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Scheduling Divisible Loads on Star and Tree
Networks: Results and Open Problems
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Abstract—Many applications in scientific and engineering domains are structured as large numbers of independent tasks with low
granularity. These applications are thus amenable to straightforward parallelization, typically in master-worker fashion, provided that
efficient scheduling strategies are available. Such applications have been called divisible loads because a scheduler may divide the
computation among worker processes arbitrarily, both in terms of number of tasks and of task sizes. Divisible load scheduling has been
an active area of research for the last 15 years. A vast literature offers results and scheduling algorithms for various models of the
underlying distributed computing platform. Broad surveys are available that report on accomplishments in the field. By contrast, in this
paper, we propose a unified theoretical perspective that synthesizes previously published results, several novel results, and open
questions, in a view to foster novel divisible load scheduling research. Specifically, we discuss both one-round and multiround
algorithms, and we restrict our scope to the popular star and tree network topologies, which we study with both linear and affine cost

models for communication and computation.

Index Terms—Parallel computing, scheduling, divisible load.

1 INTRODUCTION

SCHEDULING the tasks of a parallel application on the
resources of a distributed computing platform efficiently
is critical for achieving high performance. The scheduling
problem has been studied for a variety of application
models, such as the well-known directed acyclic task graph
model for which many scheduling heuristics have been
developed [1]. Another popular application model is that of
independent tasks with no task synchronizations and no
intertask communications. Applications conforming to this
admittedly simple model arise in most fields of science and
engineering. A possible model for independent tasks is one
for which the number of tasks and the task sizes, i.e., their
computational costs, are set in advance. In this case, the
scheduling problem is akin to bin-packing and a number of
heuristics have been proposed in the literature. Another
flavor of the independent tasks model is one in which the
number of tasks and the task sizes can be chosen arbitrarily.
This corresponds to the case when the application consists
of an amount of computation, or load, that can be divided
into any number of independent pieces. This corresponds to
a perfectly parallel job: Any subtask can itself be processed
in parallel, and on any number of workers. In practice, this

o O. Beaumont is with LaBRI, Domaine Universitaire, 351, cours de la
Libération, F-33405 Talence, Cedex, France.

E-mail Olivier.Beaumont@labri.fr.

e H. Casanova and Y. Yang are with the Department of Computer Science
and Engineering, and the San Diego Supercomputer Center, 9500 Gilman
Drive, Mail Stop 0114, University of California, San Diego, La Jolla, CA
92093-0114. E-mail: {casanova, yangyangl@cs.ucsd.edu.

o A. Legrand and Y. Robert are with LIP, UMR CNRS-ENS Lyon-INRIA
5668, Ecole Normale Supérieure de Lyon, F-69364 Lyon Cedex 07, France.
E-mail: {Yves.Robert, Arnaud.Legrand}@ens-lyon.fr.

Manuscript received 4 Sept. 2003; revised 7 Mar. 2004; accepted 14 July 2004;
published online 20 Jan. 2005.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0153-0903.

1045-9219/05/$20.00 © 2005 IEEE

model is an approximation of an application that consists of
large numbers of identical, low-granularity computations.
This divisible load model has been widely studied in the last
several years, and Divisible Load Theory (DLT) has been
popularized by the landmark book written in 1996 by
Bharadwaj et al. [2].

DLT provides a practical framework for the mapping on
independent tasks onto heterogeneous platforms, and has
been applied to a large spectrum of scientific problems,
including linear algebra [3], image processing [4], [5], video
and multimedia broadcasting [6], [7], database searching
[8], [9], and the processing of large distributed files [10].
These applications are amenable to the simple master-
worker programming model and can thus be easily
implemented and deployed on computing platforms ran-
ging from small commodity clusters to computational grids
[11]. From a theoretical standpoint, the success of the
divisible load model is mostly due to its analytical
tractability. Optimal algorithms and closed-form formulas
exist for the simplest instances of the divisible load
problem. This is in sharp contrast with the theory of task
graph scheduling, which abounds in NP-completeness
theorems and in inapproximability results.

There exists a vast literature on DLT. In addition to the
landmark book [2], two introductory surveys have been
published recently [12], [13]. Furthermore, a special issue of
the Cluster Computing journal is entirely devoted to divisible
load scheduling [14], and a Web page collecting DLT-related
papers is maintained [15]. Consequently, the goal of this
paper is not to present yet another survey of DLT theory and
its various applications. Instead, we focus on relevant
theoretical aspects: We aim at synthesizing some important
results for realistic platform models. We give a new
presentation of several previously published results, and
we add a number of new contributions. The material in this
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Fig. 1. Heterogeneous star graph with the linear cost model.

paper provides the level of detail and, more importantly, the
unifying perspective that are necessary for fostering new
research in the field.

In this paper, we limit our discussion to star-shaped and
tree-shaped logical network topologies because they often
represent the solution of choice to implement master-
worker computations. Note that the star network encom-
passes the case of a bus, which is a homogeneous star
network. We consider two types of model, for communica-
tion and computation: linear or affine in the data size. Our
major results include several optimality results in the case
where each processor receives a single message (one-round
strategies). We also provide new analytical formulations
and performance characterizations in the more general case
where each processor receives its load divided into several
submessages (multiround strategies).

The extended version of this paper [16] reviews works
that study other network topologies. It also surveys
constant-cost models. Numerous extensions to the original
DLT framework have been proposed recently. Release times
and buffer-size capacities are taken into account in [17],
multiple applications competing for resources are dealt
with in [18], and extensions to grid platforms are
considered in [19], [20]. In contrast, we limit ourselves to
the basic case of a single load to be distributed on a star-
shaped or tree-shaped platform.

The rest of this paper is organized as follows: In Section 2,
we detail our platform and cost models. We also introduce the
algorithmic techniques that have been proposed to schedule
divisible loads: one-round and multiround algorithms. One-
round algorithms are described in detail in Section 3 and
multiround algorithms in Section 4. Finally, we conclude in
Section 5.

2 FRAMEWORK

2.1 Target Architectures and Cost Models

We consider either star-graphs or tree-graphs, and either
linear or affine costs, which leads to four different platform
combinations.

As illustrated in Fig. 1, a star network S = { Py, P, P», . . .,
P,}is composed of a master Py and of p workers P;,1 < i < p.
There is a communication link from the master P, to each
worker F,. In the linear cost model, each worker P, has a
(relative) computing power w,: It takes X.w, time units to
execute X units of load on worker P,. Similarly, it takes X.g,
time unites to send X units of load from P, to P,. Without loss
of generality, we assume that the master has no processing

Fig. 2. Heterogeneous tree graph.

capability (otherwise, add a fictitious extra worker paying no
communication cost to simulate computation at the master).

In the affine cost model, a latency is added to computa-
tion and communication costs: It takes W, + X .w, time units
to execute X units of load on worker P, and G, + X.g, time
units to send X units of load from P, to F,. It is
acknowledged that these latencies make the model more
realistic.

For communications, the one-port model is used: The
master can only communicate with a single worker at a
given time-step. We assume that communications can
overlap computations on the workers: A worker can
compute a load fraction while receiving the data necessary
for the execution of the next load fraction. This corresponds
to workers equipped with a front end as in [2]. A bus network is
a star network such that all communication links have the
same characteristics: g; = g and G; = G for each worker P,
1< <p.

Essentially, the same one-port model, with overlap of
communication with computation, is used for tree-graph
networks. A tree-graph 7 = {P), P1, P»,..., P,} (see Fig. 2)
simply is an arborescence rooted at the master 5. We still
call the other resources workers, even though nonleaf
workers have other workers (their children in the tree) to
which they can delegate work. In this model, it is assumed
that a worker in the tree can simultaneously perform some
computation, receive data from its parent, and commu-
nicate to at most one of its children (sending previously
received data).

2.2 Algorithmic Strategies: One-Round versus
Multiround

We denote by Wi, the total load to be executed. The key
assumption of DLT is that this load is perfectly divisible
into an arbitrary number of pieces, or chunks. The master
can distribute the chunks to the workers in a single round
(also called “installment” in [2]), so that there is a single
communication between the master and each worker. The
problem is to determine the size of these chunks and the
order in which they are sent to the workers.

We review one-round algorithms in Section 3. For large
loads, the single round approach is not efficient due to the
idle time incurred by the last workers to receive chunks. To
reduce the makespan, ie., the total execution time, the
master can send chunks to the workers in multiple rounds
so that communication is pipelined and overlapped with
computation. Additional questions in this case are: “How
many rounds should be scheduled?” and “What are the best
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Fig. 3. Pattern of a solution for dispatching a divisible load, using a star
network and the linear cost model. All workers complete execution at the
same time-step 7.

chunk sizes at each round?” We discuss multiround
algorithms in Section 4.

In fact, we point out that there is no formal definition of a
round, which intuitively is a sequence of communications
from the master to different workers. The situation is clear
for one-round algorithms, formally defined as computa-
tions where each participating worker receives a single
message. This is not so clear for multiround algorithms,
which we define by contraposition: There is some worker
that receives at least two messages. However, from the
multiround denomination, we expect some periodicity, i.e.,
some regular pattern reproduced repeatedly, in the se-
quence of communications emitted by the master. All
published multiround algorithms exhibit such a regular
pattern.

3 ONE-ROUND ALGORITHMS

For one-round algorithms, the first problem is to determine
in which order the chunks should be sent to the different
workers (or, equivalently, to sort the workers), given that
the master can perform only one communication at a time.
Once the communication order has been determined, the
second problem is to decide how much work should be
allocated to each worker P;: Each P, receives «; units of
load, where >* ;o = Wioa. The final objective is to
minimize the makespan, i.e., the total execution time.

3.1 Star Network and Linear Cost Model

This is the simplest platform combination, denoted as STAR-
LINEAR. Let o; denote the number of units of load sent to
worker P, such that >7 ; o; = Wi Fig. 3 depicts the
execution, where T; denotes idle time of P;, i.e., the time
elapsed before P, begins its processing. The goal is to
minimize the total execution time, Ty = max;<;<,(T; + a;w;),
according to the linear model defined in Section 2. In Fig. 3, all
the workers participate in the computation, and they all finish
computing at the same time (i.e., T} + oyw; = T, Vi). Thisisa
general result.

Proposition 1. In any optimal solution of the STARLINEAR
problem, all workers participate in the computation, and they
all finish computing simultaneously.

Note that Proposition 1 has been proven for the case of a
bus in [2]. To the best of our knowledge, this is a new result
for the case of a heterogeneous star network. Furthermore,
in the case of a bus, any load distribution order is optimal
[2], but this property does not extend to the heterogeneous

case (for which the optimal ordering will be characterized
in Proposition 2 below).

Proof. We first prove that in an optimal solution all workers
participate to the computation. Then, we prove that in
any optimal solution, all workers finish computing
simultaneously. 0

Lemma 1. In any optimal solution, all workers participate in the
computation.

Proof. Consider an optimal solution: up to a renumbering of
the processors, assume that the ordering is Py, P», ..., P,.
Suppose that at least one worker is kept fully idle. In this
case, at least one of the «;, 1 <i < p, is zero. Let us
denote by £ the largest index such that a;, = 0.

Case k < p. Consider the solution of STARLINEAR,
where we add P, at the end of the initial solution (hence,
we use the ordering Pi,...,Pi1, Pit1,..., 5, Py). By
construction, «, # 0, so that the communication medium
is not used during at least the last a,w, time units.
Therefore, it would be possible to process at least ;%72 >
0 additional units of load with worker P, which
contradicts the assumption that the original solution
was optimal: P, does more work than in the original
solution where it was kept idle, and all the other
processors execute the same amount of load units.

Case k=p. We modify the optimal solution of
STARLINEAR by giving some work to P, without
increasing the execution time. Let ¥’ be the largest index
such that ap # 0. By construction, the communication
medium is not used during at least the last ajpwy >0
time units. Thus, as previously, it would be possible to
process at least 727 > 0 additional units of load with
worker P,, which leads to a similar contradiction.

Therefore, in any optimal solution, all workers

participate in the computation. O

It is worth pointing out that the above property does not
hold true if we consider solutions in which the commu-
nication ordering is fixed a priori. For instance, consider a
platform comprising two workers: P, (with ¢; =4 and
w; = 1) and P, (with go = 1 and ws = 1). If the first chunk
has to be sent to P, and the second chunk to P, the optimal
number of units of load that can be processed within 10 time
units is 5, and P, is kept fully idle in this solution. On the
other hand, if the communication ordering is not fixed, then
six units of load can be performed within 10 time units (five
units of load are sent to P, and then 1 to P;). In the optimal
solution, both workers perform some computation, and
both workers finish computing at the same time, which is
stated in the following lemma.

Lemma 2. In the optimal schedule, all workers finish computing
simultaneously.

Proof. Consider an optimal solution. All the ;s have strictly
positive values (Lemma 1). Consider the following linear
program:

Maximize Z Bi,

subject to
{ LB(i) Vi, 5 >0
UB(i) Vi, > Bkgr + Biwi <T.
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The a;s satisfy the set of constraints above, and from any
set of ;s satisfying the set of inequalities, we can build a
valid solution of the STARLINEAR problem that process
exactly " §; units of load. Therefore, if we denote by
(br,-..,0,) an optimal solution of the linear program,
then Zﬁl = ZO[Z'.

It is known that one of the extremal solutions S; of the
linear program is one of the convex polyhedron P
induced by the inequalities [21, chapter 11]. This means
that in the solution S;, there are at least p inequalities
among the 2p equalities. Since we know that for any
optimal solution of the STARLINEAR problem, all the ;s
are strictly positive (Lemma 1), then this vertex is the
solution of the following (full rank) linear system

Vi, > Brgr + Bawi =T
k=1

Thus, we derive that there is an optimal solution where
all workers finish their work at the same time.

Let us denote by S = (au,...,a,) another optimal
solution, with §; #S,. As already pointed out, S
belongs to the polyhedron P. Now, consider the
following function f:

f R — R"
e o~ Si+z(S—-8).

By construction, we know that )" 5; = )" ¢;. Thus, with
the notation f(x) = (1 (x),...,1(x)):

Vi, v (z) = B + x(a; — ;)

and, therefore,

vz, Z%(l) = Zﬂz = Zaz-

Therefore, all the points f(z) that belong to P are
extremal solutions of the linear program.

Since P is a convex polyhedron and both S; and S
belong to P, then V0 < z <1, f(z) € P.Let us denote by
x( the largest value of = > 1 such that f(z) still belongs to
P: At least one constraint of the linear program is an
equality in f(z¢), and this constraint is not satisfied for
x > xp. Could this constraint be one of the UB(i)s? The
answer is no because otherwise this constraint would be
an equality along the whole line (S, f(z)), and would
remain an equality for x > x,. Hence, the constraint of
interest is one of the LB(¢)s. In other terms, there exists an
index 4 such that 7;(zy) = 0. This is a contradiction since
we have proven that the ;s correspond to an optimal
solution of the STARLINEAR problem. Therefore,
S1 = S,, the optimal solution is unique, and in this
solution, all workers finish computing simultaneously.

Altogether, this concludes the proof of Proposition 1.0

To be able to characterize the optimal solution, there

remains to determine the best ordering for the master P, to
send work to the workers.

Proposition 2. An optimal ordering for the STARLINEAR

problem is obtained by serving the workers in the ordering of
non decreasing link capacities g;.

AG T
A
P, aéA) g2: aéA) o)
(a)
t(B) T
P agB) 91 | aﬁB) wy
P2 aéB)gg a(QB)’wz

Fig. 4. Comparison of the two possible orderings. (a) P, starts before P,.
(b) P, starts before P;.

We give a new, shorter proof of Proposition 2, which
originally appeared in [2, chapter 7], but under the
hypothesis that all workers participate and finish comput-
ing simultaneously. Note that we have shown that this
latter property indeed holds for any optimal schedule.

Proof. The proof is based on the comparison of the amount
of work that is performed by the first two workers, and
then proceeds by induction. To simplify notations,
assume that P; and P have been selected as the first
two workers. There are two possible orderings, as
illustrated in Fig. 4. For each ordering, we determine
the total number of units of load a; + o that are
processed in T' time-units, and the total occupation time,
t, of the communication medium during this time
interval. We denote with upper-script (A) (respectively,
(B)) all the quantities related to the first (respectively,
second) ordering.

Let us first determine the different quantities oz(lA) ,

aéA>, and ¢4 for the upper ordering in Fig. 4:

e From the equality agA) (g1 +w1) =T, we get:

(4) T
O[l B
g1 + wy

(1)

e Using the equality agA) g1+ a;A) (g2 +we) =T, we

obtain (from (1)):
(4) T Tg

ay = — . 2
2 g2 +wr (g1 4 wi)(g2 + w2) @)

Therefore, the overall number of processed units of
load is equal to (by (1) and (2)):

T T T
+agt = + - - 3)
g tw  gtws (g1 +wi)(ge +ws)

o

and the overall occupation time of the network medium

is equal to (using the previous equalities and t*4) =

Vg + iV go):



BEAUMONT ET AL.: SCHEDULING DIVISIBLE LOADS ON STAR AND TREE NETWORKS: RESULTS AND OPEN PROBLEMS 211

Tgy Tg19-

g - oo - .
g +ws (g1 +wi)(g2 +wo)

g +w

(4)

A similar expression can be obtained for scenario (B)
and we derive that:

A, (4 (B) , (B) T(g2 — q1)
o+ — (" +« = , 5
( 1 2 ) ( 1 2 ) (gl+w1)(92+w2) ( )
and
tA =B, (6)

Thanks to these expressions, we know that the occupa-
tion of the communication medium does not depend on
the communication ordering. Therefore, we only need to
consider the number of processed units of load in both
situations. Equation (5) indicates that one should send
chunks to the worker with the smallest g; first: If g» > ¢4,
more work is done in time 7" with the ordering (A) than
with (B).

We now proceed to the general case. Suppose that the
workers are already sorted so that ¢y < g, <...<g,.
Consider an optimal ordering of the communications o,
where chunks are sent successively to Py(1), Py2), - - - Pop)-
Let us assume that there exists an index ¢ such that
o(i) > o(i + 1). Furthermore, let us consider the smallest
such index if multiple ones exist. Consider now the
following ordering;:

Pa(1)7 ceey Pa(ifl)a Po(i+1)a Pa(£)7 Po(i+2)7 s Pa(p)'

Then, Fyuy,..., FBsi-1): Po(iva), - - - Poip)
the same number of units of load, since the exchange

perform exactly

does not affect the overall communication time, but
T(9oi) = Yo(it1))

Go(i+1) FWo(ir1)) (o) FWo(i))

more units of load, where T" denotes the remaining time

» Py(i—1). Therefore, the
initial ordering o is not optimal, which is a contradiction.

together, P,y and P, perform i
after communications to Py, ...

Therefore, index ¢ does not exist, which proves that, in an
optimal ordering, the workers are sorted by nondecreas-
ing values of the g;s. 0
According to Proposition 2, we now reorder the workers

so that g1 < g2 <... < g, The following linear program
aims at computing the optimal distribution of the load:

Minimize T,
subject to

(1) a; >0

(2) Zle o = Wiotal
(3) a1g1 + aqywy < Ty
(4)

1<i<p

(first communication)

4) Y75 ajgj +ajw; < Ty (ith communication).

Theorem 1. The optimal solution for the STARLINEAR problem
is given by the solution of the linear program above.

Proof. Direct consequence of Propositions 1 and 2. Note that
inequalities (3) and (4) will be in fact equalities in the
solution of the linear program, so that we can easily
derive a closed-form expression for 77. 0

We point out that this is linear programming with
rational numbers, hence of polynomial complexity. Finally,
we consider the variant where the master is capable of
processing chunks (with computing power w;) while
communicating to one of its children. It is easy to see that
the master is kept busy at all times (otherwise, more units of
load could be processed). The optimal solution is therefore
given by the following linear program (where ¢; < g» <
... < g, as before):

Minimize T,
subject to
()e; >0
(2) 3P )i = Wil
(3) apwy < Ty
(
(

0<i:<p

(computation of the master)

4) ongr + oquwy < T (first communication)

5) 23:1 ajg; +o;w; < Ty (ith communication).

Closed-form expressions have been derived for the
optimal solution of the STARLINEAR problem, both for
homogeneous and heterogeneous star networks [2]. The
formulation in terms of linear program is useful because it can
be directly extended to deal with tree networks (Section 3.2). It
also serves as the basis for the mixed linear program
formulation in the affine cost model (Section 3.3), and to
derive the asymptotically optimal multiround algorithm
(Section 4.3). Finally, we point out that the first use of linear
programming in the DLT literature appeared in [22].

3.2 Tree Network and Linear Cost Model

All the results in the previous section can be extended to a
tree-shaped network. There is, however, a key difference
with the beginning of Section 3.1: Each worker now is
capable of computing and communicating to one of its
children simultaneously. However, because of the one-
round hypothesis, no overlap can occur with the incoming
communication from the node’s parent.

We use a recursive approach, which replaces any set of
leaves and their parent by a single worker of equivalent
computing power. This idea of collapsing subnets into
equivalent processors originates in [23], [24].

Lemma 3. A single-level tree network with parent Py (with input
link of capacity gy and cycle-time wy) and p children P;, 1 <
i < p (with input link of capacity g; and cycle-time w;), where
g1 < g2 < ... < gy, is equivalent to a single node with same
input link capacity g, and cycle-time w_, = 1/W (see Fig. 5),
where W is the solution to the linear program:

Maximize W,

subject to

Proof. Here, instead of minimizing the time 7' required to
execute load W, we aim at determining the maximum



212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 3, MARCH 2005

Fig. 5. Replacing a single-level tree by an equivalent node.

amount of work W that can be processed in one time-unit.
Obviously, after the end of the incoming communication,
the parent should be constantly computing. We know that
all children 1) participate in the computation and 2) termi-
nate execution at the same time. Finally, the optimal
ordering for the children is given by Proposition 2. This
completes the proof. Note that inequalities (3), (4), and (5)
will be in fact equalities in the solution of the linear
program, so that we can easily derive a closed-form
expression for w_; = 1/W. ]

Lemma 3 provides a constructive way of solving the
problem for a general tree. First, we traverse it from bottom
to top, replacing each single-level tree by the equivalent
node. We do this until there remains a single star. We solve
the problem for the star, using the results of Section 3.1.
Then, we traverse the tree from top to bottom, and undo
each transformation in the reverse ordering. Going back to a
reduced node, we know which amount of time it is
working. Knowing the ordering, we know which amount
of time each of the children is working. If one of these
children is a leaf node, we have computed its load. If it is a
reduced node, we apply the transformation recursively.

Instead of this pair of tree traversals, we could write
down the linear program for the whole tree: When it
receives something, a given node knows exactly what to do:
compute itself all the remaining time, and feed its children
in decreasing bandwidth order. However, the size of the
linear program would grow proportionally to the size of the
tree, hence the recursive solution is to be preferred.

3.3 Star Network and Affine Cost Model

To the best of our knowledge, the complexity of the
STARAFFINE problem is open. The main difficulty arises
from resource selection: contrarily to the linear case where
all workers participate in the optimal solution, it seems
difficult to decide which resources to use when latencies are
introduced. However, the second property proved in
Proposition 1, namely, simultaneous termination, still holds
true.

Proposition 3. In an optimal solution of the STARAFFINE
problem, all participating workers finish computing at the
same time.

Proof. The proof is very similar to the STARLINEAR case.
Details can be found in the extended version [16]. O

Proposition 4. If the load is large enough, then for any optimal
solution 1) all workers participate and 2) chunks must be sent
in the order of nondecreasing link capacities g;.

Proof. Consider a valid solution of the STARAFFINE
problem with time bound T'. Suppose, without loss of
generality, that o) units of load are sent to P, then
Qg2) to Py, ... and, finally, ay;) to Pp, where S =
{P,qy,--., Py} is the set of workers that participate to
the computation. Here, o represents the communication
ordering and is a one-to-one mapping from [1...k] to
[1...p]. Moreover, let nTASK denote the optimal number
of units of load that can be processed using this set of
workers and this ordering.

e Consider the following instance of the STAR-

LINEAR problem, with k workers P! (1) P ()
where Vi, G, =0,W/=0,¢, = g;,w, =w; and
T’ = T. Since all computation and communication
latencies have been taken out, the optimal
TASK processed by this

instance is larger than the number of units of load
nTASK

number of units of load n

processed by the initial platform. From

Theorem 1, the value of nT*5K is given by a

formula
WS = f(S,0) T,

where f(S,0) is either derived from the linear

program, or explicitly given by a closed form

expression in [25]. What matters here is that the

value of n{45K is proportional to 7.

e Consider now the following instance of the STAR-
LINEAR problem, with k workers P! 1)+ , P ()
where Vi, G, =0,W/=0,d;, = g;,w;, = w; and T
=T — 3 .cs(Gi + W;).Clearly, the optimal number
of units of load nJ*5K processed by this instance of

the STARLINEAR problem is lower than n™45K since

it consists in adding all the communication and

computation latencies before the beginning of the
TASK

processing. Moreover, as previously n, *°* is given
by the formula
ny 5 = [(8,0)(T = }_(Gi+ Wi).
€S
Therefore, we have
. , TASK

Hence, when T becomes arbitrarily large, then the
throughput of the platform, ”’1;SI(, becomes arbitrarily
close to f(S,0), i.e., the optimal throughput if there were
no communication and computation latencies. Moreover,
we have proven that if there are no latencies, then f(S, o)
is maximal when S is the set of all the workers, and when

o satisfies

gi > gi=>0o(i) > a(j).

Therefore, when T'is sufficiently large, then all the workers
should be used and the chunks should be sent to workers
in the ordering of nondecreasing link capacities g;. In this
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case, if g1 <... < g, then the following linear system
provides an asymptotically optimal solution

i

Vi, Y (Gr+ graw) + Wi + gaw; = T.
=

This solution is optimal if all g; are different. Determin-
ing the best way to break ties among workers having the
same bandwidth is an open question. 0

In the general case, we do not know whether there exists
a polynomial-time algorithm to solve the STARAFFINE
problem. However, we can provide the solution (with
potentially exponential cost) as follows: We start from the
mixed linear programming formulation of the problem
proposed by Drozdowski [8], and we extend it to include
resource selection. In the following program, y; is a Boolean
variable that equals 1 if P; participates in the solution, and
z;; is a Boolean variable that equals 1 if P; is chosen for the
ith communication from the master:

Minimize T,

subject to

(1) ;>0 1<i<p
@ >0 =W
(3) y;€{0,1} 1<j<p
(4) z:;€{0,1} 1<i,j<p
(5) E; i j=Yj 1<j<p
(6) Z" ;<1 1<i<p
(7) a; <Wy; 1<j<p
(8) D7 o
(Gj+ajgj+Wi+a;w;)<T; (first communication)

-1 p

TS Gt

Zle 7i,j(Gjt0y g+ Witajw;) <Ty
2<i<p (ith communication).

Equation (5) implies that P; is involved in exactly one
communication if y; = 1, and in no communication other-
wise. Equation (6) states that at most one worker is
activated for the ith communication; if Y%, x;; =0, the
ith communication disappears. Equation (7) states that no
work is given to nonparticipating workers (those for which
y; = 0), but is automatically fulfilled by participating ones.
Equation (8) is a particular case of (9), which expresses that
the worker selected for the ith communication (where ¢ = 1
in (8) and i>2 in (9)) must wait for the previous
communications to complete before starting its own
communication and computation, and that all this quantity
is a lower bound of the makespan. Contrarily to the
formulation of Drozdowski [8], this mixed linear program
always has a solution, even if a strict subset of the resources
are participating. We state this result formally.

Proposition 5. The optimal solution for the STARAFFINE
problem is given by the solution of the mixed linear program
above (with potentially exponential cost).

3.4 Tree Network and Affine Cost Model

This is the most difficult platform/model combination, and
very few results are known. However, we point out that

Proposition 4 can be extended to arbitrary tree networks:
When T becomes arbitrarily large, latencies become
negligible, and an asymptotically optimal behavior is
obtained by involving all resources and by having each
parent communicate with its children in order of non
decreasing link capacities.

4 MULTIROUND ALGORITHMS

Under the one-port communication model described in
Section 2.1, one-round algorithms lead to poor utilization of
the workers. As seen in Fig. 3, worker P, remains idle from
time 0 to time 7;. To alleviate this problem, multiround
algorithms have been proposed. These algorithms dispatch
the load in multiple rounds of work allocation and, thus,
improve overlap of communication with computation. By
comparison with one-round algorithms, work on multi-
round algorithms has been scarce. The two main questions
that must be answered are: 1) What should the chunk sizes
be at each round? and 2) how many rounds should be used?
The majority of works on multiround algorithms assume
that the number of rounds is fixed and we review
corresponding results and open questions in Section 4.1.
In Section 4.2, we describe recent work that attempts to
answer question 2). Finally, we deal with asymptotic results
in Section 4.3, which of course are of particular interest
when the total load Wi is very large.

4.1 Fixed Number of Rounds, Homogeneous Star

Network, Affine Costs

As for one-round algorithms, a key question is that of the
order in which chunks should be sent to the workers.
However, to the best of our knowledge, all previous work
on multiround algorithms with fixed number of rounds
only offer solution for homogeneous platforms, in which
case worker ordering is not an issue. Given a fixed number
of rounds M, the load is divided into p x M chunks, each
correspondlng toa; (j=0,...,pM — 1) units of load such
that Zp M=1 o, = Wiota- The objective is to determine the o
values that minimize the overall makespan.

Intuitively, the chunk size should be small in the first
rounds, so as to start all workers as early as possible and,
thus, maximize overlap of communication with computa-
tion. It has be shown that the chunk sizes should then
increase to optimize the usage of the total available
bandwidth of the network and to amortize the potential
overhead associated with each chunk. In the last round,
chunk sizes should be decreasing so that all workers finish
computing at the same time (following the same principle
as in Section 3). Such a schedule is depicted in Fig. 6 for four
workers.

Bharadwaj et al. were the first to address this problem
with the multiinstallment scheduling algorithm described
in [26]. They reduce the problem of finding an optimal
schedule to that of finding a schedule that has essentially
the following three properties:

1. there is no idle time between consecutive commu-
nications on the bus;

2. there is no idle time between consecutive computa-
tion on each worker; and
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Fig. 6. Pattern of a solution for dispatching the load of a divisible job, using a bus network (¢; = g), in multiple rounds, for four workers. All four
workers complete execution at the same time. Chunk sizes increase during each of the first M — 1 rounds and decrease during the last round.

3. all workers should finish computing at the same
time.
These properties guarantee that the network and compute
resources are at maximum utilization.

In [26], the authors consider only linear costs for both
communication and computation. The three conditions
above make it possible to obtain a recursion on the «;
series. This recursion must then be solved to obtain a close
form expression for the chunk sizes. One method to solve
the recursion is to use generating functions and the rational
expansion theorem [27].

We recently extended the multiinstallment approach to
account for affine costs [28]. This was achieved by rewriting
the chunk size recursion in a way that is more amenable to
the use of generating functions when fixed latencies are
incurred for communications and computations. Since it is
more general but similar in spirit, we only present the affine
case here.

For technical reasons, as in [26], we number the chunks
in the reverse order in which they are allocated to workers:
the last chunk is numbered 0 and the first chunk is
numbered Mp — 1. Instead of developing a recursion on
the «; series directly, we define v; = a; * w, i.e., the time to
compute a chunk of size a; on a worker not including the W
latency. Recall that in this section we only consider
homogeneous platforms and, thus, w,=w, W,=W,
g, =9, and G, = G for all workers ¢ =1,...,p. The time
to communicate a chunk of size a; to a worker is G + 7;/R,
where R is the computation-communication ratio of the
platform: w/g. We can now write the recursion on the +;
series:

Vi>P W=
(Yjo1 +Vj—2 +vj—3 + - +7-n)/R+ P x G, (7)
VO<j<P W+n,=
(Y1 +F Y2+ vis -+ yN)/R+ix G4y, (8)
Vj<0 y=0. (9)
Equation (7) ensures that there is no idle time on the bus
and at each worker in the first M —1 rounds. More

specifically, (7) states that a worker must compute a chunk
in exactly the time required for all the next P chunks to be

communicated, including the G latencies. This equation is
valid only for j > P. For j < P, ie., the last round, the
recursion must be modified to ensure that all workers finish
computing at the same time, which is expressed in (8).
Finally, (9) ensures that the two previous equations are
correct by taking care of out-of-range «; terms. This
recursion describes an infinite «; series, and the solution
to the scheduling problems is given by the first pM values.

As in [26], we use generating functions as they are
convenient tools for solving complex recursions elegantly.
Let G(x) be the generating function for the series +;, that is,
G(x) = 2, v¢’. Multiplying (7) and (8) by 2/, manipulat-
ing the indices, and summing the two gives:

1
7(707P><(I)(171P)+(P><Cfltf)+(i(%7(‘pfl)fp)

(1-—2)—2(1-2P)/R

G(z)

The rational expansion method [27] can then be used to
determine the coefficients of the above polynomial fraction,
given the roots of the denominator polynomial, Q(z). The
values of the ~; series and, thus, of the «; series, follow
directly. If Q(z) has only roots of degree 1, then the simple
rational expansion theorem can be used directly. Otherwise,
the more complex general rational expansion theorem must
be used. In [28], we show that if R # P, then Q(z) has only
roots of degree one. If R = P, then the only root of degree
higher than 1 is root x =1 and it is of degree 2, which
makes the application of the general theorem straightfor-
ward. Finally, the value of 7, can be computed by writing
that Zf‘i’[’fl vj = Wiotal X w. All technical details on the
above derivations are available in a technical report [28].
We have thus obtained a closed-form expression for
optimal multiinstallment schedule on a homogeneous star
network with affine costs.

4.2 Computed Number of Rounds, Star Network,
Affine Costs

The work presented in the previous section assumes that
the number of rounds is fixed and provided as input to the
scheduling algorithm. In the case of linear costs, the authors
in [2] recognize that infinitely small chunks would lead to
an optimal multiround schedule, which implies an infinite
number of rounds. When considering more realistic affine
costs there is a clear trade off. While using more rounds
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Fig. 7. Pattern of a solution for dispatching the load of a divisible job, using a bus network (g; = g), in multiple uniform rounds, for four workers. All
workers complete execution at the same time. Chunk sizes are fixed within the first A/ — 1 rounds but increase from round to round. Chunk sizes

decrease during the last round.

leads to better overlap of communication with computation,
using fewer rounds reduces the overhead due to the fixed
latencies. Therefore, a key question is: What is the optimal
number of rounds for multiround scheduling on a star
network with affine costs?

While this question is still open for the recursion
described in Section 4.1, our work in [29] proposes a
scheduling algorithm, Uniform Multi-Round (UMR), that
uses a restriction on the chunk size: All chunks sent to
workers during a round are identical. This restriction limits
the ability to overlap communication with computation, but
makes it possible to derive an optimal number of rounds
due to a simpler recursion on chunk sizes. Furthermore, this
approach is applicable to both homogeneous and hetero-
geneous platforms. We only describe here the algorithm in
the homogeneous case. The heterogeneous case is similar
but involves more technical derivations and we refer the
reader to [30] for all details.

As seen in Fig. 7, chunks of identical size are sent out to
workers within each round. Because chunks are uniform it
is not possible to obtain a schedule with no idle time in
which each worker finishes receiving a chunk of load right
when it can start executing it. Note in Fig. 7 that workers
can have received a chunk entirely while not having
finished to compute the previous chunk. The condition
that a worker finishes receiving a chunk right when it can
start computing is only enforced for the worker P,, which is
also seen in the figure. Finally, the uniform round
restriction is removed for the last round. As in the
multiinstallment approach described in Section 4.1, chunks
of decreasing sizes are sent to workers in the last round so
that they can all finish computing at the same time.

Let a; be the chunk size at round j, which is used for all
workers during that round. We derive a recursion on the
chunk size. To maximize bandwidth utilization, the master
must finish sending work for round j+ 1 to all workers
right when worker P finishes computing for round j. This

can be written as
W + ajw = P(G + aj19), (10)

which reduces to

Qj = (pilu)j(an =)+, (11)

where v = ;5. x (PG — W). The case in which w — Pg =0
leads to a simpler recursion and we do not consider it here
for the sake of brevity.

Given this recursion on the chunk sizes, it is possible to
express the scheduling problem as a constrained minimiza-

tion problem. The total makespan, M, is:

W, 1
M(M, ap) = t—lg‘aw MW + 2 x P(G + gon),

where the first term is the time for worker P to perform its
computations, the second term the overhead incurred for
each of these computations, and the third term is the time
for the master to dispatch all the chunks during the first
round. Note that the § factor in the above equation is due to
the last round during which UMR does not keep chunk
sizes uniform so that all workers finish computing at the
same time (see [29] for details).

Since all chunks must satisfy the constraint that they add
up to the entire load, one can write that:

M-1

Q(M, Oé()) = Z Paj — Wiotat = 0. (12)
J=0

The scheduling problem can now be expressed as the
following constrained optimization problem: minimize
M(M, o) subject to G(M,ap) =0. An analytical solution
using the Lagrange Multiplier method [31] is given in [29],
which leads to a single equation for the optimal number of
round, M*. This equation cannot be solved analytically, but
is eminently amenable to a numerical solution, e.g., using a
bisection method.

The UMR algorithm is a heuristic and has been evaluated
in simulation for a large number of scenarios [30]. In
particular, a comparison of UMR with the multiinstallment
algorithm discussed in Section 4.1 demonstrates the follow-
ing: The uniform chunk restriction minimally degrades
performance compared to multiinstallment when latencies
are small (i.e., when costs are close to being linear).
However, as soon as latencies become significant, this
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performance degradation is offset by the fact that an
optimal number of rounds can be computed and UMR
outperforms multiinstallment consistently. Finally, note
that a major benefit of UMR is that, unlike multiinstallment,
it is applicable to heterogeneous platforms. In this case, the
question of worker ordering arises and UMR uses the same
criterion as that given in Proposition 2: Workers are ordered
by nondecreasing link capacities.

4.3 Asymptotic Performance, Star Network,
Affine Costs

In this section, we derive asymptotically optimal algorithms
An
algorithm is asymptotically optimal if the ratio of the time

for the multiround distribution of divisible loads.

to execute a workload W, over the optimal time to execute
this workload tends to 1 as Wi tends to infinity. As in
previous sections, we use a star network with affine costs.
The sketch of the algorithm that we propose is as
follows: The overall processing time 7' is divided into &
regular periods of duration 7, so that T' = kT, with k to
be determined. Intuitively, the trade off is as follows: We
will describe a steady-state operation, divided into
periods of duration 7). Initialization and clean-up will
lead to “loosing” a few periods at the beginning and at
the end of the execution, so there should be enough
periods to render this sacrifice negligible. However,
within each period, we want the impact of start-up costs
to become negligible too. Hence, the period length should
be large enough. Altogether, a good trade off will be to
use periods whose length 7, is proportional to the
square-root of the optimal execution time 7™, hence the
number of periods k will also be proportional to 7*. The
major difficulty is to perform the resource selection. To
decide which resource to involve, we come back to a
linear programming formulation, as detailed below.
During a period of duration 7}, the master sends «; units
of load to worker P,. It may well be the case that not all the
workers are involved in the computation. Let Z C {1,...,p}
represent the subset of indices of participating workers. For
all i €Z, the a;s must satisfy the following inequality,
stating that communication resources are not exceeded:

D (Gi+aig) < T,

€T

(13)

Since the workers can overlap communications and
processing, the following inequalities also hold true:

VieZ, VVl—FOQ’LUlSTp

Let us denote by % the average number of units of load that
worker P, processes during one time unit, then the system
becomes

ViEI, &wi

Gw, <1-1

p

(overlap)

G,
Qo _ ieZ *
Dier 7 9i <1-24

(1 — port model),

and our aim is to maximize the overall number of units of
load processed during one time unit, i.e,, p =3, ;7.

Consider the following linear program:

P
. . aL

Maximize E —,
T,

i=1"P
subject to
) Y GAW;
V1 <i<p, —w,gl—L
»
- Gi+W;
17 7, 9i S1—== :

P

This linear program is more constrained than the previous
W
7. and 1 —

in p inequalities. The linear program can be solved

one since 1 —
S GiAW;
T,

using a package similar to Maple (we have rational numbers),

2429 have been replaced by 1 —

butit turns out that the technique developed in [32] enables us
to obtain the solution in closed form. We refer the reader to
[32] for the complete proof. Let us sort the g;s so that
91 < 92 .< gy, and let ¢ be the largest index SO that
7 lw JIf

p=g¢q, we set ¢ =g, =0, in order to keep homogeneous

< 1.If ¢ < p, let ¢ denote the quantity 1 — > % ;| &
notations. This corresponds to the case where the full use of all
the workers does not saturate the 1-port assumption for
outgoing communications from the master. The optimal
solution to the linear program is obtained with

P
s 1— Z::lT(”'+W'
Vi<i<gq —=—-T—,
T, 9i

and (if ¢ < p):

- Bgem) ()
T, T, 9g+1)’

and o2 = g3 = ... =, = 0.
With these values, we obtain a distribution whose
throughput is:

P o PG
pzz?: <1—%)popt

q 1 .
with Popt = — 4+ L
=1 Ww; gp+1

Consider now an optimal multiround distribution of B
load units, and denote by p* the average number of load
units that is processed within one unit of time. If we denote
by Gy the average number of units of load that is processed
by worker P, within one unit of time, the ['s satisfy the
following set of inequalities, in which the G;s have been
removed:

Vi<i<p, Bw<l1
f:lﬁ?gi <1

Here, because we have no latencies, we can safely
assume that all the workers are involved (and let 5 = 0 for
some of them). We derive that:

P* S papt .
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If we denote by T the optimal time necessary to process B
units of load, then
B_ B

T >=>—
p* popt,

Let us denote by T" the time necessary to process all B
units of load with the algorithm that we propose. Since the
first period is lost for processing, then the number & of
necessary periods satisfies pT,(k — 1) > B so that we choose

B
k=|—|+1.
’VPTP“

Therefore,

r<Bion, < B 1 o
) = popr \1— 30 Gt b

P

and, therefore, if T, > 23Y | G+ W,

B B (G + W)

T< +2
popt i=1 Tp

B popt

Finally, if we set T, = ,/ p%r, we check that

+ 2T,

TgT*+2<zp:(Gi+m)+1>\/F—T*+O(x/F)

i=1

and, thus, that

T D 1 1
— <142 G+ W) 1| —==1+0(—),
< (Z( ) ) " (T)

which completes the proof of the asymptotic optimality of
our algorithm.

Note that resource selection is part of our explicit
solution to the linear program: To give an intuitive
explanation of the analytical solution, workers are greedily
selected, fast-communicating workers first, as long as the
communication to communication-added-to-computation
ratio is not exceeded.

We formally state our main result, for which a detailed
proof can be found in [33].

Theorem 2. For arbitrary values of G;, gi, Wi, and w; and
assuming communication-computation overlap, the previous
periodic multivound algorithm is asymptotically optimal.
Closed-form expressions for resource selection and task
assignment are provided by the algorithm, whose complexity
does not depend upon the total amount of work to execute.

5 CONCLUSION

The goal of this paper was to present a unified discussion
of divisible load scheduling results for star and tree
networks. In Section 3, we have discussed one-round
algorithms for which the two main issues are: 1) selection
and ordering of the workers and 2) computation of the
chunk sizes. Section 4 focused on multiround algorithms,
with the two main issues: 1) computation of chunk sizes
at each round and 2) choice of the number of rounds.
Section 4 also discussed multiround scheduling for

maximizing asymptotic application performance. For both
classes of algorithms, we have revisited previously
published results, presented novel results, and clearly
identified open questions. Our overall goal was to identify
promising research directions and foster that research
thanks to our unified and synthesized framework.

We have discussed affine cost models and have seen that
they often lead to significantly more complex scheduling
problems than when linear models are assumed. These
models are generally considered more realistic, and we
even contend that, given current trends, linear models are
quickly becoming increasingly inappropriate. In terms of
communication, technology trends indicate that available
network bandwidth is rapidly augmenting. Therefore,
latencies account for an increasingly large fraction of
communication costs. A similar observation can be made
in terms of computation. Due to the absence of stringent
synchronization requirements, divisible workload applica-
tions are amenable to deployment on widely distributed
platforms. For instance, computational grids [11] are
attractive for deploying large divisible workloads. How-
ever, initiating computation on these platforms incurs
potentially large latencies (i.e., due to resource discovery,
authentication, creation of new processes, etc.). Conse-
quently, it is clear that divisible workload research should
focus on affine cost models for both communication and
computation.
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