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Abstract

In this paper, we discuss several algorithms for scheduling divisible workloads on heteroge-

neous systems. Our main contributions are (i) new optimality results for single-round algorithms

and (ii) the design of an asymptotically optimal multi-round algorithm. This multi-round algo-

rithm automatically performs resource selection, a difficult task that was previously left to the

user. Because it is periodic, it is simpler to implement, and more robust to changes in the speeds

of the processors and/or communication links. On the theoretical side, to the best of our knowl-

edge, this is the first published result assessing the absolute performance of a multi-round algo-

rithm. On the practical side, extensive simulations reveal that our multi-round algorithm

outperforms existing solutions on a large variety of platforms, especially when the communica-

tion-to-computation ratio is not very high (the difficult case).
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1. Introduction

Scheduling computational tasks on a given set of processors is a key issue for high-

performance computing. In this paper, we restrict our attention to the processing
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of independent tasks whose size (and number) are a parameter of the scheduling

algorithm. This corresponds to the divisible load model which has been widely studied

in the last several years, and popularized by the landmark book written by Bharadwaj

et al. [1]. A divisible job is a job that can be arbitrarily split in a linear fashion among

any number of processors. This corresponds to a perfectly parallel job: any subtask
can itself be processed in parallel, and on any number of processors. The applications

of the divisible load model encompass a large spectrum of scientific problems, includ-

ing among others Kalman filtering [2], image processing [3], video and multimedia

broadcasting [4,5], database searching [6,7], and the processing of large distributed

files [8] (see [1] for more examples).

On the practical side, the divisible load model provides a simple yet realistic frame-

work to study the mapping of independent tasks on heterogeneous platforms. The

granularity of the tasks can be arbitrarily chosen by the user, thereby providing a
lot of flexibility in the implementation tradeoffs. On the theoretical side, the success

of the divisible load model is mostly due to its analytical tractability. Optimal algo-

rithms and closed-form formulas exist for the simplest instances of the divisible load

problem. This is in sharp contrast with the theory of task graph scheduling, which

abounds in NP completeness theorems [9,10] and in inapproximability results [11,12].

In this paper, the target computing platform is a heterogeneous master/worker

platform, with p worker processes running on p processors labeled P1; P2; . . . ; Pp.
The master P0 sends out chunks to workers over a network: we can think of a
star-shaped network, with the master in the center. The master uses its network con-

nection in exclusive mode: it can communicate with a single worker at any time-step.

There are different scenarios for the workers, depending whether they can compute

while receiving from the master (full overlap) or not. The overlap model is widely

used in the literature, because it seems closer to the actual characteristics of state-

of-the-art computing resources (but we point out that our results extend to both

models, with and without overlap). For each communication of size ai between

the master and a worker, say Pi, we pay a latency gi and a linear term aiGi, where
Gi is the inverse of the bandwidth of the link between the master P0 and Pi. In the

original model of [1], all the latencies gi are equal to zero, hence a linear cost model.

However, latencies play an important role in current architectures [13], and more re-

alistic models use the affine cost gi þ aiGi for a message of size ai. Finally, note that
when gi ¼ g and Gi ¼ G for 16 i6 p, the star network can be viewed as a bus ori-

ented network [2].

The master processor can distribute the chunks to the workers in a single round,

(also called installment in [1]), so that there will be a single communication between
the master and each worker. This is the simplest situation, but surprisingly the op-

timal solution for a heterogeneous star network is not known, even for a linear cost

model. We provide the optimal solution in Section 4, thereby extending the results of

[2] for bus oriented networks to heterogeneous platforms.

For large workloads, the single round approach is not efficient, because of the idle

time incurred by the last processors to receive their chunks. To minimize the make-

span, i.e. the total execution time, the master will send the chunks to the workers in

multiple rounds: the communications will be shorter (less latency) and pipelined, and
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the workers will be able to compute the current chunk while receiving data for the

next one. Deriving an efficient solution becomes a challenging problem: how many

rounds should be scheduled? what is the best size of the chunks for each round? In-

tuitively, the size of the chunks should be small in the first rounds, so as to start all

the workers as soon as possible. Then the chunk size should increase to a steady state
value, to be determined so as to optimize the usage of the total available bandwidth

of the network. Finally the chunk size should be decreased while reaching the end of

the computation. In Chapter 10 of [1], there is no quantified value provided for the

number of rounds to be used. Recently, Altilar and Paker [4,5], and Yang and Ca-

sanova [14] have introduced multi-round algorithms and analytically expressed their

performance. We discuss these algorithms, and others, in Section 3, which is devoted

to related work. To the best of our knowledge, no optimality result has ever been

obtained for multi-round algorithms on heterogeneous platforms. The most impor-
tant result of this paper is to fill this gap: in Section 5, we design a periodic multi-

round algorithm and we establish its asymptotic optimality. We succeed in extending

this result to arbitrary platform graphs, i.e. not just star-shaped network, but arbi-

trary graphs with cycles and multiple paths (see Appendix A).

The rest of the paper is organized as follows. We begin with models for compu-

tation and communication costs in Section 2. Next we review related results in

Section 3. Then we deal with single-round algorithms in Section 4. We proceed to

multi-round algorithms in Section 5. Because of its technical nature, the extension
of the asymptotically optimal multi-round algorithms to arbitrary platforms graphs

is described in the Appendix A. We provide some simulations in Section 6. Finally,

we state some concluding remarks in Section 7.
2. Models

As already said, we assume a total workload Wtotal that is perfectly divisible into
an arbitrary number of pieces, or chunks. Usually, it is assumed that the master itself

has no processing capability, because otherwise we can add a fictitious extra worker

paying no communication cost to simulate the master. There is a wide acceptance in

the literature on using linear costs to model computation costs. Worker Pi will re-
quire aiwi time units to process a chunk of size ai. However, Yang and Casanova

[14] suggest to add a startup cost, or computation latency, so that the cost becomes

zi þ aiwi for Pi to process a chunk of size ai; they emphasize the importance of adding

such a latency to obtain realistic results in some data-sweep applications [15]. In the
following, we mainly stick to linear computational costs (except for the one-round

case), but we will later mention which equations to modify to take latencies into ac-

count in the multi-round algorithms.

Modeling communication costs is more difficult, and several models have been

proposed. In the original approach [1], communication costs were also assumed lin-

ear. The master would need aiGi time units to send a chunk of size ai to Pi. While

acceptable for large messages, the model becomes quite unrealistic for small mes-

sages. For instance in [1], the authors recognize that infinitely small messages would
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be the best solution for multi-round algorithms with this crude model. Communica-

tion latencies gi have been introduced by Drozdowski [6] and are now widely used: 1

the master needs gi þ aiGi to send a chunk of size ai to worker Pi. An even more ac-

curate model has been proposed by Rosenberg [16] and further investigated by Yang

and Casanova [14]. They suggest to use the expression g0i þ aiGi þ g00i , where the first
latency g0i is not overlappable, while the second latency g00i is overlappable with the

next communication. The master may send another message g0i þ aiGi time units

later, while the worker cannot start computing before g0i þ aiGi þ g00i time units.

The overlappable latency was introduced to model pipelined networking. Again,

we restrict ourselves to non-overlappable latencies, but we will indicate how to incor-

porate them in the design of multi-round algorithms. Finally, note that other models

[17,18] assume a fixed communication cost to dispatch chunks of any size, which

seems much less realistic than adopting an affine expression with a startup and a lin-
ear term proportional to the chunk size.

Next, there is to discuss the amount of computation and communication that can

be overlapped. In the model with overlap, each worker is capable of receiving the next

chunk from the master while computing the current chunk. This corresponds to

workers equipped with a front end in [1]. In the no overlap model, each worker exe-

cutes communications and computations sequentially. Of course this distinction of

models only applies to multi-round algorithms, because in a single-round algorithm

it is impossible to overlap the communication with independent computation. When
dealing with multi-round algorithms in Section 5, we will elaborate results for both

models, with and without overlap.

The last question is the number of simultaneous communications that can be han-

dled by the master. With few exceptions, the one-port model is assumed: the master

can communicate with at most a worker at a given time-step (except may be for the

short time-slice corresponding to the overlappable latency). However, as pointed out

by Yang and Casanova [14], the one-port model is nicely suited to LAN network

connections but a multi-port model could be used for WAN network connections.
In conclusion, we retain the following model:

(1) one-port for the master (at most one communication to a worker at any time-

step);

(2) communication–computation overlap for the workers;

(3) linear computation costs aiwi (or affine zi þ aiwi) for a chunk of size ai processed
by Pi, 16 i6 p;

(4) affine communication cost gi þ aiGi to send a chunk of size ai from P0 to worker
Pi, 16 i6 p.

We discuss some extensions of this model when dealing with multi-round algo-

rithms.
1 Because there is no consensus on the notations, we borrowed the notations gi and Gi from Wang

et al. [8].
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3. Related results

We divide this overview into two categories: results for single-round algorithms,

and results for multi-round algorithms. We restrict ourselves to master/worker plat-

forms, which includes bus-oriented and star-shaped networks. See [1] for results on
processor trees and [6] for hypercubes.

3.1. Single-round algorithms

For single-round algorithms, the first problem is to determine in which order the

chunks should be sent to the different workers. Since the master can handle only one

communication at a given time step, the solution is as depicted in Fig. 1. Once the

communication order has been determined, the second problem is to decide how
much work should be allocated to each processor Pi. The final objective is to mini-

mize the makespan, i.e. the total execution time.

In the case of a homogeneous (bus-oriented) platform (all Gi are equal to G), and
using a linear cost model for computation (all gi are equal to zero), Robertazzi and

coworkers [2,19] have derived an optimal solution, together with closed-form expres-

sions for the makespan Tf . This solution is surprisingly simple. Let ai denote the frac-
tion of workload assigned to worker Pi, where

Pp
i¼1 ai ¼ Wtotal, and let Ti denote the

time elapsed before Pi begins its processing. Thus, Tf ¼ maxiðTi þ aiwiÞ.
First, one can prove that all the processors must finish their work at the same time

(i.e. Ti þ aiwi ¼ Tf8i). Indeed, otherwise, some work could be transferred from a busy

processor to an idle one in order to reduce Tf . Thus, the following system of equation

holds
Fig. 1

(Gi ¼ G
Tf � Ti ¼ aiwi 816 i6 p
Tiþ1 � Ti ¼ aiþ1G 816 i6 p � 1
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. Pattern of a solution for dispatching the load of a divisible job, using a bus-oriented platform

). All workers complete execution at the same time-step Tf .
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if data is sent successively to P1; . . . ; Pp. Closed forms can be obtained for both the ais
and Tf . These closed form are rather complicated, although the method for obtaining

them is elementary, and we refer the reader to [2] to find the actual algebraic ex-

pressions. The surprising and interesting point is that the overall computational time

Tf does not depend upon the order chosen for sending data to the different proces-
sors, so that the ordering P1; . . . ; Pp is in fact optimal.

Later, Charcranoon et al. [20] have partially extended this work to heterogeneous

(star-shaped) platforms: they still use linear communication costs, but with different

Gis. The results are less satisfying than in the case of the bus. Indeed, the main

known result is that if data is sent to the different processors in a given order (say,

again, P1; . . . ; Pp), then closed forms can be obtained for both the ais and Tf . Unfor-

tunately, the makespan Tf strongly depends on the communication ordering, and the

result stating that all the processors must finish their work at the same time-step is no
longer valid for all communication orderings. To the best of our knowledge, the

optimal communication ordering is not known, and we provide the optimal solution

in Section 4.

Moving to affine communication costs rather than linear communication costs,

several results have been published, among others [3,6,7,16]. In 1997, Drozdowski

[6] stated that the complexity of determining the optimal makespan for a general

star-shaped platform (different gis and different Gis) is not known, and to the best

of our knowledge the problem is still open. We point out that Drozdowski [6] pro-
poses an interesting mixed linear programming formulation of the problem. In the

following program, xi;j is a boolean variable that equals 1 if Pi is chosen for the

jth communication from the master
Minimize Tf
subject to

ð1Þ ai P 0; 16 i6 p

ð2Þ
Pp
i¼1

ai ¼ Wtotal

ð3Þ xi;j 2 f0; 1g; 16 i; j6 p

ð4Þ
Pp
i¼1

xi;j ¼ 1; 16 j6 p

ð5Þ
Pp
j¼1

xi;j ¼ 1; 16 i6 p

ð6Þ
Pp
i¼1

x1;iðgi þ aiGi þ aiwiÞ6 Tf ðfirst communicationÞ

ð7Þ
Pj�1

k¼1

Pp
i¼1

xk;iðgi þ aiGiÞ þ
Pp
i¼1

xj;iðgi þ aiGi þ aiwiÞ6 Tf ;

26 j6 p ðjth communicationÞ

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:
Eq. (4) states that exactly one processor is activated for the jth communication, and

Eq. (5) states that each processor is activated exactly once. Eq. (6) is a particular case
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of Eq. (7), which expresses that the processor selected for the jth communication

(where j ¼ 1 in Eq. (6) and jP 2 in Eq. (7)) must wait for the previous communi-

cations to complete before its own communication and computation, and that all

this quantity is a lower bound of the makespan. As pointed out by Drozdowski [6],

this mixed linear program may have no solution if all the workers are not involved in
the optimal solution (it may well be the case that using a strict subset of the resources

proves more efficient), so the formulation is not fully general.

3.2. Multi-round algorithms

Several multi-round algorithms have been proposed in the literature [1,4,5,14] but

in general they have been validated through simulations or experiments rather than

with analytical formulas. This is not surprising: deriving the adequate number of
rounds is a challenging task. On one hand short rounds minimize idle times in the

beginning, and enable to better overlap computations and communications. On

the other hand longer rounds mean less latency overheads.

Technically, a round is defined as a sequence of communications to different

workers, one per worker, and deciding whether to use all workers or a strict subset

of the workers is a difficult question. Even worse, should a strict subset be used, there

is no reason for the subset to remain the same from one round to another.

Let W ðkÞ be the total size of the chunks assigned to the workers during round k:
W ðkÞ ¼

Pp
i¼1 a

ðkÞ
i , where aðkÞi is the chunk size of Pi at round k. Intuitively, W ðkÞ should

be small for the first rounds, then reach an adequate value, and then decrease in the

last rounds. Yang and Casanova [14] propose that W ðkÞ follows a geometric progres-

sion, and within each round that all involved processors compute for the same

amount of time. 2 These simplifying assumptions enable them to derive analytical ex-

pressions for the total execution time, and the optimal number of rounds is then de-

rived through some numerical optimization technique. The results are technically

involved but very interesting. However, there remains two main limitations to this
approach: (i) resource selection (determining the best subset) is performed heuristi-

cally, and (ii) there is no fundamental reason to privilege a geometric progression

for the round sizes, any other monotonic and sufficiently ‘‘regular’’ function could

be adopted.

In Section 5, we derive a periodic algorithm which is asymptotically optimal. This

algorithm is simple, because rounds are repeated identically one after the others. The

key-issues, i.e. the optimal number of chunks, resource selection and chunk size as-

signments within a chunk, are all solved through a relaxed linear program in rational
numbers (hence a low-degree polynomial complexity).
2 The geometric progression is stopped when approaching the end of the execution, so that all

processors terminate working simultaneously.
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4. New results for single-round algorithms

In this section, we propose a new proof method for the optimal distribution of the

work to the processors in single-round algorithms. This approach enables us to re-

trieve some well known results, and to establish new ones.
The approach is based upon the comparison of the amount of work that is per-

formed by the first two workers. To simplify notations, assume that P1 and P2 have
been selected as the first two workers. There are two possible orderings, as illustrated

in Fig. 2. For each ordering, we will determine the total number of tasks a1 þ a2 that
have been processed in T time units, and the total occupation t2 of the communica-

tion medium during this time interval. We denote with upper-script (A) (resp. (B)) all
the quantities related to the first (resp. second) ordering.

Let us first determine the different quantities aðAÞ1 , aðAÞ2 , tðAÞ1 and tðAÞ2 for the upper
ordering in Fig. 2:

• From the equality g1 þ z1 þ aðAÞ1 ðG1 þ w1Þ ¼ T , we deduce
aðAÞ1 ¼ T � ðg1 þ z1Þ
G1 þ w1

ð1Þ
• Using the equality tðAÞ1 ¼ g1 þ aðAÞ1 G1, we deduce (by Eq. (1))
tðAÞ1 ¼ g1w1 þ TG1 � z1G1

G1 þ w1

ð2Þ
• Using the equality g1 þ aðAÞ1 G1 þ g2 þ z2 þ aðAÞ2 ðG2 þ w2Þ ¼ T and Eq. (1), we de-

duce
aðAÞ2 ¼ T � ðg2 þ z2Þ
G2 þ w2

� TG1 þ g1w1 � z1G1

ðG1 þ w1ÞðG2 þ w2Þ
ð3Þ
• At last, from the equality tðAÞ2 ¼ g1 þ g2 þ aðAÞ1 G1 þ aðAÞ2 G2, we deduce (using Eqs.
(1) and (3))
Fig. 2. Comparison of the two possible orderings.
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tðAÞ2 ¼ ðg1 þ g2Þ þ
G1ðT � g1 � z1Þ

G1 þ w1

þ G2ðT � g2 � z2Þ
G2 þ w2

� TG1G2

ðG1 þ w1ÞðG2 þ w2Þ
� G2ðg1w1 � z1G1Þ
ðG1 þ w1ÞðG2 þ w2Þ

ð4Þ
Therefore, the overall number of processed tasks is equal to (by (1) and (3))
aðAÞ1 þ aðAÞ2 ¼ T � ðg1 þ z1Þ
G1 þ w1

þ T � ðg2 þ z2Þ
G2 þ w2

� TG1 þ g1w1 � z1G1

ðG1 þ w1ÞðG2 þ w2Þ
and the overall occupation time of the network medium is equal (by (3)) to
tðAÞ2 ¼ ðg1 þ g2Þ þ
G1ðT � g1 � z1Þ

G1 þ w1

þ G2ðT � g2 � z2Þ
G2 þ w2

� TG1G2

ðG1 þ w1ÞðG2 þ w2Þ

� G2ðg1w1 � z1G1Þ
ðG1 þ w1ÞðG2 þ w2Þ
These expressions are rather complicated. Nevertheless, it is possible to obtain

simple expressions when expressing the differences between situation (A) and situa-

tion (B). Indeed, we have
aðBÞ1 þ aðBÞ2 ¼ T � ðg1 þ z1Þ
G1 þ w1

þ T � ðg2 þ z2Þ
G2 þ w2

� TG2 þ g2w2 � z2G2

ðG1 þ w1ÞðG2 þ w2Þ
and
tðBÞ2 ¼ ðg1 þ g2Þ þ
G1ðT � g1 � z1Þ

G1 þ w1

þ G2ðT � g2 � z2Þ
G2 þ w2

� TG1G2

ðG1 þ w1ÞðG2 þ w2Þ

� G1ðg2w2 � z2G2Þ
ðG1 þ w1ÞðG2 þ w2Þ
Therefore, we have
aðAÞ1

�
þ aðAÞ2

�
� aðBÞ1

�
þ aðBÞ2

�
¼ ðg2w2 � g1w1Þ þ ðz1G1 � z2G2Þ þ T ðG2 � G1Þ

ðG1 þ w1ÞðG2 þ w2Þ
ð5Þ
and
tðAÞ2 � tðBÞ2 ¼ G1g2w2 � G2g1w1 þ G1G2ðz1 � z2Þ
ðG1 þ w1ÞðG2 þ w2Þ

ð6Þ
Thanks to these expressions, we can derive the optimal distribution in some special

cases.

(1) No latencies g1 ¼ g2 ¼ z1 ¼ z2 ¼ 0, then, the occupation of the communication

medium does not depend on the communication ordering, since tðBÞ2 ¼ tðAÞ2 , by (6).
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Therefore, we only need to consider the number of processed tasks in both situa-

tions. Since
aðAÞ1

�
þ aðAÞ2

�
P aðBÞ1

�
þ aðBÞ2

�
() by ð5Þ G2 PG1
we have better to send tasks to the processor with the smallest Gi first. This property

suggests the use of a greedy algorithm, where the closest processors (in terms of high-

bandwidth) are first selected. In the case of p processors, we sort them so that
G1 6G2 6 � � � 6Gp. We state this first result.

Theorem 1. Consider the distribution of a divisible workload during T time units. When
all communication latencies gi and computation latencies zi are equal to 0, sort the p
processors so that G1 6G2 6 � � � 6Gp and send the tasks to the processors according to
this ordering. Then, the number of processed tasks during T time units is optimal among
all possible communication orderings.

Proof. Consider an optimal ordering of the communications r, where tasks are sent
successively to Prð1Þ; Prð2Þ; . . . ; PrðpÞ. Let us denote by i, if it exists, the smallest index

satisfying rðiÞ > rðiþ 1Þ. Let us consider the following ordering
Prð1Þ; . . . ; Prði�1Þ; Prðiþ1Þ; PrðiÞ; Prðiþ2Þ; . . . ; PrðpÞ
Then, Prð1Þ; . . . ; Prði�1Þ; Prðiþ2Þ; . . . ; PrðpÞ perform exactly the same number of tasks,

since the exchange does not affect the overall communication time, but together,
Prðiþ1Þ and PrðiÞ perform

T ðG2�G1Þ
ðG1þw1ÞðG2þw2Þ

more tasks, where T denotes the remaining time

after communications to Prð1Þ; . . . ; Prði�1Þ. Since Grðiþ1Þ > GrðiÞ, there exists an optimal

ordering where tasks are sent accordingly to increasing values of the Gis. h

Once the optimal ordering is known, we can use the formulas in [20] to derive the

optimal assignment of works to processors, thereby filling the gap towards obtaining

an optimal solution in the heterogeneous case. If all the Gis are equal, then we find

the classical result of [19], stating that the number of processed tasks does not de-
pend of the communication ordering.

(2) Optimal ordering when T is large and all the Gis are different.

We now consider the case where T is large, but both communication and compu-

tation latencies are taken into account. An interesting property is that, by (5) and (6)
aðAÞ1

�
þ aðAÞ2

�
� aðBÞ1

�
þ aðBÞ2

�
¼ ðG2 � G1Þ

ðG1 þ w1ÞðG2 þ w2Þ
T þOð1Þ
and
tðAÞ2 � tðBÞ2 ¼ Oð1Þ

Therefore, if G2 > G1, the number of processed tasks grows linearly with T , whereas
the extra communication medium occupation is bounded by a constant K, where
K 6
Gmaxðgmaxwmax þ GmaxzmaxÞ

ðGmin þ wminÞ2
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and Gmax, gmax, wmax, zmax, Gmin and wmin denote the maximal and minimal values of

G, g, w and z over all the processors. As previously, this property suggests the use of

a greedy algorithm, where the closest processors (in terms of high-bandwidth) are

first selected. h

Theorem 2. Consider the distribution of a divisible workload during T time units.
Communication and computation latencies gi and zi, and processing speeds wi can take
arbitrary values, but we assume that the communication speeds are all dierent (8i 6¼ j,
Gi 6¼ Gj). Sort the p processors so that G1 < G2 < � � � < Gp and send the tasks to the
processors according to this ordering. Then, when T becomes arbitrarily large, the
number of processed tasks during T time units is optimal among all possible commu-
nication orderings.

Proof. Consider an optimal ordering of the communications r, where tasks are sent
successively to Prð1Þ; Prð2Þ; . . . ; PrðpÞ. Let us denote by i, if it exists, the smallest index

satisfying rðiÞ > rðiþ 1Þ. Let us consider the following ordering
Prð1Þ; . . . ; Prði�1Þ; Prðiþ1Þ; PrðiÞ; Prðiþ2Þ; . . . ; PrðpÞ
On one hand, due to the change in the ordering, the communication medium may be

involved K more time units with communications to Prðiþ1Þ and PrðiÞ, where
K 6
Gmaxðgmaxwmax þ GmaxzmaxÞ

ðGmin þ wminÞ2
The maximal number of tasks that could be processed using all the other p � 2
processors during these extra K time units is bounded by Kðp�2Þ

wmin
, i.e. p � 2 times the

number of tasks that can be processed using the fastest processor during K time units

with no communication costs and no processing latencies. On the other hand, the

number of extra tasks processed by Prðiþ1Þ and PrðiÞ is of order ðG2�G1Þ
ðG1þw1ÞðG2þw2Þ

Tþ
Oð1Þ. Thus, when T becomes arbitrarily large, the number of extra tasks processed

by Prðiþ1Þ and PrðiÞ becomes arbitrarily large with respect to the number of tasks lost

due to longer communications, what achieves the proof. h
5. Asymptotically optimal multi-round algorithms

In this section, we derive asymptotically optimal algorithms for the multi-round

distribution of divisible tasks, when slave processors are either able or not to overlap

their processing with incoming communications.
5.1. No overlap

The sketch of the algorithm that we propose is as follows: the overall processing

time T is divided into k regular periods of duration Tp (hence T ¼ kTp, but k (and Tp)
are yet to be determined).



Fig. 3. Sketch of a periodic multi-round schedule using the first n workers P1 to Pn, where n6 p.
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During a period of duration Tp, the master processor sends ai tasks to slave pro-

cessor Pi (see Fig. 3 for an example). It may well be the case that not all the proces-

sors are involved in the computation. Let I � f1; . . . ; pg represent the subset of

indices of participating processors. For all i 2 I, the ais must satisfy the following

inequality, stating that communication resources are not exceeded
X
i2I

ðgi þ aiGiÞ6 Tp ð7Þ
Since the processors cannot overlap communications and processing, the following

inequalities also hold true
816 i6 p; i 2 I; gi þ aiðGi þ wiÞ6 Tp
Let us denote by ai
Tp
the averaged number of tasks that slave Pi processes during

one time unit, then the system becomes
816 i6 p; i 2 I; ai
Tp
ðGi þ wiÞ6 1� gi

Tp
ðno overlapÞP

i2I

ai
Tp
Gi 6 1�

P
i2I

gi

Tp
ð1-port modelÞ

8<
:

and our aim is to maximize the overall number of tasks processed during one time

unit, i.e. n ¼
P

i2I
ai
Tp
.

Let us consider the following linear program
Maximize
Xp
i¼1

ai
Tp

subject to

816 i6 p; ai
Tp
ðGi þ wiÞ6 1�

Pp

i¼1
gi

TpPp
i¼1

ai
Tp
Gi 6 1�

Pp

i¼1
gi

Tp

8>><
>>:
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This linear program is more constrained than previous one, since 1� gi
Tp

has been

replaced by 1�
Pp

i¼1
gi

Tp
in p inequalities. The linear program can be solved using a

package similar to Maple [21] (we have rational numbers), but it turns out that the
technique developed in [22] enables us to obtain the solution in closed form. We refer

the reader to [22] for the complete proof. Let us sort the Gis so that

G1 6G2 6 � � � 6Gp, and let q be the largest index so that
Pq

i¼1
Gi

Giþwi
6 1. If q < p, let e

denote the quantity 1�
Pq

i¼1
Gi

Giþwi
. If p ¼ q, we set e ¼ Gqþ1 ¼ 0, in order to keep

homogeneous notations. This corresponds to the case where the full use of all the

processors does not saturate the 1-port assumption for out-going communications

from the master. The optimal solution to the linear program is obtained with
816 i6 q;
ai
Tp

¼
1�

Pp

i¼1
gi

Tp

Gi þ wi
and (if q < p)
aqþ1

Tp
¼
�
1�

Pp
i¼1 gi
Tp

�
e

Gqþ1

� �
and aqþ2 ¼ aqþ3 ¼ � � � ¼ ap ¼ 0.

With these values, we obtain
Xp
i¼1

ai
Tp

¼
�
1�

Pp
i¼1 gi
Tp

� Xq
i¼1

1

Gi þ wi

 
þ e
Gpþ1

!

Let us denote by qopt the optimal number of tasks that can be processed within

one unit of time. If we denote by b�
i the optimal number of tasks that can be pro-

cessed by slave Pi within one unit of time, the b�
i s satisfy the following set of inequa-

lities, in which the gis have been withdrawn
816 i6 p; b�
i ðGi þ wiÞ6 1Pp

i¼1

b�
i Gi 6 1

8<
:

Here, because we have no latencies, we can safely assume that all the processors are

involved (and let b�
i ¼ 0 for some of them). We derive that
qopt 6

�
1�

P
i gi
Tp

� Xq
i

1

Gi þ wi

 
þ e
Gqþ1

!

If we consider a large number B of tasks to be processed and if we denote by Topt the
optimal time necessary to process them, then
Topt P
B
qopt

P
BPq

i¼1
1

Giþwi
þ e

Gqþ1

� �
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Let us denote by T the time necessary to process all B tasks with the algorithm

that we propose. The number k of necessary periods satisfies nTpkPB so that we

choose
k ¼ B
nTp

� �
Therefore,
T 6
B
n
þ 2Tp 6

BPq
i¼1

1
Giþwi

þ e
Gqþ1

� � 1

1�
Pp

i¼1
gi
Tp

 !
þ Tp
and therefore, if Tp P 2
Pp

i¼1 gi,
T 6 Topt þ 2
Xp
i¼1

gi
Topt
Tp

þ Tp
Finally, if we set Tp ¼
ffiffiffiffiffiffiffiffi
Topt

p
, we check that
T 6 Topt þ 2
Xp
i¼1

gi

 
þ 1

! ffiffiffiffiffiffiffiffi
Topt

p
¼ Topt þO

� ffiffiffiffiffiffiffiffi
Topt

p �
and
T
Topt

6 1þ 2
Xp
i¼1

gi

 
þ 1

!
1ffiffiffiffiffiffiffiffi
Topt

p ¼ 1þO
1ffiffiffiffiffiffiffiffi
Topt

p
 !
which achieves of proof of the asymptotic optimality of our algorithm.

Note that resource selection is part of our explicit solution to the linear program:

to give an intuitive explanation of the analytical solution, processors are greedily se-

lected, fast-communicating processors first, as long as the communication to com-

munication-added-to-computation ratio is not exceeded.

Also, note that it is easy to include a computation latency zi, as suggested by Yang
and Casanova [14]: simply replace gi by gi þ zi in the formulas.

We formally state our main result.

Theorem 3. For arbitrary values of gi, Gi and wi, and assuming no communication–
computation overlap, the previous periodic multi-round algorithm is asymptotically
optimal. Closed-form expressions for resource selection and task assignment are pro-
vided by the algorithm, whose complexity does not depend upon the total amount of
work to execute.

5.2. With overlap

In the case where slaves are able to overlap communications and processing, the

algorithm that we propose in very similar to the previous one. Thus, we do not detail

the proof. During time period iþ 1, the slave processors process the tasks that they
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have received during time period i, so that no processing occurs during the first pe-

riod, and no communication occurs during the last period. The system of inequalities

for one time unit using our algorithm becomes
816 i6 p; i 2 I;
ai
Tp

wi 6 1 ðwith overlapÞ
P
i2I

ai
Tp

Gi 6 1�
Pp

i¼1 gi
Tp

ð1-port modelÞ

8>><
>>:
and we can prove, as previously that n satisfies
nP
�
1�

Pp
i¼1 gi
Tp

� Xq
i¼1

1

wi

 
þ e
Gqþ1

!

where q is the largest index so that
Pq

i¼1
Gi
wi
6 1 and if q < p, e ¼ 1�

Pq
i¼1

Gi
wi
. Simi-

larly,
qopt 6

Xq
i¼1

1

wi

 
þ e
Gqþ1

!

and we obtain
T 6 Topt þ 2
Xp
i¼1

gi

 
þ 1

! ffiffiffiffiffiffiffiffi
Topt

p

and
T
Topt

6 1þ 2
Xp
i¼1

gi

 
þ 1

!
1ffiffiffiffiffiffiffiffi
Topt

p

what achieves of proof of the asymptotic optimality of our algorithm.

Theorem 4. For arbitrary values of gi, Gi and wi, and assuming full communication–
computation overlap, the previous periodic multi-round algorithm is asymptotically
optimal. Closed-form expressions for resource selection and task assignment are pro-
vided by the algorithm, whose complexity does not depend upon the total amount of
work to execute.

5.3. Extension to arbitrary platforms graphs

We succeed in extending the design of asymptotically optimal multi-round algo-
rithms to arbitrary platforms graphs: rather than dealing with a star-shaped net-

work, we consider trees or even complex graphs that may involve cycles or

multiple paths. These complex platforms are fully heterogeneous, both in terms of

the computing speeds of the resources and in the communication capacities of the

network links.

In such a complex platform, the question for the master is to decide which

fraction of the workload to execute itself, and which fraction to forward to each
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of its neighbors. Due to heterogeneity, the neighbors may receive different

amounts of work (maybe none for some of them). Each neighbor faces in turn

the same dilemma: determine which fraction of the workload to execute, and

which fraction to delegate to other processors. Note that the master may well

need to send tasks along multiple paths to properly feed a very fast but remote
computing resource.

Due to the technical nature of the algorithms, we differ their presentation and we

refer the reader to the Appendix A. In the following, we adopt a more practical point

of view, and we report simulation results for star-shaped platforms.
6. Simulations

In order to evaluate our multi-round algorithm, we have crafted a simulation with

the SimGrid simulator [23,24]. One major interest of relying on SimGrid is that all

machine and network characteristics used in the simulations correspond to realistic

values taken from the SimGrid database. We detail below the platforms that we have

simulated.

In the experiments, we let the total workload size Wtotal vary in terms of workload

units (or tasks) whose number range from 100 to 2000 by step of 100. Of course, the

divisible load model applies here, so we assign fractional numbers of units to the pro-
cessors. We let the size of a workload unit itself (i.e. the number of floating-point op-

erations performed per unit) vary from one set of experiments to the other, so as to

investigate different communication-to-computation ratios for a given application/

platform pair.

In the experiments, no overlap of communications by computations was possible.

We have compared our no-overlap multi-round algorithm with the multi-installment

algorithm proposed in [1]. We have used a total of eleven heuristics. Three heuristics

are different variants of the linear programming formulation, and the multi-install-
ment algorithm has been tested for 1–8 installments. Here is a description of the

11 heuristics:

L.P. with fixed period. We use here the simplest variant of linear programming.

We arbitrarily fix the value of the period to Tp ¼ 2000. While there remains tasks

to process, we allocate them to the workers according to a variant of Eq. (7): we

maximize
Pp

i¼1 ai subject to
Pp

i¼1 ðgi þ aiGiÞ6 Tp and gi þ aiðGi þ wiÞ6 Tp for all i,
16 i6 p. The problem is slightly over-constrained, in that we include all p laten-
cies in Eq. (7) governing the bandwidth utilization, rather than only those of the

participating processors i 2 I, as in the original formulation. Of course if the lin-

ear program returns ai ¼ 0 for some i, we do not schedule the empty communica-

tion. This approximation is very good for large values of Tp, and provides a simple

yet efficient task allocation if the period Tp is known a priori.

L.P. with fixed square-root period. At the beginning of the computation, an eval-

uation of the optimal time T needed to process the whole set of task is computed,

by neglecting all latencies. This works as follows: we assume a perfectly load-bal-
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ance of the work and write ðGi þ wiÞai ¼ constant, with
Pp

i¼1 ai ¼ Wtotal. Once we

have T , we let Tp ¼
ffiffiffiffi
T

p
, and use the formulas given in Section 5.1.

L.P. with adaptive period. This is a slight modification of the previous heuristic.

At each round, the period Tp is recomputed as Tp ¼
ffiffiffiffi
T

p
, where T now is an es-

timation of the total time needed to process the remaining work units (rather
than the total time for all units). In the very last steps of the heuristic, we stop

the process and do not decrease Tp below the time needed to process the last work

unit.

M.I.x. This is the multi-installment procedure of [1] with x rounds. A set of linear

equations, whose number of variables depends on x, is proposed in [1]. From these

equations, it is possible to derive the amount of work units to distribute to each

process at each round. Note that these equations do not take in account the la-

tency. For simulations, we use x ¼ 1; 2; . . . ; 8.

6.1. Homogeneous platforms, no latency

The first set of experiments deals with homogeneous platforms, made up with PIII

1 GHz processors (delivering 114.444 Mflops), interconnected through an Ethernet

100 Mbits/s, but measured at 32.10 Mbits/s bandwidth. The measured bandwidth

may seem low. These values (and all other bandwidth measures given in this paper)

have been obtained during the day on a loaded network using ENV [25]. Moreover
the bandwidth test are conducted using ssh (to enable bouncing on private or fire-

walled networks) and not raw sockets, which induces a performance loss. These val-

ues are therefore representative of what one can effectively and easily get with a

robust communication technique and a correct setup of ssh keys.

The number of processors ranges from 1 to 20. One workload unit amounts to 1

GFlops of computations and 2 Mbits of data exchange. In other words, the workers

communicate during 0.06 seconds to be able to compute during 9 s. The communi-

cation-to-computation ratio is quite low, which makes it easier to obtain good per-
formances.

Fig. 4 depicts the behavior of the eleven heuristics for a 5-processor platform. The

general behavior is the same for other platform sizes. We see that L.P. with fixed pe-

riod and M.I.1, the one-round strategy, perform very badly. All the other strategies

look similar. To outline the differences, we plot the performance ratio of a subset of

the remaining heuristics over that of the L.P. with adaptive period: in Fig. 5, we use a

5-processor platform. For the sake of clarity, only M.I.x with x ¼ 2 to x ¼ 5 are re-

ported in the figure; no improvement is obtained with larger values of x. The follow-
ing observations can be made:

• the adaptive strategy is always very close to the best heuristic;

• the number of rounds of the multi-installment algorithm must be at least 3, and

no real improvement is to be expected when increasing that number;

• the linear programming with fixed square-root period is not very regular but stays

within 5% of the optimal heuristic, as soon as the number of tasks (work units)

grows sufficiently.
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The behavior is similar when increasing the size of the platform. The adaptive

strategy may need a larger task set to achieve the same efficiency. The number of in-

stallments needed to obtain good results with the multi-installment algorithm also be-

comes higher. As an example, Fig. 6 depicts the results for a 20-processor platform.
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6.2. Heterogeneous platforms, no latency

Experiments have been conducted with 2000 simulated platforms made up of ma-

chines randomly chosen in the following processor set: PPro 200 MHz (22.151

Mflops), PII 450 MHz (48.492 Mflops), PII 350 MHz (34.333 Mflops), and PIII 1

GHz (114.444 Mflops). The network used to interconnect the slaves to the master

could be Ethernet either 10 Mbits/s or 100 Mbits/s (we measured 4.70, 32.10 or

30.25 Mbits/s of effective bandwidth). The number of workload units ranges from
100 to 2000; with a step of 100. As before, one task unit amounts to 1 GFlops of

computation and 2 Mbits of data. In other words, the workers communicate during

between 0.06 and 0.4 s to be able to compute during between 9 and 90 s. Again, the

communication-to-computation ratio is quite low, which makes it easier to obtain

good performances.

We have run one simulation per platform and per task set, which amounts to

40,000 experiments per heuristic; the figures below correspond to averaged values.

Fig. 7 and its zoomed counterpart Fig. 8 depict the comparison of the heuristics with
the adaptive linear programming approach on 5-processor platforms. The following

observations can be made:

• linear programming with fixed period, and one installment strategies lead to very

poor performances;

• the optimal number of rounds of the multi-installment algorithm is close to 4 (for

the sake of clarity, only M.I.x with x ¼ 2 to x ¼ 5 installments are depicted on Fig.

8 because increasing the number of rounds does not improve the performances);
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• the linear programming with fixed square-root period slightly outperforms the

multi-installment algorithm;

• the adaptive approach leads to the best performances but with a small improve-

ment over the other good heuristics (1% in average).
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When increasing the size of the platform, the optimal number of rounds of the

multi-installment gets larger. Linear programming strategies show good perfor-

mances only when the task set is large enough; the adaptive method remains better

than other linear programming approaches. As an example, Fig. 9 depicts the results
for 20-processor platforms.

6.3. Heterogeneous platforms, with latency

6.3.1. With a low communication-to-computation ratio

Experiments have been conducted with the same platform set and the same work-

loads as in Section 6.2. The only difference resides in the fact that we add 2 Mbits

of data to each message, so as to model the latencies: in other words, we set
gi ¼ 2 106 � Gi for every worker Pi.

Fig. 10 and its zoomed counterpart Fig. 11 depict the comparison of the heuristics

with the adaptive linear programming approach on 5-processor platforms. Multi-in-

stallments with a small number of rounds still lead to poor performances. The optimal

number of rounds for the multi-installment algorithm is equal to 4. The best strategy

is the adaptive approach, which still leads to a small improvement of 1%. When the

size of the platform gets larger (see Fig. 12), the optimal number of rounds for the

multi-installment algorithm is equal to 5 and the adaptive strategy is at most 3%
far away from the best other solutions (when the number of task is larger than 200).

6.3.2. With a high communication-to-computation ratio

Experiments have been conducted with, again, the same platform set as in

Section 6.2, the same workloads and the same latencies. But we change the
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communication-to-computation ratio: one task unit now amounts to 50 MFlops of

computation and, still, 2 Mbits of data: the communication-to-computation ratio
has roughly been multiplied by 20.
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Figs. 13 and 14 depict the comparison of the heuristics with the adaptive linear

programming approach on 5-processor and 20-processor platforms. Linear pro-

gramming approaches clearly outperform any multi-installment heuristic. This is

due to many reasons:

• The linear equations given in [1] cannot take latencies into account. Since the
communication-to-computation ratio is getting higher, considering them becomes

crucial.

• No resource selection is done in [1]. When the size of the platform gets larger, the

network becomes a bottleneck and we must decide which computing resources to

use. This choice is automatically performed when solving the linear inequalities.

6.4. Summary

As a general conclusion, we see that L.P. strategies, either with fixed square-root

period, or with the adaptive strategy to compute the next period, are to be recom-

mended. In most cases, they are very close to the best multi-installment solution

(and determining the optimal number of rounds for this class of heuristics is a

non-trivial problem). When the communication-to-computation ratio gets higher,

both L.P. strategies are much better than the other heuristics.

The simulation of any of the heuristics presented in this paper on a platform made

of 10 slaves takes between 0.5 s (when simulating 100 tasks) and 3.4 s (when simu-
lating the slowest heuristic with 1000 tasks) on a Pentium III 1 GHz. It is therefore

realistic to run a simulation to decide which heuristic to use.
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Ifwewere tomakeafinal choice,wewould recommendtheadaptive strategy, because

it would be the most robust to changes in computation speeds or network bandwidths.
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7. Conclusion

On the theoretical side, the main result of this paper is the proof of the asymptotic

optimality of our multi-round algorithm. This is the first quantitative result ever as-

sessed for a multi-round algorithm. But (maybe more importantly), our algorithm
exhibits a lot of interesting features that make it a candidate of choice in a wide va-

riety of situations:

• The best selection of the resources to be used among all available machines is au-

tomatically conducted through the linear program. Even better, resources are

sorted according to the Gi and greedily selected until the sum of the ratios Gi
Giþwi

(without overlap) or Gi
wi
(with overlap) exceeds 1. Previous approaches had to re-

sort to un-guaranteed experimental heuristics.
• The best number of rounds is easily determined as a function of the task number,

so there is no need to test several solutions with different round numbers, and then

to select the best one.

• Because it is periodic, the algorithm is simpler to implement that other schemes

that grow the chunk size repeatedly.

• For the same reason, our algorithm is more robust: the decisions taken for each

round (how many work units should be sent to each worker) can be questioned

before each round, thus allowing a dynamic approach to cope with, and respond
to variations in computation speeds or network bandwidths. Such changes are

very likely to occur, especially when the overall processing time is large. Other al-

gorithms that rely on very long rounds in the end cannot rapidly adapt to speed or

bandwidth changes.

Extensive simulations have shown that our multi-round algorithm does per-

form very well in practice, and significantly outperforms other heuristics when the

communication-to-computation ratio of the application is not too low on the target
platform. This opens up a larger range of applications for the divisible workload para-

digm.
Appendix A. Asymptotically optimal multi-round algorithms on arbitrary tree

platforms

In this section, we show that it is possible to derive asymptotically optimal algo-

rithm for distributing divisible tasks onto a complex platform organized as a tree.

A.1. Platform model

The platform is represented by a tree T ¼ ðV ;E;wi; gi;j;Gi;jÞ. The nodes of

the graph represent computing resources, weighted by wi, i.e. the required time for

node Vi to process an elementary task. The edges of the graph represent the intercon-

nection network, each edge being weighted by its latency gi;j and the inverse of its
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bandwidth Gi;j, so that the communication time for a elementary tasks along the

edge ei;j ¼ ðVi ; VjÞ of the platform takes gi;j þ aGi;j time units.
A.2. Upper bound for the processing power of the platform

Our aim is to find an upper bound for the number of tasks that can be processed

during T time units by the platform. To do this, we first consider an ‘‘ideal’’ plat-

form, where all latencies have been removed. Clearly, the processing power of such

an ideal platform is larger than the power of the actual platform. Let us now con-

sider a node Vi during one time unit, at steady state and let us denote by aideali the

number of tasks it processes and by cideali;j the number of tasks it sends to its neighbor

Vj. The number of tasks it receives from its parent Vj is therefore given by cidealj;i . We

refer to the children as the set of processors such as Pi ! Pj. Note that even if each
processor receives data from only one other processor (remember we are working on

a tree), we always refer to this processor as belonging to the set of processors such as

Pj ! Pi. We suppose that a processor is able to overlap communications with pro-

cessing and that it has one port for incoming communications and one port for out-

going communications, so that it is able at the same to receive one task from one of

its neighbors (though only one), to send one task to one of its neighbor (though only

one) and to process one task. This assumptions concerning the communications ca-

pabilities of the nodes will be discussed in Section A.5. The following set of inequa-
lities states the constraints for processing (1), incoming (2) and outgoing (3)

communications, and conservation law (4) for node Vi during one time step
ð1Þ aideali wi 6 1

ð2Þ
P

Pj!Pi

cidealj;i Gj;i 6 1 ðno latenciesÞ

ð3Þ
P

Pi!Pj

cideali;j Gi;j 6 1 ðno latenciesÞ

ð4Þ
P

Pj!Pi

cidealj;i ¼ aideali þ
P

Pi!Pj

cideali;j

8>>>>>><
>>>>>>:
Thus, at steady state, the optimal number of tasks that can be processed by the whole

platform during one time unit is given by the solution of the following linear program
Maximize
X

aideali

subject to

ð1Þ 8Vi 2 V ; aideali wi 6 1

ð2Þ 8Vi 2 V ;
P

Pj!Pi

cidealj;i Gj;i 6 1

ð3Þ 8Vi 2 V ;
P

Pi!Pj

cideali;j Gi;j 6 1

ð4Þ 8Vi 2 V ;
P

Pj!Pi

cidealj;i ¼ aideali þ
P

Pi!Pj

cideali;j

ð5Þ 8Vi 2 V ; aideali ; cideali;j ; cidealj;i P 0

8>>>>>>>>>>><
>>>>>>>>>>>:
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Let us denote by qideal
opt ¼

P
Vi2V a

ideal
i the optimal number of tasks processed by the

‘‘ideal’’ platform during one time unit. Clearly, the time necessary to process N tasks

with the ideal platform (and therefore by the actual one) is upper bounded by

Topt ¼ N
qidealopt

.

In the following sections, we will show that it is possible to derive an algorithm

that performs N tasks with the actual platform in time of order Topt þOð
ffiffiffiffiffiffiffiffi
Topt

p
Þ,

thus in asymptotically optimal time when N , and therefore Topt, becomes arbitrarily

large.

A.3. Lower bound for the processing power of the platform

Let us consider a time period of duration Tp and the processing capabilities of the

actual platform. During this time period, with the assumptions concerning the over-

lapping and communication capabilities of the platform stated in Section A.2, let us

denote by bi the number of tasks processed by node Vi , Ci;j (resp. Cj;i) the number of
tasks sent (resp. received) by processor Vi to (resp. from) processor Vj. Then, the fol-
lowing set of inequalities must be satisfied
ð1Þ biwi 6 Tp
ð2Þ

P
Pj!Pi

ðCj;iGj;i þ gj;iÞ6 Tp ðwith latenciesÞ

ð3Þ
P

Pi!Pj

ðCi;jGi;j þ gi;jÞ6 Tp ðwith latenciesÞ

ð4Þ
P

Pj!Pi

Cj;i ¼ bi þ
P

Pi!Pj

Ci;j

8>>>>>>><
>>>>>>>:
If we scale those inequalities by a factor Tp, in order to determine the processing
capabilities of the actual platform during one time unit, we obtain
ð1Þ bi
Tp
wi 6 1

ð2Þ
P

Pj!Pi

Cj;j

Tp
Gi;j 6 1�

P
Pj!Pi

gj;i
Tp

ðwith latenciesÞ

ð3Þ
P

Pi!Pj

Ci;j

Tp
Gi;j 6 1�

P
Pi!Pj

gi;j
Tp

ðwith latenciesÞ

ð4Þ
P

Pj!Pi

Cj;i

Tp
¼ bi

Tp
þ
P

Pi!Pj

Ci;j

Tp

8>>>>>>>>><
>>>>>>>>>:
Let us denote by C ¼ 1�
P

ðVk ;VlÞ2E
gk;l
Tp

¼ 1� A1

Tp
, where A1 ¼

P
ðVk ;VlÞ2E gk;l. Clearly,
8i; C6 1�
X
Pi!Pj

gi;j
Tp

and C6 1�
X
Pj!Pi

gj;i
Tp
and therefore, the solution of the following linear program provides a lower bound

for the overall processing capabilities of the actual platform
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Maximize
X

ai

subject to

ð1Þ 8Vi 2 V ; aiwi 6C

ð2Þ 8Vi 2 V ;
P

Pj!Pi

cj;iGj;i 6C

ð3Þ 8Vi 2 V ;
P

Pi!Pj

ci;jGi;j 6C

ð4Þ 8Vi 2 V ;
P

Pj!Pi

cj;i ¼ aideali þ
P

Pi!Pj

ci;j

ð5Þ 8Vi 2 V ; ai; ci;j; cj;i P 0

8>>>>>>>>>><
>>>>>>>>>>:
Therefore, at steady state, the actual platform is able to process more than Tpqideal
opt C

tasks during a period of duration Tp, since the solution of the linear program for the

actual platform can be obtained from solutions obtained by the linear program for

the ideal platform by applying a scaling factor C (remember C6 1 when Tp is large
enough).

In the next section, we derive from previous results an asymptotically optimal

algorithm for distributing divisible tasks onto an heterogeneous complex platform.

A.4. Asymptotically optimal algorithm

The algorithm we propose consists in three main phases: an initialization phase to

reach steady state, a certain number of steady state steps of duration Tp, and a clean

up phase to process remaining tasks.

A.4.1. Initialization phase

During this phase, no tasks are processed, but all the processors of the platform

receive the number of tasks they normally receive during each time period of dura-

tion Tp at steady state.

During such a time period at steady state, node Vi receives
X
Pj!Pi

Cj;i 6
TpC

minPj!Pi Gj;i
6

1

minPj!Pi Gj;i
Tp 6

1

minðVk ;VlÞ2E Gk;l
Tp
Let us recall that the platform consists in n processors. Thus, the time necessary to

send sequentially the tasks from the master to node Vi is bounded by
n max
ðVk ;VlÞ2E

gk;l

�
þmaxðVk ;VlÞ2E Gk;l

minðVk ;VlÞ2E Gk;l
Tp

�

since n is an upper bound of the length of a path from the master to Vi . Thus, the
overall sequential time to send the tasks to all the processors is bounded by
n2 max
ðVk ;VlÞ2E

gk;l

�
þmaxðVk ;VlÞ2E Gk;l

minðVk ;VlÞ2E Gk;l
Tp

�
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Therefore, the time of the initialization phase is bounded by
A2 þ TpA3
where both A2 ¼ n2 max gk;l and A3 ¼ n2 maxGk;l

minGk;l
only depend on the platform, and

neither on the overall number of tasks to be processed nor on the time period Tp.

A.4.2. Steady state phase

Since the tasks are present at each node of the platform at the end of the initial-

ization phase, we can start the steady state phase. During step i, each processor pro-

cesses the tasks it received during phase i� 1. After k steps, the number of processed

tasks is given by kTpqideal
opt C. Thus, we perform k steps during the steady state phase,

where
k ¼ N
Tpqideal

opt C

$ %
¼ Topt

TpC

	 

6

Topt
Tp � A1
Therefore, the time of the steady state phase is bounded by
Topt
Tp

Tp � A1
where A1, defined in Section A.3, only depends on the platform, and neither on the

overall number of tasks to be processed nor on the time period Tp.

A.4.3. Clean up phase

At the end of the kth step of the steady state phase, at most Tpqideal
opt C6 Tpqideal

opt

tasks have not yet been processed. The time necessary to process sequentially all

these tasks if all were located at the slowest processor is bounded by

Tpqideal
opt maxi wi. Thus, the time of the clean up phase is bounded by
A4Tp
where A4 ¼ qideal
opt maxi wi only depends on the platform, and neither on the overall

number of tasks to be processed nor on the time period Tp.

A.4.4. Asymptotic optimality

Using the three phases algorithm we have just described, the overall processing

time T actual for processing N tasks on the actual platform is bounded by
T actual
6A2 þ ðA3 þ A4ÞTp þ Topt

Tp
Tp � A1
Let us consider a time period Tp ¼
ffiffiffiffiffiffiffiffi
Topt

p
. Then, when N , and therefore Topt and Tp

are sufficiently large, then
T actual

Topt
6 1þ A3 þ A4 þ 2A1ffiffiffiffiffiffiffiffi

Topt
p þ o

1ffiffiffiffiffiffiffiffi
Topt

p
 !
what achieves the proof of the asymptotic optimality of the platform.
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A.5. Discussion of the overlapping and communication capabilities

In this section, we prove that asymptotically optimal algorithms can be derived

with different assumptions concerning the overlapping capabilities of the platform.

We will not provide the proofs for all possible set of assumptions, because of the
length of the proofs, and we will only show the first set of inequalities used in order

to compute an upper bound for the computing power of the ‘‘ideal’’ platforms. We

recall that, if the platform is able to process simultaneously one incoming communi-

cation and one outgoing communication and is also able to overlap its processing

with communications, then the set of inequalities derived in Section A.2 is the fol-

lowing
ð1Þ aideali wi 6 1

ð2Þ
P

Pj!Pi

cidealj;i Gj;i 6 1 ðno latenciesÞ

ð3Þ
P

Pi!Pj

cideali;j Gi;j 6 1 ðno latenciesÞ

ð4Þ
P

Pj!Pi

cidealj;i ¼ aideali þ
P

Pi!Pj

cideali;j ðconservation lawÞ

8>>>>>><
>>>>>>:
A.5.1. Number of incoming and outgoing ports for communication

In this section, we consider that the nodes of the platforms are still able to overlap
communications and processing, and we discuss the set of inequalities with respect to

the number of incoming and outgoing ports.

• If there is a single port for both incoming and outgoing communications, then

node Vi needs to perform all its communication using this port, and the set of in-

equalities becomes
ð1Þ aideali wi 6 1

ð2Þ
P

Pj!Pi

cidealj;i Gj;i þ
P

Pi!Pj

cideali;j Gi;j 6 1 ðno latenciesÞ

ð4Þ
P

Pj!Pi

cidealj;i ¼ aideali þ
P

Pi!Pj

cideali;j ðconservation lawÞ

8>>><
>>>:
• On the other hand, if node Vi is able to perform any number of communications at
the same time, then all the communications can be handled in parallel, and the set

of inequalities becomes
ð1Þ aideali wi 6 1

ð2Þ 8Vj s:a: Pj ! Pi; cidealj;i Gj;i 6 1 ðno latenciesÞ
ð3Þ 8Vj s:a: Pi ! Pj; cideali;j Gi;j 6 1 ðno latenciesÞ
ð4Þ

P
Pj!Pi

cidealj;i ¼ aideali þ
P

Pi!Pj

cideali;j ðconservation lawÞ

8>>>><
>>>>:
A.5.2. Overlapping capabilities

We discuss the evolution of the set of inequalities with respect to overlapping ca-

pabilities of node Vi .
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• If there is a single port for both incoming and outgoing communications, then

node Vi can either send, receive or process a task at a given time, and the set of

inequalities becomes
ð1Þ aideali wi þ
P

Pj!Pi

cidealj;i Gj;i þ
P

Pi!Pj

cideali;j Gi;j 6 1 ðno latenciesÞ

ð4Þ
P

Pj!Pi

cidealj;i ¼ aideali þ
P

Pi!Pj

cideali;j ðconservation lawÞ

8><
>:
• On the other hand, if node Vi is able to perform any number of communications at

the same time, then all the communications can be handled in parallel, but pro-

cessing interferes with communications, and the set of inequalities becomes
ð1Þ 8Vj s:a: Pj ! Pi; aideali wi þ cidealj;i Gj;i 6 1 ðno latenciesÞ
ð2Þ 8Vj s:a: Pi ! Pj; aideali wi þ cideali;j Gi;j 6 1 ðno latenciesÞ
ð4Þ

P
Pj!Pi

cidealj;i ¼ aideali þ
P

Pi!Pj

cideali;j ðconservation lawÞ

8>><
>>:
In fact, the overlapping and communication capabilities of the nodes of the plat-

form do not need to be uniform. Since the solution are obtained with equations stat-

ing the steady state behavior of the application at each node, we can use different set

of inequalities for each node, according to its respective capabilities. Therefore, we

are able to derive asymptotically optimal results for a fully heterogeneous platform,

where the processing power of each node, the bandwidth and the latency of each
link, the number of ports for incoming and outgoing communication, and the capa-

bility of overlapping communications and processing may differ from one node to

another.
References

[1] V. Bharadwaj, D. Ghose, V. Mani, T. Robertazzi, Scheduling Divisible Loads in Parallel and

Distributed Systems, IEEE Computer Society Press, 1996.

[2] J. Sohn, T. Robertazzi, S. Luryi, Optimizing computing costs using divisible load analysis, IEEE

Transactions on parallel and distributed systems 9 (3) (1998) 225–234.

[3] C. Lee, M. Hamdi, Parallel image processing applications on a network of workstations, Parallel

Computing 21 (1995) 137–160.

[4] D. Altilar, Y. Paker, An optimal scheduling algorithm for parallel video processing, in: IEEE Int.

Conference on Multimedia Computing and Systems, IEEE Computer Society Press, 1998.

[5] D. Altilar, Y. Paker, Optimal scheduling algorithms for communication constrained parallel

processing, in: Euro-Par 2002, LNCS 2400, Springer Verlag, 2002, pp. 197–206.

[6] M. Drozdowski, Selected problems of scheduling tasks in multiprocessor computing systems, Ph.D.

Thesis, Instytut Informatyki Politechnika Poznanska, Poznan, 1997.

[7] J. Blazewicz, M. Drozdowski, M. Markiewicz, Divisible task scheduling––concept and verification,

Parallel Computing 25 (1999) 87–98.

[8] R. Wang, A. Krishnamurthy, R. Martin, T. Anderson, D. Culler, Modeling communication pipeline

latency, in: Measurement and Modeling of Computer Systems (SIGMETRICS’98), ACM Press, 1998,

pp. 22–32.



1152 O. Beaumont et al. / Parallel Computing 29 (2003) 1121–1152
[9] M.R. Garey, D.S. Johnson, Computers and Intractability, a Guide to the Theory of NP-

Completeness, W.H. Freeman and Company, 1991.

[10] H. El-Rewini, T.G. Lewis, H.H. Ali, Task Scheduling in Parallel and Distributed Systems, Prentice

Hall, 1994.

[11] P. Chr�eetienne, E.G. Coffman Jr., J.K. Lenstra, Z. Liu (Eds.), Scheduling Theory and its Applications,

John Wiley and Sons, 1995.

[12] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity

and Approximation, Springer, Berlin, Germany, 1999.

[13] D.E. Culler, J.P. Singh, Parallel Computer Architecture: A Hardware/Software Approach, Morgan

Kaufmann, San Francisco, CA, 1999.

[14] Y. Yang, H. Casanova, Multi-round algorithm for scheduling divisible workload applications:

analysis and experimental evaluation, Tech. Rep. CS2002-0721, Department of Computer Science

and Engineering, University of California, San Diego, 2002.

[15] H. Casanova, F. Berman, Grid’2002, in: F. Berman, G. Fox, T. Hey (Eds.), Parameter Sweeps on the

Grid with APST, Wiley, 2002.

[16] A.L. Rosenberg, Sharing partitionable workloads in heterogeneous NOWs: greedier is not better, in:

D.S. Katz, T. Sterling, M. Baker, L. Bergman, M. Paprzycki, R. Buyya (Eds.), Cluster Computing

2001, IEEE Computer Society Press, 2001, pp. 124–131.

[17] S.F. Hummel, E. Schonberg, L. Flynn, Factoring: a method for scheduling parallel loops,

Communications of the ACM 35 (8) (1992) 90–101.

[18] T. Hagerup, Allocating independent tasks to parallel processors: an experimental study, Journal of

Parallel and Distributed Computing 47 (2) (1997) 185–197.

[19] S. Bataineh, T. Hsiung, T.G. Robertazzi, Closed form solutions for bus and tree networks of

processors load sharing a divisible job, IEEE Transactions on Computers 43 (10) (1994) 1184–1196.

[20] S. Charcranoon, T. Robertazzi, S. Luryi, Optimizing computing costs using divisible load analysis,

IEEE Transactions on Computers 49 (9) (2000) 987–991.

[21] B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, S.M. Watt, Maple Reference Manual, 1988.

[22] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, Bandwidth-centric allocation of

independent tasks on heterogeneous platforms, in: International Parallel and Distributed Processing

Symposium IPDPS’2002, IEEE Computer Society Press, 2002, extended version available as LIP

Research Report 2001-25.

[23] H. Casanova, Simgrid: a toolkit for the simulation of application scheduling, in: Proceedings of the

IEEE Symposium on Cluster Computing and the Grid (CCGrid’01), IEEE Computer Society, 2001.

[24] J. Lerouge, A. Legrand, Towards realistic scheduling simulation of distributed applications, Tech.

Rep. 2002-28, LIP, ENS Lyon, France, July 2002.

[25] G. Shao, F. Berman, R. Wolski, Using effective network views to promote distributed application

performance, in: International Conference on Parallel and Distributed Processing Techniques and

Applications, CSREA Press, 1999.


	Scheduling divisible workloads on heterogeneous platforms
	Introduction
	Models
	Related results
	Single-round algorithms
	Multi-round algorithms

	New results for single-round algorithms
	Asymptotically optimal multi-round algorithms
	No overlap
	With overlap
	Extension to arbitrary platforms graphs

	Simulations
	Homogeneous platforms, no latency
	Heterogeneous platforms, no latency
	Heterogeneous platforms, with latency
	With a low communication-to-computation ratio
	With a high communication-to-computation ratio

	Summary

	Conclusion
	Platform model
	Upper bound for the processing power of the platform
	Lower bound for the processing power of the platform
	Asymptotically optimal algorithm
	Initialization phase
	Steady state phase
	Clean up phase
	Asymptotic optimality

	Discussion of the overlapping and communication capabilities
	Number of incoming and outgoing ports for communication
	Overlapping capabilities

	Asymptotically optimal multi-round algorithms on arbitrary tree platforms
	References


