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Abstract. In this paper, we consider the problem of allocating a large
number of independent, equal-sized tasks to a heterogeneous ”grid” com-
puting platform. We use a non-oriented graph to model a grid, where
resources can have different speeds of computation and communication,
as well as different overlap capabilities. We show how to determine the
optimal steady-state scheduling strategy for each processor.
Because spanning trees are easier to deal with in practice, a natural ques-
tion arises: how to extract the best spanning tree, i.e. the one with opti-
mal steady-state throughput, out of a general interconnection graph? We
show that this problem is NP-Complete. Still, we introduce and compare
several low-complexity heuristics to determine a sub-optimal spanning
tree.

1 Introduction

In this paper, we deal with the problem of allocating a large number of indepen-
dent, equal-sized tasks to a heterogeneous “grid” computing platform. We model
a collection of heterogeneous resources and the communication links between
them as the nodes and edges of an undirected graph. Each node is a computing
resource (a processor, or a cluster, or whatever) capable of computing and/or
communicating with its neighbors at (possibly) different rates.

We assume that one specific node, referred to as the master, initially holds
(or generates the data for) a large collection of independent, identical tasks to
be allocated on the grid. The question for the master is to decide which tasks to
execute itself, and how many tasks to forward to each of its neighbors. Due to
heterogeneity, the neighbors may receive different amounts of work (maybe none
for some of them). Each neighbor faces in turn the same dilemma: determine
how many tasks to execute, and how many to delegate to other processors.

The master may well need to send tasks along multiple paths to properly feed
a very fast but remote computing resource. The master-slave scheduling problem
for a general interconnection graph is to determine a steady state scheduling pol-
icy for each processor, i.e. the fraction of time spent computing, and the fraction
of time spent sending or receiving tasks along each communication link, so that
the (averaged) overall number of tasks processed at each time-step is maximum.
In this paper, we solve the master-slave scheduling problem for general graphs,
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using a linear programming formulation (which nicely encompasses the situation
where there are several masters instead of a single one).

The master-slave scheduling problem is motivated by problems that are ad-
dressed by collaborative computing efforts such as SETI@home [14], factoring
large numbers [7], the Mersenne prime search [13], and those distributed com-
puting problems organized by companies such as Entropia [8].

Several papers [15,11,9,16,3,2] have recently revisited the master-slave para-
digm for processor clusters or grids, and we refer to Section 7 for comparison
and discussion.

This paper is a follow-on of recent work by Beaumont et al. [2], who solve
the master-slave scheduling problem for a tree-shaped heterogeneous platform.
Given an oriented spanning tree rooted at the master, they aim at determining
the optimal steady-state scheduling strategy. Interestingly, it turns out that this
strategy is bandwidth-centric: if enough bandwidth is available to the node, then
all children are kept busy; if bandwidth is limited, then tasks should be allocated
only to children which have sufficiently fast communication times, in order of
fastest communication time. Counter-intuitively, the maximum throughput in
the tree is achieved by delegating tasks to children as quickly as possible, and
not by seeking their fastest processing.

Given a network topology (that may well include cycles and multiple paths),
how to extract the “best” spanning tree, i.e. the spanning tree which allows for
the maximum number of tasks to be processed by all the computing resources?
Given a tree, the result by Beaumont et al [2] enables to compute the best
scheduling strategy for that tree, but is of no help to find the tree. Because
there may exist an exponential number of trees rooted at the master, we cannot
simply compute the best scheduling strategy for each tree, and then select the
best result.

Given a general interconnection graph, we show that the problem of extract-
ing the optimal spanning tree is NP-complete. Even worse, we show that there
exist heterogeneous networks for which the optimal spanning tree has a through-
put which is arbitrarily bad in front of the throughput that can be achieved
by the optimal (multiple-path) solution. Still, we introduce and compare several
low-complexity heuristics to determine a sub-optimal spanning tree. Fortunately,
we observe that the best heuristics do achieve an excellent performance in most
experiments.

The rest of the paper is organized as follows. In Section 2 we introduce
our base model of communication and computation, and we formally state the
master-slave scheduling problem for a general interconnection graph. We provide
the optimal solution to this problem, using a linear programming approach. In
Section 3 we discuss various extensions, first with several masters, and then with
different hypotheses on the overlapping capabilities. Section 4 is theoretically
oriented and provides the negative complexity results for the search of an optimal
spanning tree: (i) NP-completeness of the problem and (ii) inapproximability of a
general graph by any spanning tree. Section 5 deals with the design of five low-
cost (polynomial) heuristics to determine a sub-optimal spanning tree. These
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heuristics are experimentally compared in Section 6. Fortunately, we are able to
report that the best two heuristics achieve very good performance in most cases,
despite the negative theoretical predictions. We briefly survey related work in
Section 7. Finally, we give some remarks and conclusions in Section 8.

2 The Master-Slave Scheduling Problem

In this section, we formally state the optimization problem to be solved. We start
with the architectural model, next we explain how to compute the steady state,
and finally we state the master-slave scheduling problem as a linear programming
problem to be solved in rational numbers (hence a polynomial complexity).

2.1 Architectural Model

The target architectural/application framework is represented by a node-
weighted edge-weighted graph G = (V, E, w, c). Let p = |V | be the number of
nodes. Each node Pi ∈ V represents a computing resource of weight wi, meaning
that node Pi requires wi units of time to process one task (so the smaller wi,
the faster the processor node Pi). There is a master processor, i.e. a node Pm

which plays a particular role. Pm initially holds the data for a large (say infinite)
collection of independent tasks to be executed. Tasks are atomic, their computa-
tion or communication cannot be preempted. A task represents the granularity
of the application.

Each edge eij : Pi → Pj is labeled by a value cij which represents the time
needed to communicate the data for one task between Pi and Pj , in either direc-
tion: we assume that the link between Pi and Pj is bidirectional and symmetric,
i.e. that it takes the same amount of time to send (the data for) one task from
Pi to Pj than in the reverse direction, from Pj to Pi. If there is no communi-
cation link between Pi and Pj we let cij = +∞, so that cij < +∞ means that
Pi and Pj are neighbors in the communication graph. Note that we can include
in cij the time needed for the receiving processor to return the result to the
sending processor when it is finished. For the purpose of computing steady-state
behavior, it does not matter what fraction of the communication time is spent
sending a problem and what fraction is spent receiving the results. To simplify
the exposition, we will henceforth assume that all the time is spent sending the
task data, and no time is needed to communicate the results back. We assume
that all wi are positive rational numbers. We disallow wi = 0 since it would
permit node Pi to perform an infinite number of tasks, but we allow wi = +∞;
then Pi has no computing power but can still forward tasks to other processors.
Similarly, we assume that all cij are positive rational numbers (or equal to +∞
if there is no link between Pi and Pj).

We state the communication model more precisely: if Pi sends a task to Pj at
time-step t, then Pj cannot start executing this task before time-step t+ cij , Pj

can neither initiate another receive operation nor start the execution of the task
before time-step t + cij (but it can perform a send operation and independent



426 C. Banino et al.

computation), Pi cannot initiate another send operation before time-step t+ cij

(but it can perform a receive operation and independent computation).

2.2 Steady-State Operation

Given the resources of a weighted graph G operating under the base model,
we aim at determining the best steady-state scheduling policy. After a start-up
phase, we want the resources to operate in a periodic mode. This makes very
good sense if there is a large number of tasks to process, as typical applications
would require: otherwise why bother dispatching them on the grid?

To formally define the steady-state, we need a couple of notations. Let n(i)
denote the index set of the neighbors of processor Pi. During one time unit: αi

is the fraction of time spent by Pi computing, sij is the fraction of time spent
by Pi sending tasks to each neighbor processor Pj , j ∈ n(i), i.e. for each eij ∈ E
and rij is the fraction of time spent by Pi receiving tasks from each neighbor
processor Pj , j ∈ n(i), i.e. for each eij ∈ E. We search for rational values of all
these variables. The first set of constraints is that all variables αi, sij and rij

must belong to the interval [0, 1], as they correspond to the activity during one
time unit. The second set of constraints is that the number sij/cij of tasks sent
by Pi to Pj is equal to the number of tasks rji/cij received by Pj from Pi:

∀eij ∈ E, sij = rji (1)

Because send operations to the neighbors of Pi are assumed to be sequential,
we have the equation

∀i,
∑

j∈n(i) sij ≤ 1 (2)

Because receive operations from the neighbors of Pi are assumed to be
sequential, we have the equation

∀i,
∑

j∈n(i) rij ≤ 1 (3)

Because of the full overlap hypothesis, there is no further constraint on αi:
0 ≤ αi ≤ 1, and αi = 1 would mean that Pi is kept processing tasks all the time.
We have to ensure that the link bandwidth is not exceeded. The constraint
translates into:

∀eij ∈ E, sij + rij ≤ 1 (4)

The last constraints deals with conservation laws: for every processor Pi

which is not the master, the number of tasks received by Pi, i.e.
∑

j∈n(i)
rij

cij
,

should be equal to the number of tasks that Pi consumes itself, i.e. αi

wi
, plus

the number of tasks forwarded to its neighbors, i.e.
∑

j∈n(i)
sij

cij
. We derive the

equation:
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∀i �= m,
∑

j∈n(i)
rij

cij
= αi

wi
+

∑
j∈n(i)

sij

cij
(5)

It is important to understand that Equation (5) really applies to the steady-
state operation. We can assume an initialization phase, during which tasks are
forwarded to processors, and no computation is performed. Then, during each
time-period in steady-state, each processor can simultaneously perform some
computations, and send/receive some other tasks. Equation (5) does not hold for
the master processor Pm, because it holds an infinite number of tasks. Without
loss of generality, we can enforce that rmj = 0 for all j ∈ n(m): the master does
not need to receive any task from its neighbors.

The equations above constitute a linear programming problem, whose objec-
tive function is the number of tasks consumed within one unit of time, i.e. the
throughput ntask(G) =

∑
i

αi

wi
. Here is a summary:

Master Slave Scheduling Problem MSSP(G)
Maximize

ntask(G) =
∑p

i=1
αi

wi
,

subject to


∀i, 0 ≤ αi ≤ 1
∀i, ∀j ∈ n(i), 0 ≤ sij ≤ 1
∀i, ∀j ∈ n(i), 0 ≤ rij ≤ 1
∀eij ∈ E, sij = rji

∀i,
∑

j∈n(i) sij ≤ 1
∀i,

∑
j∈n(i) rij ≤ 1

∀eij ∈ E, sij + rij ≤ 1
∀i �= m,

∑
j∈n(i)

rij

cij
= αi

wi
+

∑
j∈n(i)

sij

cij

∀j ∈ n(m), rmj = 0

Note that we can enforce αm = 1, because the master will keep on process-
ing tasks all the time, but this condition will automatically be fulfilled by the
solution.We can now state the first result of this paper:

Theorem 1. The solution to the previous linear programming problem provides
the optimal solution to MSSP(G).

Because we have a linear programming problem in rational numbers, we
obtain rational values for all variables in polynomial time (polynomial in |V | +
|E|, the size of the heterogeneous platform). When we have the optimal solution,
we take the least common multiple of the denominators, and thus we derive an
integer period T for the steady-state operation.

3 Extensions

3.1 With Several Masters

The extension for several masters is straightforward. Assume that there are k
masters Pm1 , Pm2 , . . . , Pmk

, each holding (the initial data for) a large collection
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of tasks. For each index mq, 1 ≤ q ≤ k: suppress equation (5) for i = mq (the
conservation law does not apply to a master), add the constraints rmq,j = 0 for
all j ∈ m(q) and solve the new MSSP(G) problem.

3.2 With Other Models

We rely on the classification proposed by Beaumont et al [2]. A processor can do
three kinds of operations: it can perform some computation, it can receive data
from its neighbors and send data to its neighbors. The degree of simultaneity
between this three actions indicates the level of performance of a processor. For
instance a processor which can execute this three operations simultaneously has
the highest level of performance, whereas the one which can only do one thing
at a time is the less powerfull. The interested reader may find in [1] the proof of
the equivalence of these models. It is important to point out that the processor
nodes of a platform may well operate under different modes.

4 Spanning Trees

For a general interconnection graph, the solution of the linear program may lead
to the use of multiple paths. As already mentioned, it may be of interest to
extract the best spanning tree (the one with maximum throughput) out of the
graph. Using a tree greatly simplifies the implementation (because of the unique
route from the master to any processor). Also, the bandwidth-centric algorithm
presented in [2] is local and demand-driven, therefore is very robust to small
variations in resources capabilities.

This section provides “negative” results: first, extracting the best tree is NP-
Complete. But even if we are ready to pay a high (exponential) cost to determine
the best tree, there exist graphs for which the throughput of the best tree is
arbitrarily bad in front of the throughput that can be achieved while the whole
graph. In practice, however, low-costs heuristics can be derived to determine
sub-optimal but efficient spanning trees: (see Sections 5 and 6).

4.1 Finding the Best Spanning Tree

Our aim is to find the spanning tree that maximizes the throughput, i.e. the
number of tasks that can be processed within one unit of time at steady state.
Formally, we can state the problem as follows. The interested reader may find
in [1] the proofs of theorems 2 and 3.

Definition 1 (BEST-TREE(G)). Let G = (V, E, w, c) be the node-weighted
edge-weighted graph representing the architectural framework. Find the tree T =
(V, E′, w, c), sub-graph of G, rooted at the master, such that the number of tasks
ntask(T ) that can be processed in steady-state within one time-unit, using only
those edges of the tree, is maximized.

Theorem 2. BEST-TREE(G,α) is NP-complete [1].
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4.2 Inapproximability of a Graph by a Tree

One natural and interesting question is the following: how bad may the approx-
imation of a graph by a tree be? The following theorem states the inapproxima-
bility of a general graph by a tree, with respect to throughput:

Theorem 3. Given any positive integer K, there exists a graph G such that for
any tree T , sub-graph of G and rooted at the master, we have [1]

ntask(G)
ntask(T )

≥ K.

The ratio between the number of tasks that can be processed using the graph
and the number of tasks that can be processed using any extracted tree can be
arbitrary large. Nevertheless, we show in Sections 5 and 6 that despite both
the NP-completeness of the search of the best spanning tree, and the inapprox-
imability of a graph by a spanning tree, it is possible to derive very efficient
heuristics in practice.

5 Heuristics

In this section, we present several heuristics to extract a spanning tree with
the highest possible throughput out of a general interconnection graph G =
(V, E, w, c). Given a spanning tree, we do not need the linear programming
approach to compute its throughput: instead, we traverse the tree using the
bandwidth-centric algorithm of [2], with a cost linear in (|V |+|E|). Several greedy
heuristics come to mind. We have selected (and implemented) the following.

5.1 Greedy Heuristics

Naive MST. Given G, we compute the minimum spanning tree [6]. The edge
weights are the communication parameters cij , and we do not use the com-
putation parameters wi at all. Given the non-oriented tree, we root it at the
master and orient the edges accordingly.

Compute Tree. We start from the master and take all the edges connecting to
its neighbors. We sort these neighbors by non-decreasing wi (faster proces-
sors first). For each neighbor Pi in sorted order, we consider its own neighbors
and add the corresponding edge if that neighbor does not already belong to
the tree. The process goes on until all nodes are included. This is a breadth-
first traversal to grow the tree, where the more powerful neighbors of the
current node are processed first.

C-to-C Tree. This heuristic grows the tree similarly as the previous one, except
that the sorted order is by non-decreasing values of the communication-to-
computation ratios cij/wj .
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BW-centric Tree. This heuristic is a variant of the Compute Tree heuristic:
if node Pi is the current node, its neighbors Pj are still added according to the
order of non-decreasing wj , but only while the bandwidth-centric condition∑

j
cij

wj
≤ 1 holds. The idea is that the last neighbors will not be added to

the tree if the bandwidth is saturated. At the end of the procedure there
may remain isolated nodes, which we then connect to their closest neighbor
(smallest value of the edge weight).

5.2 Heuristic Based on the Linear Program

Our last heuristic is more costly, because it requires to solve the linear program
for the initial interconnection graph. Once we have the solution, we weight each
edge eij by the value sij

cij
, which represents the average number of tasks which

transit on the edge each second (in fact, because edges are bidirectional, we use
|sij−sji|

cij
). Given these weights, we extract a minimum spanning tree, which we

call the LP Tree, and we compute its throughput as before.

6 Experiments

We have developed a software simulator that executes the heuristic algorithms
of Section 5 and computes the throughput for each of them. The inputs of the
simulator are the number of nodes in the graph, the minimum degree, the max-
imum degree, the median degree, a probability function for the communication
and the computation costs. A random connected graph based on these parame-
ters is generated. For each graph, the throughput for each heuristic is computed,
and is compared to the optimal throughput that can be reached using the whole
graph. The following results are averaged values on 50 random graphs whose
nodes minimum degree is equal to 3, maximum degree is equal to 5 and average
degree is equal to 4. The number of vertices range from 5 to 15. In the following
simulation depicted in Fig 1, the probability functions for the communication
and the computation costs follow a uniform distribution on the interval [25, 35].
We depict the average ratio between the throughput of each heuristic and the
optimal throughput of the whole graph. Note that LP-Tree and Naive MST
are the most efficient heuristic and lead to trees whose throughput is very close
to the optimal throughput of the whole graph. The reader may refer to [1] to
find more simulation results.

7 Related Problems

Scheduling task graphs on heterogeneous platforms. Several heuristics
have been introduced to schedule (acyclic) task graphs on different-speed
processors. The reader may refer to [1] to find a complete discussion of
scheduling strategies on heterogeneous platforms.
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Fig. 1. Efficiency of the five heuristics : LP-Tree, Naive MST, Compute Tree, C-to-C
Tree and BW-centric Tree.

Collective communications on heterogeneous platforms. Several papers
deal with the complexity of collective communications on heterogeneous plat-
forms: broadcast and multicast are discussed in [5,12], gather in [10].

Master-slave on the computational grid. Master-slave scheduling on the
grid can be based on a network-flow approach [15] or on an adaptive strat-
egy [11].

8 Conclusion

In this paper, we have dealt with master-slave tasking on heterogeneous plat-
forms. We have shown how to determine the best steady-state scheduling strat-
egy for a general interconnection graph, using a linear programming approach.
On one hand, we have derived negative theoretical results, namely that general
interconnection graphs may be arbitrarily more powerful than spanning trees,
and that determining the best spanning tree is NP-Complete.
On the other hand, we have proposed several low-costs heuristics that achieve
very good performances on a wide range of simulations. These positive exper-
iments show that in practice, it is safe to rely on spanning trees to implement
master-slave tasking.

This work can be extended in the following two directions:

– From a theoretical point of view, it could be interesting to try to solve the
complete scheduling problem associated to a general interconnection graph:
instead of optimizing the steady-state throughput, how to maximize the
total number of tasks processed within T time-units, for any time-bound
T? Partial results are available in [3,4], but the general problem looks quite
challenging.

– On the practical side, we need to run actual experiments rather than sim-
ulations. Indeed, it would be interesting to capture actual architecture and
application parameters, and to compare heuristics on a real-life problem.
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