = nu,v · Tu,v

(f) ∀u, t
(in)
u =

∑
Pv∈N in(Pu) tv,u

(g) ∀u, t
(out)
u =

∑
Pv∈N out (Pu) tu,v

(h) ∀u, v, tu,v � 1
(i) ∀u, t

(in)
u � 1

(j) ∀u, t
(out)
u � 1

(2)
The first constraint (a) states that the total number of

messages destined to Pu and which are sent from Ps ev-
ery time-unit is indeed TP . Similarly, constraint (b) ex-
presses that the total number of messages which are ac-
tually received by Pu every time-unit is also equal to
TP . Constraint (c) states a conservation law at any in-
termediate processor Pv distinct from Ps and from Pu:
the number of messages destined to Pu which arrive at
Pv each time-unit is the same as the number of same
type messages that go out of Pv . This conservation law
is only valid in steady-state operation, it does not apply
to the initialization and clean-up phases.

The following set of constraints is related to link oc-
cupation. First, nu,v denotes the total number of mes-
sages that transit on the edge eu,v : Pu → Pv . We
know that for each w, there are xu,v

w messages sent
to Pw which do transit on this edge. The main diffi-
culty is that the sets of messages transiting on the edge
and sent to different Pw’s may partly overlap. If they
were all disjoint, we would write nu,v =

∑
w xu,v

w (this
would hold true for a scatter operation). In fact, it turns
out that is it possible to design a schedule such that
nu,v = maxw xu,v

w , which is precisely constraint (d).
This means that it is possible to orchestrate the commu-
nications such that given any two message sets circulat-
ing on the same edge and destined to different proces-
sors, one is a subset of the other. The proof of this re-
sult is quite involved, see [6]. The next constraints are

6

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

easier to derive. Constraint (e) expresses the time to cir-
culate all messages on the edge eu,v . The next two con-
straints correspond to the one-port model: constraint (f)
ensures that all incoming communications are sequen-
tialized, and constraint (g) is the counterpart for outgo-
ing communications. The last three constraints simply
state that any set of sequential communications lasts no
more than one time-unit.

We do not use the complicated algorithm described
in [5, 6] to design an actual schedule that achieves the
optimal throughput TP through the parallel propagation
of message slices along several spanning trees. We only
compute the optimal solution of the linear program (2),
and we retain the values of TP, the optimal throughput,
and of nu,v , the number of message slices that circulate
along each edge eu,v .

4.2. Heuristic for the one-port model

We assign the weight nu,v to each edge eu,v of the
platform graph G = (V,E), and we use these weights
to design two heuristics for the STP problem. We call
communication graph the platform graph weighted as
just defined. The first heuristic starts from the whole
communication graph and removes the edges carrying
the smallest number of messages, until having reduced
the graph to a spanning tree. The second heuristic works
bottom-up, and grows a spanning tree starting from the
source processor, using the the most “useful” edges.

4.2.1. Communication graph pruning In this heuris-
tic, we delete the edges which preserve the connectivity
of the graph and have minimum weight, i.e. edges carry-
ing the fewest messages in the solution returned by the
linear program (2). This is described in Algorithm 6.

4.2.2. Growing a spanning tree over the communi-
cation graph In this heuristic, we consider again the
communication graph given by the solution of the lin-
ear program (2). We grow a spanning tree, starting from
the source processor, and selecting edges with maxi-
mum weight, i.e. edges carrying the maximum number
of messages in the solution of the linear program. This
heuristic is described in Algorithm 7.

5. Experiments

In this section, we describe the experiments con-
ducted to assess the performance of all the previous
heuristics. We perform experiments through simulation,
so as to test our heuristics on a wide range of heteroge-
neous platforms.

LP-PRUNE(P, Ps)
solve linear program (2), and compute nu,v , the
number of messages sent through edge (u, v) dur-
ing one time-unit
TreeEdges ← all edges of E
while |TreeEdges|> n − 1 do

L ← edges (u, v) sorted by non-increasing value
of nu,v

for each edge e ∈ L do
if the graph (V,TreeEdges\{e}) is still con-
nected then

TreeEdges ← TreeEdges\{e}
return (V,TreeEdges)

Algorithm 6: The communication graph pruning algo-
rithm

LP-GROW-TREE(P, Ps)
solve linear program (2), and compute nu,v , the
number of messages sent through edge (u, v) dur-
ing one time-unit
TreeEdges ← ∅
TreeVertices ← {Ps}
while TreeVertices �= V do

choose the link (u, v) such that u ∈
TreeVertices , v /∈ TreeVertices and (u, v)
has maximum value nu,v

TreeVertices ← TreeVertices ∪ {v}
TreeEdges ← TreeEdges ∪ {(u, v)}

return (TreeVertices,TreeEdges)

Algorithm 7: The growing tree algorithm based on the
communication graph.

5.1. Platforms

We use two types of platforms: first we ran-
domly generate platform graphs, using the parameters
described in the following table (for each set of pa-
rameters, we generate 10 different configurations). The
density is the probability of the existence of an edge be-
tween two nodes.

number of nodes : 10, 20,. . . , 50
density : 0.04, 0.08,. . . , 0.20

Tu,v : Gaussian distribution
: (mean=100MB/s, deviation=20MB/s)

sendu,v : 0.80 · minw,(u,w)∈E {Tu,w}
: (depends only on sending node u)

Next, to perform simulations on more realistic plat-
forms, we use platforms generated by TIERS, a popu-
lar generator of network topologies [15]. Using TIERS,

7

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

we generate 100 platforms with 30 nodes, and 100 plat-
forms with 65 nodes. These platforms have a den-
sity between 0.05 and 0.15, depending on the number
of nodes. We use the same distribution for the val-
ues of Tu,v as for random platforms.

For both random and Tiers platforms, we conduct
some experiments under the multi-port model. In that
case, the value of sendu,v is set to 80% of the shortest
link occupation when sending a message to one neigh-
bor. This percentage is somewhat arbitrary, but our simu-
lations show that the results do not strongly depend upon
this parameter.

5.2. Results

On each platform configuration, we compute the
throughput of each heuristic, and compare it to the opti-
mal throughput of the MTP problem under the one-port
model, obtained as the solution of the linear pro-
gram described in Section 4. So what is called “relative
performance” in the following results is the through-
put of a given heuristic compared to the best throughput
that can be achieved using several broadcast trees.

5.2.1. Random platforms, one-port In Figure 2(a),
we plot the performance of the different heuristics for
several platform sizes. The Y axis is the relative average
performance compared to the optimal solution for the
MTP problem. We point out that for a small number of
nodes, our heuristics are able to reach a throughput very
close to the optimal. For larger platforms, the “advanced
heuristics” (i.e. Topo-Prune-Degree, Topo-Grow-Tree,
LP-Prune and LP-Grow-Tree) are able to reach 60% of
the optimal throughput with several trees. The heuris-
tics Topo-Prune-Degree and Topo-Grow-Tree are even
within 70% of the optimal. The simple pruning heuris-
tic (Topo-Prune-Simple) behaves well for a small num-
ber of nodes, but is not scalable to larger platforms: its
throughput falls down to 20% of the optimal. Last, the
Binomial-Tree heuristic gives very poor results, which
was expected because it does not take topological infor-
mation into account.

Figure 2(b) shows the relative performances of our
heuristics as a function of the density of the underlying
platform. Intuitively, a higher density allows for more
freedom in the routing, hence more gain in using sev-
eral trees in parallel. However, our refined heuristics are
still within 70% of the optimal throughput.

5.2.2. Random platforms, multi-port Figure 3
shows the performance of the Multi-Port Grow-
ing Tree heuristic described in Section 3.2, compared to

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

Prune Platform Simple
Prune Platform Degree

Grow Tree
LP Grow Tree

LP Prune
Binomial Tree

(a) Performance as a function of number of nodes

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Prune Platform Simple
Prune Platform Degree

Grow Tree
LP Grow Tree

LP Prune
Binomial Tree

(b) Performance as a function of density

Figure 2: Performances: one-port model.

the Binomial-Tree heuristic. Again, we compute the ra-
tio of the throughput of these heuristics over the
optimal throughput given by the linear program of Sec-
tion 4. The X axis is the number of nodes in randomly
generated platform. The Y axis is the relative aver-
age performance compared to the optimal solution
for the MTP problem on the same platform (but un-
der the one-port model). At first sight it may seem sur-
prising to achieve ratios larger than 1 (hence better than
the “optimal”). However, recall that the linear program
gives an optimal throughput under the one-port assump-
tion, while the throughput of the heuristics are com-
puted using the multi-port model, which allows some
overlapping of consecutive sends by a given proces-
sor We still choose to plot this ratio because: (i) we do
not know how to compute the optimal throughput un-
der the multi-port model; and (ii) we believe that it is
interesting to compare all heuristics over the same ba-
sis, here the solution of the linear program, giving
a good idea of what can be achieved on the plat-
form.

8

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

We notice that the performance of the Binomial-
Tree heuristic is better that previously, and this is be-
cause the multi-port model is less constrained, allow-
ing for multiple communications to go through one node
without severely decreasing the throughput. However,
the adapted Multi-Port Growing Tree heuristic gives
much better results. We also present the performance
of the heuristics based on linear programming under
this model, which are close to the performance of the
adapted Growing Tree heuristic. Finally, note that other
heuristics, such as Topo-Prune-Degree, can be adapted
to the multi-port model, and give good results too: the
latter heuristic is labeled Multiport-Prune-Degree in Fig-
ure 3).

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 15 20 25 30 35 40 45 50

Multi Port Prune Degree
Multi Port Grow Tree

LP Grow Tree
LP Prune

Binomial Tree

Figure 3: Performances: multi-port model.

5.2.3. Tiers platforms, one-port The following
gives the results of all the heuristics for TIERS gen-
erated platforms, under the one-port model (aver-
age value, (±deviation%)). The results are congruent
with those on randomly generated platforms, although
the LP-based heuristics (LP-Prune and LP-Grow-Tree)
give a slightly better results on large TIERS plat-
forms.

number Platform based heuristics
of nodes Prune Simple Refined Prune Grow Tree

30 46% (±0.12%) 82% (±10%) 75% (±10%)

65 30% (±10%) 73% (±13%) 71% (±12%)

number LP based heuristics Binomial
of nodes Grow Tree Prune Max Tree

30 82% (±11%) 82% (±11%) 11% (±2%)

65 73% (±11%) 74% (±11%) 5% (±1%)

6. Related work

As pointed out in the introduction, most papers deal-
ing with broadcasting on heterogeneous platforms re-
strict to the STA problem, i.e. they build a single span-
ning tree, without pipelining.

As mentioned in Section 2.3, Banikazemi et al. [1]
have considered a simple model in which the hetero-
geneity among processors is characterized by the speed
of the sending processors. Some theoretical results (NP-
completeness and approximation algorithms) have been
developed for the problem of broadcasting a message in
this model: see [17, 21, 23].

Sun et al [26] investigate clusters of SMPs con-
nected by one-port switches, and they introduce several
heuristic for the STA problem on such hierarchical plat-
forms. Other collective communications, such as multi-
cast, scatter, all-to-all, gossiping, and gather (or reduce)
have been studied in the context of heterogeneous plat-
forms: see [20, 22] among others.

7. Conclusion

In this paper, we have considered the problem of
broadcasting large messages on heterogeneous plat-
forms. The broadcast may be performed either us-
ing a single tree and sending the whole message at once
(the STA approach), or using a single tree and send-
ing the message in a pipeline fashion (the STP ap-
proach), or using several broadcast trees and sending
the message in a pipeline fashion (the MTP ap-
proach). Surprisingly, the former two problems are
NP-Complete, whereas the latter can be solved in poly-
nomial time. Nevertheless, the use of a single tree has
many advantages. In particular, there is no need of com-
plex synchronization to handle conflicts that may
arise on communication resources; also, a commu-
nication scheme using a single broadcast tree may
well be more robust to small changes in link perfor-
mances.

We have derived several heuristics for the STP ap-
proach, and compared them, through extensive simula-
tions, against the optimal solution of the MTP problem.
The results presented in this paper show that for realistic
platforms such as those generated by TIERS [15], there
is little difference in the throughput achieved when us-
ing a single or several broadcast trees. Our results also
prove that it is mandatory to take into account the ac-
tual topology and performances of the network to de-
rive efficient implementations. Estimates of the trans-
fer speeds can be acquired by querying grid information

9

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

services [11], or by directly observing the performance
being delivered by the communication links. Whenever
available on the target heterogeneous platform, plugging
this information into our heuristics is very likely to pro-
vide significant improvement over current MPI imple-
mentations.

References

[1] M. Banikazemi, V. Moorthy, and D. K. Panda. Effi-
cient collective communication on heterogeneous net-
works of workstations. In ICPP’98. IEEE Computer So-
ciety Press, 1998.

[2] M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda,
and P. Sadayappan. Communication modeling of hetero-
geneous networks of workstations for performance char-
acterization of collective operations. In HCW’99, pages
125–133. IEEE Computer Society Press, 1999.

[3] A. Bar-Noy, S. Guha, J. S. Naor, and B. Schieber. Mes-
sage multicasting in heterogeneous networks. SIAM
Journal on Computing, 30(2):347–358, 2000.

[4] M. Barnett, R. Littlefield, D. G. Payne, and R. van de
Geijn. On the efficiency of global combine algorithms
for 2-D meshes with wormhole routing. J. Parallel and
Distributed Computing, 24(2):191–201, 1995.

[5] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert.
Pipelining broadcasts on heterogeneous platforms. In In-
ternational Parallel and Distributed Processing Sympo-
sium IPDPS’2004. IEEE Computer Society Press, 2004.

[6] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert.
Pipelining broadcasts on heterogeneous platforms. IEEE
Trans. Parallel Distributed Systems, 2004, to appear.
Available as LIP Research Report 2003-34.

[7] O. Beaumont, L. Marchal, and Y. Robert. Broadcast trees
for heterogeneous platforms. Research Report RR-2004-
46, LIP, ENS Lyon, France, Nov. 2004.

[8] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient col-
lective communication in distributed heterogeneous sys-
tems. Journal of Parallel and Distributed Computing,
63:251–263, 2003.

[9] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Mona-
gan, and S. M. Watt. Maple Reference Manual, 1988.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-
duction to Algorithms. The MIT Press, 1990.

[11] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid Information Services for Distributed Resource
Sharing. In HPDC-10, August 2001.

[12] M. R. Garey and D. S. Johnson. Computers and In-
tractability, a Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1979.

[13] K. Hwang and Z. Xu. Scalable Parallel Computing.
McGraw-Hill, 1998.

[14] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and
personalized communication in hypercubes. IEEE Trans.
Computers, 38(9):1249–1268, 1989.

[15] K. Calvert and M. Doar and E.W. Zegura. Modeling
Internet Topology. IEEE Communications Magazine,
35:160–163, 1997.

[16] N. Karonis, B. Toonen, and I. Foster. MPICH-G2:
A grid-enabled implementation of the message pass-
ing interface. J. Parallel and Distributed Computing,
63(5):551–563, 2003.

[17] S. Khuller and Y. Kim. On broadcasting in heterogenous
networks. In Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 1011–
1020. SIAM, 2004.

[18] H. Ko, S. Latifi, and P. Srimani. Near-optimal broad-
cast in all-port wormhole-routed hypercubes using error-
correcting codes. IEEE Trans. Parallel and Distributed
Systems, 11(3):247–260, 2000.

[19] V. Kumar, A. Grama, A. Gupta, and G. Karypis.
Introduction to Parallel Computing. The Ben-
jamin/Cummings Publishing Company, Inc., 1994.

[20] R. Libeskind-Hadas, J. R. K. Hartline, P. Boothe, G. Rae,
and J. Swisher. On multicast algorithms for heteroge-
neous networks of workstations. Journal of Parallel and
Distributed Computing, 61(11):1665–1679, 2001.

[21] P. Liu. Broadcast scheduling optimization for heteroge-
neous cluster systems. Journal of Algorithms, 42(1):135–
152, 2002.

[22] F. Ooshita, S. Matsumae, and T. Masuzawa. Efficient
gather operation in heterogeneous cluster systems. In
HPCS’02. IEEE Computer Society Press, 2002.

[23] F. Ooshita, S. Matsumae, T. Masuzawa, and N. Tokura.
Scheduling for broadcast operation in heterogeneous par-
allel computing environments. Systems and Computers
in Japan, 35(5):44–54, 2004.

[24] T. Saif and M. Parashar. Understanding the behavior and
performance of non-blocking communications in MPI.
In Proceedings of Euro-Par 2004: Parallel Processing,
LNCS 3149, pages 173–182. Springer, 2004.

[25] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker,
and J. Dongarra. MPI the complete reference. The MIT
Press, 1996.

[26] Y. Sun, D. Bader, X. Lin, and Y. Ling. Broadcast on clus-
ters of SMPs with optimal concurrency. In PDPTA’02.
CSREA Press, 2002.

[27] Y.-C. Tseng, S.-Y. Wang, and C.-W. Ho. Efficient broad-
casting in wormhole-routed multicomputers: a network-
partitioning approach. IEEE Trans. Parallel and Dis-
tributed Systems, 10(1):44–61, 1999.

[28] R. van de Geijn. On global combine operations. J. Par-
allel and Distributed Computing, 22(2):324–328, 1995.

[29] J. Watts and R. Van De Geijn. A pipelined broadcast
for multidimensional meshes. Parallel Processing Let-
ters, 5(2):281–292, 1995.

10

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

