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AbstractÐIn this paper, we address the issue of implementing matrix multiplication on heterogeneous platforms. We target two

different classes of heterogeneous computing resources: heterogeneous networks of workstations and collections of heterogeneous

clusters. Intuitively, the problem is to load balance the work with different speed resources while minimizing the communication

volume. We formally state this problem in a geometric framework and prove its NP-completeness. Next, we introduce a (polynomial)

column-based heuristic, which turns out to be very satisfactory: We derive a theoretical performance guarantee for the heuristic and we

assess its practical usefulness through MPI experiments.
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1 INTRODUCTION

IN this paper, we deal with the implementation of a very
simple but important linear algebra kernel, namely,

matrix multiplication (MM for short), on heterogeneous
platforms. Several parallel MM algorithms are available for
parallel machines or homogeneous networks of work-
stations or PCs (see [1], [20], [31], among others). The
popular ScaLAPACK library [7] includes a highly-tuned,
very efficient routine targeted to two-dimensional processor
grids. This routine uses a block-cyclic distribution of the
matrices in both grid dimensions. We briefly recall parallel
MM algorithms for homogeneous machines in Section 2.1.

Why extend parallel MM algorithms to heterogeneous

platforms? The answer is clear: Future computing platforms

are best described by the keywords distributed and hetero-

geneous. We target two different classes of heterogeneous

computing resources:

Heterogeneous Networks of Workstations (HNOWs) are

ubiquitous in university departments and companies.

They represent the typical poor man's parallel computer:

Running a large PVM or MPI experiment (possibly all

night long) is a cheap alternative to buying super-

computer hours. When implementing MM algorithms on

HNOWs, the idea is to make use of all available

resources, namely, slower machines in addition to more

recent ones. This is a challenging but very useful task

given the importance of MM in scientific computing.

Also, it is a first step towards understanding how to

implement more complicated linear algebra kernels on

HNOWs.

Collections of Clusters are made up of nodes or clusters,
each of them being itself a HNOW of a parallel machine.
These nodes may well be geographically scattered all
around the world. Internode communications are typi-
cally an order of magnitude slower than intranode
communications. The need to design a MM algorithm
which would execute on a collection of clusters is less
obvious. Are there actual applications which involve
huge matrices whose product cannot be computed with a
single parallel machine or workstation network? Larger
and larger experiments are conducted throughout the
world within the NPACI1 initiative using tools such as
Globus [18] and Legion [24]. Huge linear algebra kernels
are often at the core of these experiments, so investigat-
ing ªmetacomputingº MM algorithms is quite natural.
Anyway, we view MM algorithms as a perfect case study
for the implementation of tightly coupled high-perfor-
mance applications on the metacomputing grid [19]:
Indeed, such applications are much more difficult to
tackle than loosely-coupled cooperative applications.
Because MM is a simple kernel which encompasses a
lot of data movements, we view it as a perfect testbed to
be studied before experimenting more challenging
computational problems on the grid, especially those
which exhibit a high spatial locality (e.g., such as finite
difference schemes).
The major limitation to programming heterogeneous

platforms arises from the additional difficulty of balancing
the load when using processors running at different speeds.
Data and computations are not evenly distributed to
processors. Minimizing communication overhead becomes
a challenging task: In fact, the MM problem with different-
speed processors turns out to be surprisingly difficult. The
main result of this paper is the NP-completeness of the
MM problem on heterogeneous platforms. Rather than the
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proof, the result itself is interesting because it reveals the
intrinsic difficulty of designing heterogeneous algorithms.

The rest of the paper is organized as follows: In Section 2,
we summarize existing MM algorithms for homogeneous
platforms and we discuss how to extend these to cope
with heterogeneity. In Section 3, we formally state the
MM optimization problem for heterogeneous platforms,
which we formulate as a geometric optimization problem,
and we establish its NP-completeness (the long and
technical proof of this important result is given in
the Appendix). In Section 4, we briefly survey related
NP-complete optimization problems. Section 5 is devoted
to the design of efficient (polynomial) heuristics, whose
practical usefulness is demonstrated through MPI experi-
ments on a HNOW and on a 2-cluster configuration
(Section 6). We give some final remarks and conclusions
in Section 7.

2 MM ALGORITHMS

In this section, we briefly describe how to implement a
parallel (or distributed) MM algorithm on a heterogeneous
platform. We adopt an abstract view by assuming that we
have a collection of p heterogeneous computing resources
P1; P2; . . . ; Pp. If each computing resource Pi reduces to a
single processor, we are dealing with a heterogeneous
network of workstations or PCs (HNOW). When each
computing resource Pi is itself a heterogeneous cluster or a
parallel machine, we are targeting a metacomputing
environment made up from a collection of clusters. The
high-level algorithmic description is the same for all target
machines. However, our model will have to cope with
different hypotheses on communication issues. We come
back to the impact of communication modeling in Section 3.2.
Before dealing with heterogeneous resources, we briefly
summarize existing algorithms for homogeneous machines.

2.1 Homogeneous Grids

We start by briefly recalling the MM algorithm imple-
mented in the ScaLAPACK library [7] on 2D homogeneous
grids. For the sake of simplicity, we restrict ourselves to the
multiplication C � AB of two square n� n matrices A and
B. In that case, ScaLAPACK uses the outer product
algorithm described in [1], [20], [31]. Consider a 2D processor
grid of size p � p1 � p2 and assume for a while that
n � p1 � p2. In that case, the three matrices share the same
layout over the 2D grid: Processor Pi;j stores ai;j, bi;j, and ci;j.
Then, at each step k,

. Each processor Pi;k (for all i 2 f1; ::; p1g) horizontally
broadcasts ai;k to processors Pi;� and

. Each processor Pk;j (for all j 2 f1; ::; p2g) vertically
broadcasts bk;j to processors P�;j,

so that each processor Pi;j can independently update
ci;j � ci;j � ai;kbk;j.

This current version of the ScaLAPACK library uses a
blocked version of this algorithm to squeeze the most out
state-of-the-art processors with pipelined arithmetic units
and multilevel memory hierarchy [17], [12]. Each matrix
coefficient in the description above is replaced by a
r� r square block, where optimal values of r depend

on the memory hierarchy and on the communication-to-

computation ratio of the target computer. Finally, a level
of virtualization is added: Usually, the number of blocks

dnre � dnre is much greater than the number of processors
p1p2. Thus, blocks are scattered in a cyclic fashion along

both grid dimensions, so that each processor is responsible
for updating several blocks at each step of the algorithm.

To prepare for the description of the heterogeneous

version, we introduce another ªlogicalº description of the
algorithm:

. We take a macroscopic view and concentrate on
allocating (and operating on) matrix blocks to
processors: Each element in A, B, and C is a square
r� r block and the unit of computation is the
updating of one block, i.e., a matrix multiplication
of size r.

. At each step, a column of blocks (the pivot column)
is communicated (broadcast) horizontally and a row
of blocks (the pivot row) is communicated (broad-
cast) vertically.

. The C matrix is partitioned into p1 � p2 rectangles.
There is a one-to-one mapping between these
rectangles and the processors. Each processor is
responsible for updating its rectangle: More precisely,
it updates each block in its rectangle with one block
from the pivot row and one block form the pivot
column, as illustrated in Fig. 1. For square p� p
homogeneous 2D-grids and when the number of
blocks in each dimension n is a multiple of p (the
actual matrix size is thus n:r� n:r), it turns out that
all rectangles are identical squares of n

p � n
p blocks.

In Fig. 1, we see that the total amount of communications

performed by the MM algorithm is proportional to the sum
of the half-perimeters of the rectangles allocated to the

processors: More precisely, at each step each processor
responsible for a rectangle of h� v blocks must receive

(vertically) h blocks of matrix B and (horizontally) v blocks
of matrix A. This explains why allocated rectangles are

identical squares for square p� p homogeneous 2D-grids
when p divides n: In that case, all rectangles of fixed area
n
p � n

p are squares. Because the (half)-perimeter of a rectangle

of fixed area is minimized when it is a square, this choice

does minimize the communication volume.
There are other homogeneous MM algorithms: For

instance, Cannon's algorithm [31] (whose main drawback
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is to require an initial permutation of matrices A and B)

replaces all the horizontal and vertical broadcasts by

nearest-neighbor shifts. The total communication volume

at each step is the same, but the communications are

different. Still, all processors independently update their

rectangle of C blocks at each step.

2.2 Heterogeneous Platforms

How to modify the previous MM algorithms for a

heterogeneous platform? The idea is to keep the same

framework: at each step, one pivot column and one pivot

row are communicated to all processors and independent

updates take place. However, with different speed

processors, we cannot distribute same size rectangles

from the C matrix to the processors. Intuitively, we want

to balance the computing load so that each processor

receives an amount of work in accordance to its computing

power. Because all C blocks require the same amount of

arithmetic operations, each processor executes an amount of

work which is proportional to the number of blocks that are

allocated to it, hence, proportional to the area of its

rectangle. To parallelize the matrix product C � AB, we

have to tile the C matrix into p nonoverlapping rectangles,

each rectangle being assigned to one processor. Fig. 2 shows

an example with 13 different-speed computing resources.
The question is: How to compute the area and shape of

these p rectangles so as to minimize the total execution

time? As usual, with parallel algorithms, there are two

nonindependent and maybe conflicting goals: 1) load-

balancing computations and 2) minimizing communication

overhead. Goal 1) is related to the area of the rectangles that

are allocated to the processors while goal 2) is related to

their shapes. We discuss areas and shapes in the next

section, in order to formally state (and try to solve) this

difficult optimization problem.

3 THE HETEROGENEOUS MM
OPTIMIZATION PROBLEM

Consider a matrix product C � AB, where A, B, and C are

square matrices of n� n square blocks of size r. Assume

that we have p computing resources P1; P2; . . . ; Pp of

(relative) cycle-times t1; t2; . . . ; tp: If all processors have

same speed, then ti � 1 for 1 � i � p. If, say, P2 is twice

faster than P1, then t1 � 2t2. We start with load-balancing

issues before dealing with communication overhead.

3.1 Load Balancing

To perfectly load-balance the computation, each processor
should receive an amount of work in accordance to its
computing power. If, say, P2 is twice faster than P1

(t1 � 2t2), then P2 should be assigned twice as many
elements as P1. In other words, the area of its rectangle
should be the double of that of P1. Let si be the area of the
rectangle Ri allocated to processor Pi. Obviously, the first
equation is

Pp
i�1 si � n2, in order to obtain a true partition

of the C matrix. Next, since Pi processes its rectangle within
siti time-steps, we have

s1t1 � s2t2 � . . . � sptp:
The last constraint is to write si as si � hivi, where hi and vi
are the number of rows and columns of Ri. These equations
do not always have integer solutions, which means that a
perfect load balancing of the computations is not always
possible.

However, we are not really interested in an exact
solution. A more concrete and interesting question is the
following: Given the p computing resources, how to
compute the respective area of the rectangles Ri so that
the workload is asymptotically optimally balanced: the
larger the matrix size (expressed in blocks), the more
accurate the tiling into rectangles. This question translates
into the following system: Given t1; . . . ; tp, search for real
unknowns si, hi, and vi, 1 � i � p, such that:

1� s1t1 � s2t2 � . . . � sptp
2� Pp

i�1 si � 1
3� The p rectangles of size hi � vi �where hivi � si�

tile the unit square:

8>><>>:
Condition 1 ensures that the area of the rectangle Ri

allocated to processor Pi is inversely proportional to its
cycle time. Condition 2 is for normalization: The sum of the
areas of the p rectangles is that of the unit square, a
necessary condition for Condition 3 to hold. Note that, as
expected, Conditions 1 and 2 allow to compute the si: We
obtain

si �
1
tiPp
i�1

1
ti

:

We see that si is computed from the harmonic mean of the ti
and it is not an integer (0 < si < 1 as soon as p � 2).

There are always solutions to the normalized problem.
For instance, we fulfill Condition 3 by choosing to tile the
unit square into p horizontal slices of height vi � si (and
width hi � 1) or into p vertical slices of width hi � si (and
height vi � 1). This degree of freedom comes from the fact
that load balancing imposes constraints on the area of the
rectangles Ri, but not on their shapes. Shapes come into the
story when discussing communication issues, as explained
below.

Finally, note that it is straightforward to retrieve a
solution of the original problem (tiling a matrix of
n� n blocks) from the solution of the normalized
problem: We simply multiply all the hi and the vi by n,
getting hi�n� � nhi and vi�n� � nvi. Then, we round up
values to integers, h0i�n� and v0i�n�, while preserving the
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constraint
Pp

i�1 h
0
i�n� �

Pp
i�1 v

0
i�n� � n (there are many

possible variations). Therefore, we derive a generic solution

to the original problem, which is valid for all values of the

parameter n.

3.2 Communication Overhead

At each step of the MM algorithm, communications take

place between processors: The total volume of data

exchanged is proportional to the sum Ĉ �Pp
i�1�hi � vi�

of the half-perimeters of the p rectangles Ri. In fact, this is

not exactly true: Because the pivot row and column are not

sent to the processors that own them, we should subtract 2

from Ĉ, 1 for the horizontal communications and 1 for the

vertical ones. Since minimizing Ĉ or Ĉ ÿ 2 is equivalent, so

we keep the value of Ĉ as stated.

Sequential Communications. Minimizing Ĉ seems to be a

very natural goal because it represents the total volume

of communications. For instance, it is natural to assume

that communications will be mostly sequential on a

HNOW where processors are linked by a simple

Ethernet network; also, there will be little or none

computation/communication overlap on such a plat-

form. In that context, minimizing the total communica-

tion volume is the main objective: It is proportional to the

communication time needed at each step of the

MM algorithm with the underlying hypothesis that

the network is homogeneous. In this paper, we do not

investigate further the situation where different speed

links are available between the processors (see Section 3.5
for a pointer).

Parallel Communications. Conversely, some communica-
tions can occur in parallel or some efficient broadcast
mechanisms can be used if the computing resources are
linked through a dedicated high-speed network and if
parallel communication links are provided. In that
context, we may want to use a columnwise allocation
as depicted in Fig. 3: Vertical communications are
performed in parallel in all columns and broadcasts or
at least scatters can be performed horizontally.

Collections of Clusters. Finally, in a metacomputing
context, intercluster communications are typically one
order of magnitude slower than intracluster communica-
tions, so we may want to adopt a two-level scheme: We
assign rectangles to clusters as described in Fig. 4 while
inside each cluster some master-slave mechanism could
be provided.

Optimization Criteria. It seems that minimizing the total
communication volume is the most important optimiza-
tion problem because of its wide potential applicability.
Also, forgetting about MM algorithms for a while,
consider the implementation of any application (such
as a finite-difference scheme), where heterogeneous
processors communicate boundary elements at each step
(the communication scheme need not be nearest-neigh-
bor, it can be anything): Minimizing the total commu-
nication volume while load-balancing the work amounts
to solving exactly the same optimization problem.
The rest of the paper is devoted to solving the

MM optimization problem using the total communica-
tion volume Ĉ as the objective function to be minimized.
We formally state this optimization problem in Section 3.3.
For the sake of completeness, we discuss some extensions of
the problem in Section 3.5.

3.3 The MM Optimization Problem

We are ready to state the MM optimization problem for
heterogeneous platforms. We have p computing resources
Pi, 1 � i � p. Each Pi is assigned a rectangle Ri of
prescribed area si, where

Pp
i�1 si � 1. The shape of each
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Ri is the degree of freedom: We want to tile the unit square
so as to minimize the total communication volume Ĉ. The
abstract optimization problem is the following:

Definition 1. MM-OPT(s): Given p real positive numbers
s1; . . . ; sp s.t.

Pp
i�1 si � 1, find a partition of the unit square

into p rectangles Ri of area si and of size hi � vi so that
Ĉ �Pp

i�1�hi � vi� is minimized.

Given the solution (or an approximation of the solution)
of MM-OPT(s), we round up the values to the nearest
integers so as to derive a concrete solution for matrices of
given size n. As stated above, the integer solution will be
asymptotically optimal. There is an obvious lower bound
for MM-OPT(s):

Lemma 1. For all solutions of MM-OPT(s), Ĉ � 2
Pp

i�1

����
si
p

.

Proof. The half-perimeter of each rectangle Ri will be
always larger that 2

����
si
p

, the value when it is a square. Of
course, tiling the unit square into p squares of area si is
not always possible (think of the problem of tiling the
unit square into two squares of same area 0:5), so this
lower bound is not always tight. tu

As already mentioned, it is easy to solve MM-OPT(s)
when using a square two-dimensional grid of homogeneous
processors (sij � 1=p2 for 1 � i; j � p). However, with
heterogeneous processors, the MM-OPT(s) optimization
problem turns out to be difficult, as shown in the next
section.

3.4 NP-Completeness

The decision problem associated to the optimization
problem MM-OPT is the following:

Definition 2. MM-DEC(s,K): Given p real positive numbers
s1; . . . ; sp s.t.

Pp
i�1 si � 1 and a positive real bound K, is

there a partition of the unit square into p rectangles Ri of area
si and of size hi � vi so that

Pp
i�1�hi � vi� � K?

Our main result states the intrinsic difficulty of the
MM optimization problem:

Theorem 1. MM-DEC(s,K) is NP-complete.

Because the proof is both lengthy and technical, we
provide it in the Appendix. More important than the proof,
the theorem itself clearly demonstrates the intrinsic
difficulty of static load-balancing on heterogeneous plat-
forms while minimizing communication cost.

The main ideas of the proof are the following:

. First, we polynomially reduce the decision problem
MM-DEC(s,K) to a geometric problem (ASP) that
amounts to check if there exists a partition of the unit
square into squares of given areas.

. Then, we prove the NP-completeness of ASP using a
polynomial reduction to the 2-Partition-Equal
problem which is NP-complete [21]. The draft of
this last proof is the following:

We start from an arbitrary instance of the 2-Partition-Equal
problem, i.e., from a set A � fa1; a2; . . . ; ang of n integers,
which we aim at partitioning into two subsets of same
cardinal and same sum. The idea is to build an equivalent
instance of this problem using a set B � fb1; b2; . . . ; bng of n
integers such that bi >

2
3 max bi. We simply define (poly-

nomially) bi � 2�ai � 2nmaxk ak�. Under a few technical
assumptions, we show that there exists a solution to the
initial 2-Partition-Equal problem if and only if B can be
partitioned into two subsets of same sum (not necessarily of
same cardinal). Finally, we build from B an instance of ASP
using three kinds of squares: large squares (denoted as Ai;j

in Fig. 5), n squares of size bi � bi (denoted as Abi in Fig. 6),
and a polynomial number of other squares (denoted as Abi;j

in Fig. 6). We show that the only possible configuration is
the one shown in Fig. 5. In this configuration, there are two
nonadjacent M � S rectangular zones (where M � 4

3 maxi bi
and S �Pi

bi
2 ), which are partitioned as shown in Fig. 6.
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Because of the condition bi >
M
2 , necessarily the Abi squares

of size bi � bi are aligned. Therefore, for each rectangle the
sum of the bi is equal to S. Intuitively, the large rectangles
are introduced to create the two nonadjacent rectangular
zones of area M � S; the n squares Abi must be aligned
within these two zones, and the other squares are here to fill
up the holes in the two rectangular zones.

3.5 Extensions of the Model

As pointed out in Section 3.2, minimizing the total volume
of communications Ĉ seems to be a very natural goal.
However, other objective functions could be selected,
because the target computing platform may influence the
way communications are implemented.

Objective Function for Parallel Communications. If all
communications could be performed in parallel, the
bottleneck would come from the processor which sends/
receives the largest messages. To model such a situation,
a possible objective function would be to minimize

M̂ � max
p

i�1
�hi � vi�

instead of

Ĉ �
Xp
i�1

�hi � vi�:

Unfortunately, the problem remains NP-complete with
this objective function [3].

Objective Function for Heterogeneous Networks. Another
extension of the model could come from the modeling of
the network. It is natural to consider the case of a
heterogeneous network, where processors communicate
through different-speed links. This problem is difficult
too: It is obviously NP-complete if we use different-
speed processors and if we weigh the cost of each
communication with a factor proportional to the band-
width of the communication link (because it is more
complicated than MM-OPT). But interestingly, the
problem remains NP-complete, even when using homo-
geneous processors, i.e., a heterogeneous network

linking processors computing with the same speed
[32]. Still, we believe that it is possible to modify the
column-based heuristics presented in Section 5 to design
a MM algorithm targeted to a heterogeneous network
linking different speed processors.

4 RELATED RESULTS

We survey related papers from the literature in this section.
They range into two categories: papers dealing with linear
algebra on heterogeneous platforms on one hand and
papers covering geometric optimization problems similar to
MM-DEC(s,K) on the other hand.

4.1 Linear Algebra on Heterogeneous Platforms

Load balancing strategies for heterogeneous platforms have
been widely studied. Distributing the computations
(together with the associated data) can be performed either
dynamically or statically or a mixture of both. Some simple
schedulers are available, but they use naive mapping
strategies such as master-slave techniques or paradigms
based upon the idea ªuse the past predict the futureº, i.e., use
the currently observed speed of computation of each
machine to decide for the next distribution of work [14],
[13], [6]. Dynamic strategies, such as self-guided scheduling [34],
could be useful too. There is a challenge in determining a
trade-off between the data distribution parameters and the
process spawning and possible migration policies.
Redundant computations might also be necessary to use
a heterogeneous cluster at its best capabilities. However,
dynamic strategies are outside the scope of this paper (and
mentioned here for the sake of completeness). Because we
have a library designer's perspective, we concentrate on
static allocation schemes, which are less general and more
difficult to design than dynamic approaches, but are better
suited for the implementation of fixed algorithms such as
linear algebra kernels, such as those of the ScaLAPACK
library [7].

Several authors have dealt with the static implementation
of MM algorithms on heterogeneous platforms. One simple
approach is given by Kalinov and Lastovetky [26]. Their
idea is to achieve a perfect load-balance as follows: First,
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they take a fixed layout of processors arranged as a
collection of processor columns; then, the load is evenly
balanced within each processor column independently;
next, the load is balanced between columns; this is the
ªheterogeneous block cyclic distributionº of [26], which
we illustrate in Fig. 7, where we have p � 8 areas of
values �0:05; 0:05; 0:08; 0:1; 0:1; 0:12; 0:2; 0:3�. This simple
scheme is likely to give better results than a straightfor-
ward partitioning into horizontal slices.

Another approach is proposed by Crandall and
Quinn [15]. First, they compare a contiguous block
allocation (see Fig. 8) to horizontal slicing; next, they
introduce a better processor arrangement: They introduce a
recursive algorithm to tile the iteration space (i.e., partition-
ing the unit square) into p rectangles of prescribed area
s1; s2; . . . ; sp with

Pp
i�1 si � 1 so that the total communica-

tion volume is kept small. The algorithm works recursively
as follows: If at some stage their remains some rectangle R
of size h:v to partition into q rectangles of prescribed area
si1 ; si2 ; . . . ; siq , where

Pq
j�1 sij � h� v, then partition R along

its shortest dimension into two rectangles R1 and R2,
where R1 contains the largest dq2e rectangles and R2 the
other ones. For instance, if h � v and si1 � si2 � . . . � siq ,
we obtain a rectangle R1 for the dq2e largest rectangles of
area h� v1, where

v1 �
Pdq2e

j�1 sijPq
j�1 sij

� v;

rectangle R2 is for the remaining rectangles and of area
h� v2, where v2 � vÿ v1 (see Fig. 9 for an illustration).

Kaddoura et al. [25] refine the previous recursive
algorithm and provide several variations. They report
several numerical simulations.

However, we are not aware of any theoretical result nor
of any approximation bound stating some performance
guarantee � (e.g., that the value Ĉ obtained by an algorithm
is not � times larger than the optimal value Ĉopt, where � is
some constant). We have established the complexity of the
problem in Section 3.4 and we provide approximation
bounds in Section 5.3.

Finally, note that preliminary experimental results on
implementing MM and linear system solvers on a hetero-
geneous network are reported in our previous papers [9],
[8], [5], [10].

4.2 Problems Similar to MM-OPT(s)

There are several problems related to MM-OPT(s) in the
literature:

. The most similar problem is the following: How to

tile the unit square into p rectangles of same area so

as to minimize the maximum perimeter of these

rectangles? This problem is shown to be polynomial
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Fig. 8. Illustrating contiguous block allocation. The cost is as high
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Fig. 9. Illustrating the recursive partitioning of Crandall and Quinn (obtained in three steps in this example). (a) First two steps. (b) Final

partitioning : Ĉ � 5:56.



by Kong et al. [30], [29]. The optimal solution is one of

the following two arrangements: Let either m � b ���
p
p c

orm � d ���
p
p e and usem columns composed of b pmc or

d pme rectangles. This problem is motivated by a data-

allocation problem which is related to ours in the

following sense: Assume that we have p equal-speed

processors and that we aim at minimizing the largest

amount of communications made by one processor.

Because the above arrangements are optimal, we

have a polynomial solution to this problem.
The heterogeneous counterpart of this problem is

the following: Given p different-speed processors,
how to allocate data so that the length of the largest
communication is optimized? In terms of tiling, how
to tile the unit square into p nonoverlapping
rectangles of prescribed area s1; . . . ; sp whose sum
is 1 so that the largest perimeter is minimized? This
interesting problem is NP-complete too [3], which
again shows the intrinsic difficulty of designing
heterogeneous parallel algorithms!

. Another related problem is to find the minimum
partition of a rectangle with interior points. Given a
rectangle R and a finite set P of points located inside
R, find a set of line segments that partition R into
rectangles such that every point in P is on the
boundary of some rectangle. The goal is to minimize
the total length of the introduced line segments. This
problem is shown NP-complete in [33], [22], [23],
where approximation algorithms are given. The link
with our problem is that the objective function is the
same, but the original motivation in [22], [23] was a
VLSI routing problem (and the constraints are quite
different).

. There are several NP-complete geometric optimiza-
tion problems that are listed in [16]. One example is
the minimum rectangle tiling problem [28]: Given an
n� n array A of nonnegative numbers and a positive
integer p, find a partition of A into p nonoverlapping
rectangular subarrays such that the maximum
weight of any rectangle in the partition is minimized
(the weight of a rectangle is the sum of its elements).

5 HEURISTICS

In this section, we introduce a polynomial heuristic to solve
the MM-OPT problem. After describing the heuristic and
proving its optimality among all column-based approaches,
we report experimental results that nicely demonstrate its
efficiency. Finally, we provide a theoretical guarantee for
the heuristic and we discuss possible extensions.

5.1 Optimal Column-Based Tiling

As outlined in Section 3.3, the MM-OPT(s) problem is the
following: Given p real positive variables s1; . . . ; sp such thatPp

i�1 si � 1, tile the unit square into p nonoverlapping
rectangles R1; . . . ; Rp of respective areas s1; . . . ; sp so as to
minimize the sum of the (half) perimeters of these
rectangles. Because the associated decision problem
MM-DEC(s,K) is NP-complete (Section 3.4), we consider
the more constrained problem MM-COL(s), where we
impose that the tiling is made up of processor columns, as

illustrated in Fig. 10. In other words, MM-COL(s) is the
restriction of MM-OPT(s) to column-based partitions. In this
section, we give a polynomial solution to the MM-COL(s),
which will be used as a heuristic to solve MM-OPT(s).

Framework. We describe the MM-COL(s) problem more
formally. We aim at tiling the unit square into C columns
(where C is yet to be determined) of width c1; . . . ; cC. Each
column Ci is partitioned itself into ki rows (to be

determined too) of respective area s��i;1�; . . . ; s��i;ki�. Of

course, the final partitioning has
PC

i�1 ki � p rectangles

and all the areas s1; . . . ; sp are represented once and only

once. The goal is to build such a partitioning subject to

the minimization of the sum of the rectangle perimeters.

Algorithm 1. We describe our algorithm which is based
upon the dynamic programming paradigm; the optim-
ality proof will be presented later. The main points are
the following:

1. Reindex the variables s1; . . . ; sp such that

s1 � s2 � . . . � sp:

2. Iteratively build the function fC, by incrementing the
value of C from 1 to the desired value. For
q 2 f1; . . . ; pg, fC�q� represents the total perimeter of
an optimal column-based partitioning of a rectangle of
height 1 and width

Pq
i�1 si

ÿ �
into q rectangles of

respective area s1; . . . ; sq using C columns.

To help understand the derivation, we apply the algorithm
on the example we have used throughout Section 4.1. We
have p � 8 areas of values

�0:05; 0:05; 0:08; 0:1; 0:1; 0:12; 0:2; 0:3�:
The results of the algorithm are described in Table 1 and the
resulting partitioning is depicted in Fig. 11. Each column Ci
contributes to the sum of the half-perimeters as follows: 1

for the vertical line and ki � ci for the ki horizontal lines of
length ci.

In the example, the optimal partitioning is obtained for
three columns (f3�8� � 5:5). The first column of width
c3 � s7 � s8 � 0:5 is composed of 2 elements. The second
column of width c2 � s4 � s5 � s6 � 0:32 is composed
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Fig. 10. Column-based partitioning of the unit square: C � 3, k1 � 5,

k2 � 3, and k3 � 4.



of three elements. Then, the last column of width

c1 � s1 � s2 � s3 � 0:18 is made up with the smallest

three elements (see Fig. 11).
The algorithm is outlined in Table 2. (fperimeterC corre-

sponds to the fC�q� previously used. fcutC �q� corresponds
to the total number of blocs in the first C ÿ 1 columns so
that there remains q ÿ fcutC �q� blocs in the column C).

The worst case complexity of the algorithm is O�p3�.
Note that, in practice, the complexity will be lower than the
worst-case analysis shows because fC�p� is a function that is
first decreasing and then increasing as C varies. All the

functions fC will not be built and the expected cost will be
p2Copt � p2:5.

The final partitioning corresponding to the function
fCopt�p� � min1�C�p fC�p� is found using the algorithm
in Table 3, which corresponds to tracking (backwards)
the bold entries in Table 1. The unit square is partitioned
into Copt columns. The ith column contains the rectangles
sd�1; . . . ; sd�ki with d � k1 � k2 � . . .� kiÿ1.

Correctness. To prove the optimality of the algorithm, we
show that the optimum solution can be achieved with a
well-ordered partitioning. A partitioning is said to be well
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TABLE 1

Table Containing the Values of the Couples fC�q�=r
where fC�q� � min

r2�Cÿ1;qÿ1�

�
1� ÿPr<i�q si

�� �q ÿ r� � fCÿ1�r�
�

and r is

the Value Minimizing the Previous Expression

Fig. 11. Optimal column-based partitioning for the example. Thicker lines correspond to the sum of the half-perimeters. We obtain Ĉ � 5:5.

TABLE 2
Algorithm 1



ordered if for every pair of columns Ci and Cj, either all
the elements of Ci are smaller than (or equal to) all the
elements of Cj, or the other way round. See Fig. 12 for an
illustration.

We start from a given partitioning made up of, say,
C columns of size k1 � k2 � . . . � kC. Suppose, for conve-
nience, that s1 � s2 � . . . � sp ; � is a permutation of
f1; 2; . . . ; pg such that the ith column of this partitioning
contains the rectangles s��d�1�; . . . ; s��d�ki� with

d � k1 � k2 � . . .� kiÿ1:

Now, recall that the cost of column Ci is 1� ki
Pd�kiÿ1

j�d�1 s��j�.
Hence, the total ªperimeterº is

C�k1s��1� � k1s��2� � . . .� k1s��k1�
�k2s��k1�1� � k2s��k1�2� � . . .� k2s��k1�k2�
� . . .

�kCs��k1�...�kCÿ1�1� � kCs��k1�...�kCÿ1�2� � . . .� kCs��k1�...�kC�:

Since k1 � k2 � . . . � kC, this expression is minimized for
� � Identity, which corresponds to a ªwell-orderedº parti-
tioning.2 Hence, for each partitioning, there exists a
corresponding better or equivalent partitioning that is
ªwell ordered.º This achieves the proof of correctness.

5.2 Experimental Comparison with
the Lower Bound

As shown in Section 3.3, a lower bound for the sum Ĉ of the
half-perimeters is twice the sum of the square roots of the
areas LB � 2

Pp
i�1

����
si
p

. Of course, this bound cannot always
be met. Consider an instance of MM-OPT(s) with only two
processors, s1 � 1ÿ � and s2 � �, where � > 0 is an
arbitrarily small number. Partitioning into two rectangles
requires to draw a line of length 1, hence, Ĉ � 3. However,
LB � 2� �����������1ÿ �p � ��

�
p � > 2 can be arbitrarily close to 2.

In this section, we experimentally compare, using a large
number of random tests, the value Ĉ given by our
partitioning against the absolute lower bound LB.

. Because the ratio between the processor speeds is
not likely to be very large in practice (who would
use a machine 100 times slower than another one?),3

we assume that a uniform repartition of the
processor speeds might be significant. The goal of
Fig. 13 is to show that the column based partitioning
is efficient in most reasonable situations. We
randomly generate a large number of set of speeds

with a uniform repartition. We represent two curves
for a number of processors varying from 1 to 40. The
first curve corresponds to the mean value of the ratio
Ĉ
LB while the second curve gives the minimum values
of this ratio. We see that on average, the optimal
column-based tiling given by our algorithm gives a
solution that is ªalmostº optimal, so that we can be
satisfied with the results for all practical purposes.

. Next, we adopt a theoretical point of view and
concentrate on worst cases. A uniform repartition is
no longer acceptable with such a purpose. Hence, in
Fig. 14, we generate a large number of sets of speeds
using an exponential repartition. Because the ratio
r � max si

min si
plays an important role in the cost of the

worst case, we display the tests for different values
of r varying from 2 to 1.

5.3 Theoretical Comparison with the Lower Bound

The column-based heuristic appears to be quite satisfactory

in practice. In this section, we prove it is (theoretically) not

far from being optimal, especially when the ratio r between

max si and min si is small. In other words, we are able to

give the following guarantee to the column-based heuristic:
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2. The proof can easily be done by induction on the number of inversions
in the permutation � .

3. In fact, using 100 slower machines in conjunction to a fast one does
make sense in some cases!

TABLE 3
Algorithm 2

Fig. 12. Two partitionings of the same problem instance. The right one is

well ordered while the left one is not.

Fig. 13. For each number of processors (varying from 1 to 40),
2,000,000 values for the si have been randomly generated. For each
case, we compute the ratio of the sum Ĉ of the half-perimeters of our
partitioning over the absolute lower bound LB. The average and
minimum values of this ratio are reported in the two curves.



Proposition 1. Let r � max si
min si

and let Ĉ denote the sum of the

half-perimeters of the rectangles obtained with the optimal

column-based partitioning. Then,

Ĉ

2
P ����

si
p � ���

r
p

1� 1���
p
p

� �
:

Proof. Consider a column based partitioning with

C � d ���
r
p X ����

si
p e

columns. Rectangles are evenly distributed amongst

columns so that the numbers of rectangles in each

column is either bpCc or dpCe. Letting Ĉ� denote the sum of

the half-perimeters of the rectangles obtained with this

column partitioning, we have:

Ĉ� �d ���
r
p X ����

si
p e � p

d ���
r
p P ����

si
p e

� �
�2� ���

r
p X ����

si
p � p���

r
p P ����

si
p :

Thus,

Ĉ�

2
P ����

si
p � 1P ����

si
p �

���
r
p
2
� p

2
���
r
p P ����

si
p :

Moreover, X
si � 1�)pmax si � 1

�)min si � 1

pr

and, thus,

X ����
si
p � p

�������������
min si

p
�

���
p

r

r
:

Therefore,

Ĉ�

2
P ����

si
p �

���
r

p

r
�

���
r
p
2
�

���
r
p
2

� ���
r
p �1� 1���

p
p �:

Since bC corresponds to the best solution among all
possible column-based partitioning, Ĉ satisfies to
Ĉ � Ĉ�, which concludes the proof. tu

If r � 1, i.e., all the processors have the same speed, the

column-based partitioning is asymptotically optimal. On

the other hand, if r is large, i.e., one processor is much faster

than another, the bound is very pessimistic. In [4], we have

considered a recursive heuristic, very complicated to

describe, but for which a better approximation bound is

provided. For all practical purposes, we believe that the

column-based algorithm is the best trade-off between

efficiency and simplicity.

5.4 Looking for a Better Solution

As already said, this section is mostly theoretical. We

investigate new algorithms for the sake of improving the

column-based solution, which is very satisfactory except in

some ªdegenerateº artificial cases. To illustrate the

point, consider the following partitioning problem into

p � 6 rectangles of respective areas

�0:2488; 0:2488; 0:2488; 0:2488; 0:0024; 0:0024�
(the relative cycle-times of the six processors are approxi-

mately �1; 1; 1; 1; 100; 100�). The absolute lower-bound for

this example is LB � 2
P6

i�1

����
si
p � 4:19. Consider the

following solutions, which have different degrees of

freedom:

1. The partitioning is constrained to be a column-based
partitioning. Using the column-based algorithm, we
obtain the solution depicted in Fig. 15.

2. The partitioning is constrained to be recursively
defined as follows: The unit square is divided into
several columns. Each column is in turn divided into
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Fig. 14. For each number of processors (varying from 2 to 40) and for
different values of r�max si

min si
, 10,000 values for the si have been randomly

generated using an exponential distribution. For each case, we compute
the ratio of the sum Ĉ of the half-perimeters of our partitioning over the
absolute lower bound LB. The maximum values of this ratio are reported
in the four curves.

Fig. 15. Optimal column-based partitioning. The sum of the half-

perimeters is 5.



several rows and so on. Of course, there are multiple
choices for the number of columns and for the
number of rows within each column and so on. In
Fig. 16, we give an example with two columns
divided into two and three rows, respectively.
Finally, the last row of the second column is split
into two rectangles. In the example, this partitioning
is optimal amongst recursively defined partitionings
(proof by exhaustive case analysis).

3. The partitioning is only constrained to be made out
of rectangles. An example is given in Fig. 17. Note
that this solution is neither column-based nor
recursively defined. This partitioning is optimal
among all rectangle-based partitionings.

Clearly, the less constrained the partitioning, the better

the solution. Note that the improvement over the column-

based partitioning can be important, roughly 16 percent for

the rectangle-based solution. Again, in a realistic experi-

ment, we would never use a processor in conjunction with

another one which is 100 times faster! Also, with a library

designer's perspective, a simple column-based partitioning

has many advantages regarding code generation issues.

6 MPI EXPERIMENTS

To provide a preliminary experimental validation of our
approach, we have implemented the heterogeneous
MM algorithm using the MPI library [35]. In this section,
we report a few experiments performed on a HNOW and
on a (very small!) collection of two clusters.

6.1 Using a Single HNOW to Compare Different
Partitions

In this section, we use a cluster of seven heterogeneous

machines of relative cycle-times equal to �1; 1; 1
5 ;

1
5 ;

1
9 ;

1
9 ;

1
20�.

These seven machines are SUN workstations of our

laboratory, linked by a simple Ethernet network. We

compare the partition given by the optimal column-based

heuristic (see Fig. 18) with four different partitions of the

same matrices which are shown in Fig. 19.
The measures were realized for matrices of size n � 640

using a blocksize r � 32 and for matrices of size n � 1280
using two blocksize values, r � 32 and r � 64. Table 4 gives
the average time to compute the MM product for the five
partitions. In the case of a matrix of size n � 1280, we see
that the time is slightly smaller if we increase the blocksize
because there are fewer communications. We check that the
execution time does grow with the cost of the partition,
which shows that our modeling of the communication costs
is very reasonable and is in good adequation with these
experiments. Note that (for fairness) we have not compared
the results with the homogeneous block-cyclic distribution.
Because the processor speeds are very different, the
performances would have been disastrous.

6.2 Experimenting with Two Clusters

In this section, the target platform is made up of two
clusters. The first cluster is a pile of Pentium Pros and the
second cluster is a pile of Power PCs. The interconnection
network within both clusters is a Myrinet network. There is
also a Myrinet link between the two clusters. Hence, all
communications are very fast. In the experiments, either we
allocate to each cluster a fraction of the matrix which is
proportional to its computing power, according to Section 3.1,
or we give the same fraction to each processor, as in the
homogeneous case. When we use the load-balancing strat-
egy, we use each cluster as a farm of processors and equally
distribute the workload inside the farm.
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Fig. 16. Optimal recursively defined partitioning. The sum of the half-

perimeters is 4:51.

Fig. 17. Optimal rectangle-based partitioning. The sum of the half-

perimeters is 4:19.

Fig. 18. Partition given by the column-based heuristic (Cost Ĉ � 5:1).



We use two configurations, one with five processors in
the first cluster and three in the second one and the other
one with only four processors in the first cluster and
two processors in the second one. In both cases, the gain
of the load-balancing heuristic over the homogeneous
block-cyclic distribution (a meaningful comparison here
because the processor speeds are rather similar) is very
important (see Fig. 20).

7 CONCLUSION

In this paper, we have dealt with the implementation of
MM algorithms on heterogeneous platforms. The bad news
is that minimizing the total communication volume is
NP-complete. The good news is that efficient polynomial
heuristics can be provided, as we have shown, both
theoretically (by guaranteeing their performance) and
through simulations and MPI experiments. At the very

least, the MPI experiments fully demonstrate the impor-
tance of using a good load-balancing strategy.

Future work could aim at testing a larger collection of
clusters with slower intercluster links. The Globus
system [18] provides a perfect framework for such
experiments because hardware resources are used in a
dedicated mode through a remote batch system so that
static load-balancing strategies such as the one presented
in this paper have all their significance.

The MM algorithm is the prototype of tightly-coupled
kernels with a high spatial locality that need to be
implemented efficiently on distributed and heterogeneous
platforms. We view it as a perfect testbed before
experimenting more challenging computational problems
on the grid.

It is not clear which is the good level to program
metacomputing platforms. Data-parallelism seems unrea-
listic due to the strong heterogeneity. Explicit message
passing is too low-level. Despite their many advantages,
object-oriented approaches (e.g., [24], [2]) still request the
user to have a deep knowledge and understanding of both
its application behavior and the underlying hardware and
network. Remote computing systems such as NetSolve [11]
face severe limitations to efficiently load-balance the work
to processors. For the inexperienced user, relying on
specialized but highly-tuned libraries of all kinds
(communication, scheduling, application-dependent data
decompositions) may prove a good trade-off until the
programming environments evolve into high-level general-
purpose yet efficient solutions.
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Fig. 19. Four different column-based partitions.

TABLE 4
Average Times for a Matrix Multiplication



APPENDIX A

PROOF OF THEOREM 1

Definition 2 MM-DEC(s,K). Given p real positive numbers

s1; . . . ; sp s.t.
Pp

i�1 si � 1 and a positive real bound K, is

there a partition of the unit square into p rectangles Ri of area

si and of size hi � vi so that
Pp

i�1�hi � vi� � K?

Theorem 1. MM-DEC(s,K) is NP-complete.

Proof. Obviously, MM-DEC(s,K) 2 NP. In this section, we

prove the following lemma. tu
Lemma 2. 2P ÿ eq �P ASP �P MM ÿDEC, where 2P-eq

and ASP are defined as follows:

Definition 3. 2-Partition-Equal (2P-eq). Given a set of p

integers A � fa1; . . . ; apg, is there a partition of f1; . . . ; pg
into two subsets A1 and A2 such thatX

i2A1

ai �
X
i2A2

ai and card�A1� � card�A2� ?

Definition 4. All-Squares-Partition (ASP). Given a set

L � fl1; . . . ; lpg
of p real positive numbers such that

Pp
i�1 l

2
i � 1, is there a

partition of the unit square into p squares Si of width li?

Since 2P-eq is known to be NP-Complete [21], Lemma 2

will complete the proof of Theorem 1.

A.1 Reduction: ASP �P MM-DEC(s,K)

We start by proving the easy part of Lemma 2, i.e.,

ASP �P MMÿDEC�s;K�. Let L � fl1; . . . ; lpg be a set of p

real positive numbers s.t.
Pp

i�1 l
2
i � 1. Solving ASP is

equivalent to solving MM-DEC(s,K) with

K �Pp
i�1 2li

8i; si � l2i

�
and, therefore, ASP �P MMÿDEC:

A.2 Reduction: 2P-eq �P ASP

In this section, we consider an arbitrary instance of the
2-Partition-Equal problem, i.e., a set A � fa1; . . . ; ang of
n integers. We assume that n � 400 without loss of
generality. We have to polynomially transform this instance
into an instance of the ASP problem which has a solution iff
the original instance of 2-Partition-Equal has one solution.

Define fb1; . . . ; bng as

8i; bi � 2�ai � 2nmax
k
ak�:

Let N � maxk bk. Then, bi >
2N
3 and bi is even. Moreover, if

we let M � 4N
3 and

S �
P

i bi
2

;

then S � 100M. We also have M
2 < bi � 3M

4 for all i. The

reason for introducing M is that we will tile the n rectangles

Ri of size bi � �M ÿ bi� into a minimal number of squares

KS�i�, following the procedure of Kenyon [27]. Here, KS

stands for Kenyon's squares. To get a logarithmic number of

squares KS�i�, the rectangle Ri must not be too elongated,

which is ensured by the inequality M ÿ bi < bi � 3�M ÿ bi�.
We obtain from [27] that KS�i� � 3� C log bi, where C is a

universal constant. In the following, for 1 � i � n, we let

w�bi; j�, 1 � j � KS�i�, denote the widths of the KS�i�
squares obtained by the procedure in [27] to tile the

rectangle Ri of size bi � �M ÿ bi�.
We build the following instance L of the ASP problem

(ASP(b1; . . . ; bn)): Is there a partition of the unit square into

14� n�Pn
i�1 KS�i� squares of respective width

�13S�11M�
l ��1�; �7S�6M�

l ��3�;
�3S�2M�

l ��2�; �2S�2M�
l ��4�;

�4S�3M�
l ��2�; �3S�3M�

l ��2�;
bi
l �8i�; w�bi;j�

l �8i; 8j � KS�i��;
where l � �20S � 17M�?
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Fig. 20. MPI experiments with two clusters.



For convenience, in what follows, we consider the

(equivalent) scaled problem: Is there a partition of the

�20S � 17M� � �20S � 17M� square into 14� n�Pi KS�i�
squares of respective width

13S � 11M ��1�;
7S � 6M ��3�;
4S � 3M ��2�;
3S � 3M ��2�;
3S � 2M ��2�;
2S � 2M ��4�;
bi �8i; 1 � i � n�;
w�bi; j� �8i; 1 � i � n; 8j; 1 � j � KS�i�� ?

8>>>>>>>>>><>>>>>>>>>>:
From now on, Ax;y denotes a square of width �xS � yM�,

Abi denotes a square of width bi, and Abi;j
denotes a

Kenyon's square of width w�bi; j�. In what follows, we

prove that such a partition is necessarily the one depicted in

Fig. 21, where the two small M � S rectangle areas are

shown by arrows in Fig. 21 and fully described in Fig. 22.
The intuitive idea of the proof is the following: The large
squares are used to prevent the two smallM � S rectangular
zones to be neighbors. Hence, these areas must be filled
separately by the remaining squares, namely the squares
Abi and the Kenyon's squares. This will be possible iff the bi
can be partitioned into two subsets of same sum, which
in turn will be possible iff the ai can be partitioned into
two subsets of same sum and same cardinal. The
Kenyon's squares are introduced to fill the holes in the
two rectangular zones and to obtain a true tiling of the
whole area.

A.2.1 Position of the Largest Four Squares

The general position of the largest four squares is shown in

Fig. 23a. Obviously, if we can tile the remaining area with

the remaining squares, this will also be the case for the

configuration shown in Fig. 23b. Therefore, from now on,
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Fig. 21. General position of the squares.

Fig. 22. Zoom on the M � S rectangular zones.



we assume (without loss of generality) that the largest four

rectangles are arranged as shown in Fig. 23b.

A.2.2 Tiling the Remaining Surface

Now, we discuss the tiling of the remaining surface (the

white area of Fig. 23b). We give all dimensions in Fig. 24).

We proceed by an exhaustive case analysis:

. First case: We start by tiling the 6S � 5M basis with a
4S � 3M square.
The different situations to consider are shown in

Fig. 25, Fig. 26, and Fig. 27, respectively. The

only correct configuration is the one depicted in

Fig. 27.
. Second case: We start by tiling the 6S � 5M basis

with a 3S � 3M square.
The different situations to consider are shown in

Fig. 28, Fig. 29, and Fig. 30. The only correct

configuration is the one depicted in Fig. 30.
. Moreover, any solution requires either a 4S � 3M

square or a 3S � 3M square to be on the 6S � 5M basis.

Therefore, Fig. 27 and Fig. 30 describe the only two

possibilities to start the tiling of the remaining surface

described in Fig. 24. By symmetry, we can complete these

partial tilings into the solution described in Fig. 31 (other

equivalent solutions are also possible).

A.2.3 Partial Conclusion

We have proved that any tiling of the remaining surface

(see Fig. 24) is similar to the one depicted in Fig. 31. After

using all the large rectangles Ax;y, there remains two

nonadjacent rectangle areas of area M � S to be tiled.

Therefore, we can solve the ASP problem iff we can tile

these two areas with the remaining squares, i.e., n squares

Abi of width bi and
Pn

i�1 KS�i� Kenyon's squares of width

w�bi; j�. Since mini bi >
M
2 , we cannot superpose two

rectangles Abi and Abj , i 6� j, on top of each other. SinceP
i bi � 2S, one can easily check that both M � S rectangle

areas have to be tiled as depicted in Fig. 22. Necessarily the

Abi squares of size bi � bi have to be aligned. Therefore, for

each rectangle the sum of the bi is equal to S. Consequently,

our instance L of the ASP problem has a solution iff there

exists a partition of fb1; . . . ; bng into two subsets of same

sum S.

A.2.4 Final Reduction

To complete the reduction, we have to show that there

exists a partition of fb1; . . . ; bng into two subsets of same

sum iff the original instance A of the 2-Partition-Equal

problem has a solution.
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Fig. 23. General position of the largest four squares.

Fig. 24. Remaining surface. Fig. 25. Some impossible configurations with a 4S � 3M square.



First, suppose that the original instance of the 2-Partition-

Equal problem has a solution, i.e. there exists a partition of

f1; . . . ; ng into two subsets A1 and A2 satisfyingX
i2A1

ai �
X
i2A2

ai and card �A1� � card �A2�:

Recall that bi � 2�ai � 2n MAX�, where MAX � maxi ai.
Then, X

i2A1

bi �
X
i2A1

ai � 2n MAX card �A1�

�
X
i2A2

ai � 2n MAX card �A2�

�
X
i2A2

bi:

Therefore, there exists a suitable partition of fb1; . . . ; bng.
Conversely, suppose that there exists a partition of

f1; . . . ; pg into two subsets A1 and A2 such thatX
i2A1

bi �
X
i2A2

bi:

Thus, X
i2A1

ai �
X
i2A1

bi ÿ 2n MAX card �A1�X
i2A2

ai �
X
i2A2

bi ÿ 2n MAX card �A2�X
i2A1

ai ÿ
X
i2A2

ai � 2n MAX card �A2 ÿA1�:
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Fig. 26. Some impossible configurations with a 4S � 3M square.

Fig. 27. The only correct configuration with a 4S � 3M square.

Fig. 28. Some impossible configurations with a 3S � 3M square.

Fig. 29. Some impossible configurations with a 3S � 3M square.



Moreover, sinceX
ai2A1

ai ÿ
X
ai2A2

ai � n MAX;

we obtain

card�A1� � card �A2� and
X
i2A1

ai �
X
i2A2

ai:

Therefore, the original instance of the 2-Partition-Equal

problem has a solution.

A.3 Conciseness of the Transformation

The last element of the proof is the conciseness of the

transformation. We have to proof that our instance of the

ASP problem has a size polynomial in the size of the

original instance of the 2-Partition-Equal problem.

Lemma 3. Define MAX � maxi ai as above and let c�A� and

c�L� denote respectively the encoding of the data A and L.

Then,

Length�c�L�� � O�Length�c�A��3�:

Proof. We write f�x� � O�g�x�� if there exists a constant c

such that f�x� � c:g�x� for x large enough. Similarly, we

write f�x� � 
�g�x�� if there exists a constant c such that

g�x� � c:f�x� for x large enough.
For the encoding of the initial instance A, we have

Length�c�A�� � 
�Pi log ai�. SinceX
i

log ai � log MAX� �nÿ 1� log�min
i
ai�

� �nÿ 1� log 2� log MAX;

we derive that

Length�c�A�� � 
�n� log MAX�:
For the encoding of the ASP instance L, we have

log bi � log��4n� 2� MAX� � O�logn� log MAX�;
logM � O�logn� log MAX�;
logS � O�n�logn� log MAX�;P

i KS�i� log bi �
P

i�3� C log bi� log bi
� O�n�logn� log MAX�2�;

8>>>><>>>>:
where C is the universal constant given by Kenyon [27].

Therefore,

Length�c�L�� � O�Length�c�A��3�:
tu

This achieves the proof of the NP-completeness of

ASP and, therefore, the proof of the NP-completeness of

MM-DEC. tu
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