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Abstrat

The Border Gateway Protool (BGP) is the protool used to distribute Internet routes between di�erent

organizations. BGP routing poliies are very important beause they enable organizations to enfore

their business relationships by ontrolling route redistribution and route seletion. In this paper, we

investigate the semanti of BGP poliies. We aim to determine whether two poliies are equivalent, that

is, if given the same set of inoming routes, they will generate the same set of outgoing routes. We show

how this problem an be solved using the tree automata theory and desribe several optimizations. We

also propose a prototype implementing this approah. The experimental results are very promising.

They show the e�ieny of our approah and the interest of using the tree automata theory in the

ontext of BGP routing poliies.
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1. Introdution

The Border Gateway Protool (BGP) [RLH06℄

is the protool used to distribute Internet routes

between di�erent organizations, also alled Au-

tonomous Systems (AS). In BGP, routing poliies

are very important beause they enable ASes to

enfore their business relationships by ontrolling

route redistribution and route seletion. This in

turns in�uenes how the tra� �ows in the Inter-

net. ASes are motivated to ontrol tra� �ow

as arrying tra� internally is ostly and they

are billed di�erently by the di�erent neighbor-

ing ASes, with whom they have a business rela-

tionship, for sending tra� through them. This

billing often relies on the amount of tra� sent

to the neighboring AS. For example, an organiza-

tion A an buy transit servie from an Internet

provider. In addition, it may onnet to another
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organization B for the sole purpose of exhanging

information destined to that organization. BGP

poliies enable organization A to prevent tra�

between the Internet provider and its peering or-

ganization B to transit through its network. Net-

work operators may wish to implement a wide va-

riety of poliies ranging from limiting the adver-

tisement of some pre�xes, to preferring sending

tra� to some heaper neighboring ASes, to in-

�uening the route seletion in distant ASes, and

to stop a DDoS attak, to name a few.

The on�guration of BGP poliies is omplex

and often soure of errors [MWA02, FB05℄. The

implementation of a single poliy is distributed

among �lters de�ned on multiple routers, eah

on�gured di�erently. Usually, some ation takes

plae at the entrane of the AS and a di�erent set

of ations takes plae at the exit of the AS. Due

to this distribution, it is not easy to build a high

level view of the BGP poliies solely based on the

router on�guration �les. Furthermore, the on-

�guration languages provided by the router ven-

dors are very low level. Eah vendor provides a
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di�erent syntax. Translation from one language

to another is omplex as the expressiveness of the

languages varies greatly. Even using a single lan-

guage, it is possible to implement a single high

level poliy in multiple ways. Several attempts

have been made at providing tools to manipu-

late or generate orret BGP poliy on�gurations

[CGG

+
04, Int97, BFM

+
05, VH09℄.

In this paper, we investigate the semanti of

BGP routing �lters. We aim to determine if two

BGP routing �lters have the same semanti. That

is, if given the same set of inoming routes, the

two �lters will generate the same set of outgoing

routes. The solution to this problem is impor-

tant as it is the �rst step to being able to de-

tet routing �lters on�guration mistakes before

ommitting a on�guration hange and thus pre-

vent unneessary tra� disruptions. It enables

to push muh further the work started by Grif-

�n et al [GJR03℄, Feamster et al [FB05℄, by Le

et al [LLW

+
09℄ and more reently by Perouli et

al [PGM

+
12℄. Identifying if two poliies have the

same e�et enables network operators to hek the

orretness of routing �lter on�gurations with re-

gard to the high level poliies they aim to enfore.

Additionally, suh a solution is useful for refator-

ing old BGP routing �lter on�gurations upon a

hange of network equipment, the aquisition of

another network, a on�guration lean up or the

development/deployment of a on�guration tool.

The �rst idea that omes in mind to test if

two routing poliies have the same semanti is

the following one: to enumerate all the possi-

ble routes (up to a ertain size) and to test if

the two given poliies generate the same output

routes. In this paper we propose to rely on tree

automata theory [CDG

+
07℄, a powerful mathe-

matial tool well-known for its appliations in

XML proessing [Hos10℄, and program veri�a-

tion [FGVTT04℄. We model routes as trees, and

routing poliies as tree automata. We use the

tree automata theory to deide whether two rout-

ing poliies have the same semantis, that is, are

equivalent total funtions. Therefore ontrarily to

the previous algorithm whih works at the level of

routes and tests route after route for the equiva-

lene of poliies, we test for equivalene diretly

at the level of the poliies.

The paper is organized as follows. In Setion 2,

we brie�y desribe how the BGP routing proto-

ol works and how it implements routing poliies

with routing �lters. We then formally de�ne the

semantis of routing �lters, as total funtions op-

erating on routes.

In Setion 3, we explain how to model a route

as a tree. We reall the notion of tree automa-

ton, present some of their useful properties, and

illustrate with some pedagogial examples. We

then show progressively how routing �lters an

be modeled as tree automata. We start with �l-

ter prediates used in routing �lters to test if a

�lter an be applied to a route. Suh prediates

an easily and naturally be modeled by tree au-

tomata.

In Setion 5, we fous on �lter ations. An

ation is used in a �lter to generate a modi�ed

output route from a given input route. We show

that �lter ations an also be modeled with tree

automata. To this end, we show that an ation

an be seen as a binary tree relation and how to

model this relation as a tree automaton. This

model is again easy and natural. We also show

that a routing �lter an be modeled as a tree au-

tomaton, and that the equivalene of two �lters

redues to the equivalene of their related tree au-

tomata. Testing the equivalene of two tree au-

tomata is a lassial operation in tree automata

theory.

In Setion 6, we propose a prototype imple-

menting this approah. We demonstrate the

equivalene test on example Ciso IOS route-

maps then we disuss additional routing �lter ver-

i�ations that ould be provided by our tool in the

long-term.

In Setion 7, we desribe multiple ases where

our approah ould be applied by network opera-

tors to perform sanity heks when deploying or

updating routing �lters distributed on multiple

routers. We show the bene�ts of reasoning at the

level of �lters rather than at the level of routes.

In Setion 8, we desribe several experiments

we performed with the prototype implementation.

We present performane measurements as well as

a study of the algorithmi omplexity. Several
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optimizations are brought to the prototype im-

plementation to redue its time and spae om-

plexity. Those optimizations are desribed in Se-

tion 9. The experimental results are very promis-

ing. They show the e�ieny of our approah and

the interest of using the tree automata theory in

the ontext of routing �lters.

2. BGP Routing Poliies

The Internet is an interonnetion of several

independent networks alled Autonomous Sys-

tems (AS), eah being uniquely identi�ed by an

AS number (ASN). The Border Gateway Protool

(BGP) is the de fato standard protool used for

routing among ASes.

To ompute paths aross the Internet, BGP

routers need to exhange routing information.

The basi unit of routing information in BGP is

a route and its purpose is to announe the reah-

ability of a remote destination. Although BGP

an be used to advertise the reahability of sev-

eral kinds of address families [BRCK00℄, in this

paper we fous on IPv4 addresses. For this ad-

dress family, destinations are announed in the

pre�x form. An IP pre�x, expressed as a ouple

(address / pre�x length) represents a set of on-

tiguous IP addresses that share a ommon pre�x.

An example is 192.168.128.0/17 whih repre-

sents the set of addresses that share their 17 most

signi�ant bits with 192.168.128.0. In a route,

we all DST_PREFIX the attribute that ontains the

destination pre�x.

A BGP route assoiates a destination pre�x

DST_PREFIX with several path attributes. The

most important path attributes are desribed in

the following paragraphs.

• AS_PATH: reords the ASNs of the ASes tra-

versed by the route, ordered from the los-

est to the nearest. The AS_PATH attribute is

used for loop detetion as well as for ranking

routes.

• LOCAL_PREF: used to give a route a prefer-

ene that has a meaning loal to the AS. The

LOCAL_PREF attribute has a default value in

every network. In the remaining of this pa-

per, this default value is assumed to be 100.

• NEXT_HOP: identi�es the router to whih

pakets must be sent in order to follow this

route.

• MULTI_EXIT_DISC (or MED): used by a neigh-

bor AS to suggest whih route should be pre-

ferred.

• COMMUNITIES [CTL96℄ : used to tag the

route as being part of a group of routes that

must undergo the same treatment. Eah tag,

named a ommunity value, has a semanti

that is usually loal to an AS or to an AS

and its diret neighbors. Some ommunity

values are de�ned with a global semanti by

the standard.

Eah attribute has a spei� type whih man-

dates how the attribute values are enoded in a

route. The type of the above attributes are listed

in Table 1.

Other attributes are de�ned by the BGP stan-

dard. We do not list them in Table 1 as they

annot be used in routing �lters. Those at-

tributes are ORIGINATOR_ID, CLUSTER_LIST used

in onjuntion with route-re�etors [BCC06℄,

ATOMIC_AGGREGATE and AGGREGATOR used for

route aggregation purposes. Moreover, the def-

inition of sets (AS_SET) in the AS_PATH is also

ignored as it is being depreated by the IETF

[KS11℄. The attributes listed in this paragraph

are ignored in the remaining of this paper. How-

ever, should those attribute appear in routing �l-

ters in the future, our model ould easily be ex-

tended to support them.

2.1. Routing Filters

An essential feature of the BGP protool is the

ability for any router to �lter routes reeived from

or sent to neighbors. To �lter a route has two

di�erent meanings: it an mean either to rejet

the route or to aept it after its attributes have

possibly been modi�ed. Filtering routes has sev-

eral appliations [CR05℄ from enforing routing

poliies (rejeting routes that do not agree with
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Attribute Type

DST_PREFIX Sequene of up to 32 bits

(IPv4)

AS_PATH Sequene of 16-/32-bits

unsigned integers

LOCAL_PREF Unsigned integer (32-bits)

NEXT_HOP IPv4 address

MULTI_EXIT_DISC Unsigned integer (32 bits)

COMMUNITIES Set of 32-bits unsigned in-

tegers

Table 1: Type of BGP path attributes.

business relationships among domains) to tra�

engineering (in�uene how BGP selets the best

route towards a spei� destination by hanging

the route's attributes).

Routing �lters in BGP are de�ned on every sin-

gle router on a per-session basis. That means that

a router an at di�erently on a route towards

the same destination but reeived from or sent

to di�erent neighbors. Routing �lters are usually

de�ned by the network operator using the equip-

ment's on�guration language. This language is

vendor spei�; the BGP spei�ation [RLH06℄

does not speify routing �lters. The two most

known on�guration languages are used on the

routing platforms from Ciso Systems and Ju-

niper Networks, but other vendors provide their

own language as well.

Generally speaking, a routing �lter an be de-

sribed using the following formalism. A rout-

ing �lter F is omposed of a sequene of n rules

(R1, . . . , Rn) that are applied one after the other.

Eah rule R = 〈P,A〉 is omposed of two parts: a

prediate P and an ation A. The prediate de-

termines if the ation applies to a route or not.

A prediate is a Boolean ombination of atomi

prediates where eah tests a single attribute of

the route. The ation is a sequene of atomi a-

tions where eah modi�es a single attribute of the

route. The ation is applied to the route when the

prediate mathes the route.

An atomi prediate tests a single path at-

tribute. Table 2 shows the most ommon atomi

prediates. Note that on�guration languages al-

low the expression of more omplex prediates

suh as regular expressions on AS_PATH or the def-

inition of sets of ommunity values using regular

expressions. These prediates are syntati sug-

ars for more omplex ombinations of the above

atomi prediates.

An atomi ation modi�es a single path at-

tribute. Table 3 shows the most ommon atomi

ations. Speial ations an be used in a �lter

to aept or rejet a route. When suh ation is

used, the �lter proessing stops and the remaining

�lter rules are not applied.

Algorithm 1 summarizes how a �lter is applied

to a route. The algorithm returns a modi�ed

version of the route and a mode that indiates

if the route was aepted (a) or rejeted (rej)

by the �lter. The algorithm applies eah rule in

sequene. For eah rule, the algorithm tests if

the prediate mathes or not. If the prediate

mathes, the algorithm applies the atomi ations

in sequene. Eah ation modi�es the route. If

speial aept() or rejet() ation is enountered,

the algorithm �nishes immediately and the ur-

rent version of the modi�ed route, along with the

route's mode are returned.

Algorithm 1 Applies a filter to a route

mod_route← route
for all rule in rules(filter) do
if predicate(rule)(mod_route) then
for all action in actions(rule) do
if action = accept then
return (mod_route, acc)

else if action = reject then
return (mod_route, rej)

else

mod_route← action(mod_route)
end if

end for

end if

end for

return (mod_route, acc)

We show in Figure 1 a short BGP routing �lter

expressed in the syntax of Ciso IOS along with an

example Java ode that expresses the same �lter

in our prototype tool.
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Name Prediate Desription

Community membership omm_in(x) True i� the ommunity value x belongs to the

COMMUNITIES attribute.

Path membership path_in(x) True i� the ASN x belongs to the AS_PATH attribute.

Path origin path_ori(x) True i� the ASN x appears at the last position in the

AS_PATH. The last ASN in the AS_PATH identi�es the

AS whih originated the route.

Path neighbor path_nei(x) True i� the ASN x appears at the �rst position in the

AS_PATH. The �rst ASN in the AS_PATH identi�es the

neighbor AS from whih the route was reeived.

Path subsequene path_sub(s) True i� the sequene of ASNs, s, is inluded as is in

the AS_PATH attribute.

Next-hop equality nh_is(x) True i� the NEXT_HOP equals the IP address x.
Next-hop inlusion nh_in(x) True i� the NEXT_HOP is inluded in the IP pre�x x.
Destination equality dst_is(x) True i� DST_PREFIX is equal to the IP pre�x x.
Destination inlusion dst_in(x) True i� DST_PREFIX is inluded into the IP pre�x x.

Table 2: List of the most ommon atomi prediates.

Name Ation Desription

Absolute preferene pref_set(x) Set LOCAL_PREF value to x.
Relative preferene pref_add(x) Add x to the LOCAL_PREF value. If the new value

is larger than 232−1, the LOCAL_PREF value is set
to 232 − 1.

pref_sub(x) Subtrat x from the LOCAL_PREF value. If the

new value is smaller than 0, the LOCAL_PREF

value is set to 0 .

Path prepending path_prepend(x) Add the ASN x at the beginning of the AS_PATH.

Community membership omm_add(x) Add a ommunity value x to the COMMUNITIES. If

x is already part of the COMMUNITIES, this ation

has no e�et.

omm_remove(x) Remove a ommunity value x from the

COMMUNITIES. If the ommunity value x is not

part of the COMMUNITIES, this ation has no ef-

fet.

omm_lear() Empty the COMMUNITIES.

Next-hop update nh_set(x) Set NEXT_HOP value to IP address x.
Absolute MED med_set(x) Set the MULTI_EXIT_DISC value to value x.
Aeptane aept() Aept the route.

Rejetion rejet() Rejet the route.

Table 3: List of the most ommon atomi ations.

2.2. Problem Statement

The main objetive of this paper is to provide

a test for the equivalene of two routing �lters.

Let R be the set of possible routes. A routing
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✞ ☎
i p as−path ae s s− l i s t 1 permit _10_

ip as−path ae s s− l i s t 2 deny _10_

ip ommunity− l i s t 1 permit 20

route−map RM1 permit 10

math as−path 1

s e t ommunity 20 add i t i v e

s e t l o  a l−p r e f e r en  e 200

route−map RM2 permit 20

math as−path 2

math ommunity 1

s e t ommunity none

✝ ✆

✞ ☎
List<IF i l t e rRu l e> ru l e s = new ArrayList <Fi l t e rRu le >() ;

f inal IP r ed i  a t e inPath = new PathIn ( 1 0 ) ;

f inal List<IAtion> a t i on s 1 = new ArrayList <IAtion >() ;

a  t i on s 1 . add (new ComAdd( 2 0 ) ) ;

a  t i on s 1 . add (new Aept ( ) ) ;

r u l e s . add (new F i l t e rRu l e ( inPath , a  t i on s 1 ) ) ;

f inal IP r ed i  a t e notInPath = new PrediateNot ( inPath ) ;

f inal IP r ed i  a t e inComm = new CommIn( 2 0 ) ;

f inal List<IAtion> a t i on s 2 = new ArrayList <IAtion >() ;

a  t i on s 2 . add (new ClearCommunities ( ) ) ;

a  t i on s 2 . add (new Aept ( ) ) ;

r u l e s . add (new F i l t e rRu l e (new PrediateAnd ( notInPath , inComm) ,

a  t i on s 2 ) ) ;

f inal List<IAtion> a t i on s 3 = new ArrayList <IAtion >() ;

a  t i on s 3 . add (new Rejet ( ) ) ;

r u l e s . add (new F i l t e rRu l e ( null , a  t i on s 3 ) ) ;

F i l t e r myFi l ter = new F i l t e r ( r u l e s ) ;

✝ ✆

Figure 1: Ciso IOS route-map and Java ode for onstruting the orresponding �lter.

�lter F as de�ned in Setion 2.1 an be seen as a

total funtion assoiating with eah route r ∈ R
another route r′ ∈ R, together with a mode in

{acc, rej} that indiates if the route is aepted or

rejeted by the �lter.

Equivalene. Two routing �lters F1 and F2 are

equivalent if and only if, for all routes, their re-

sults are equal, i.e. F1 ≡ F2 i� F1 and F2 de�ne

the same funtion. Two routes are equal if all

their attributes are equal.

The above de�nition of the equivalene of rout-

ing �lters leads to a straightforward, naive test

algorithm: enumerate all routes in R, apply the

�lters to eah route and ompare the results. If no

route was found for whih the �lters have di�erent

results, then the test sueeds. Otherwise, a oun-

terexample is found and the test fails. The om-

plexity of this algorithm mainly depends on the

size of R. Testing the equivalene of routing �l-

ters with the above naive algorithm is learly not

pratial. We provide a omparison between our

approah and the naive algorithm in Setion 8.2.

In this paper, we aim at providing a novel

method for testing the equivalene diretly at the

level of �lters rather than at the level of routes.

To ahieve this objetive, we model

1. routes with trees. A tree is just a mean of

enoding the values of all the attributes of a

route.

2. prediates with tree automata. A tree

automaton that models a prediate reog-

nizes only the trees orresponding to routes

satisfying the prediate.

3. ations/�lters with tree relation au-

tomata. Ations and �lters are binary rela-

tions that map a route to its image. Hene,

we model ations and �lters with automata

that reognize a binary tree relation, that is

a set of pairs of trees (a tree and its image by

the relation).

The equivalene of routing �lters an there-

fore be redued to testing the equivalene of au-

tomata, a standard operation in Automata The-

ory [HU79℄.

It is important to note that with the proposed

automata approah, a routing �lter is modeled by

an automaton as a relation (that maps routes to

routes), and routing �lters are tested to be equiv-

alent via relations enoded as automata. The pro-

posed test is thus not done at the level of routes

but rather at the level of relations.

Other Problems. Let us mention some other re-

lated problems. When two routing �lters F1 and

F2 have been delared as not being equivalent,

we ould be interested to have a witness of non-

equivalene, that is, a route leading to two di�er-
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ent results by F1 and F2. More generally, it ould

be interesting to know the set of all (instead of

one) witnesses of non-equivalene of two �lters.

Another interesting problem is to be able to

test whether or not a subset of routes satisfying

a given property (for instane, routes inluding

ommunity 1) is transformed by a �lter into a

subset of routes satisfying another property (for

instane, routes with loal-pref value 150).

We will see in this paper that these problems

an also been solved using Automata Theory, fol-

lowing the same approah as for the equivalene

test of two �lters.

3. Tree Automata

In this setion, we provide the tree automata

bakground required to fully understand the pa-

per. We �rst explain what is a tree and how it

an be used to enode a omplex struture. Se-

ond, we reall the notion of tree automaton and

illustrate it with examples. We also make a par-

allel between tree automata and more lassial

word automata. Third, we introdue two tree

automata properties that are important for our

model, namely determinism and ompletion. We

illustrate these properties with examples. Finally,

we explain Boolean operations on tree automata.

Those operations are required to model Boolean

operations on �lter prediates. These operations

are also at the heart of the lassial automata

equivalene test.

3.1. Trees

We onsider ranked trees, i.e. trees where the

number of hildren of a node is �xed by its la-

bel. Ranked trees are useful for enoding om-

plex, strutured data suh as a route omposed of

multiple attributes.

Let alphabet Σ be the �nite set of labels that

an appear in a tree. Let also ar be a funtion

mapping eah label a ∈ Σ to a positive integer

ar(a) alled its arity. The value ar(a) gives the

number of hildren of a node with label a. For

onveniene, we write Σn for the set of labels of

arity n: Σn = {a ∈ Σ | ar(a) = n}. A node

labeled by a ∈ Σ is alled an a-node.

We note a(t1, . . . , tn) the tree rooted at a with

n subtrees t1 to tn. The set TΣ of trees over Σ is

the least set ontaining all �nite trees a(t1, . . . , tn)
where a ∈ Σn and ti ∈ TΣ for all 1 ≤ i ≤ n.
Note that hildren of a node are ordered. A tree

language is a subset of TΣ.

Let us illustrate these de�nitions. Consider the

alphabetΣabd = {a, b, c, d} where ar(a) = ar(b) =
2, ar(c) = 1 and ar(d) = 0. In other words,

Σabd

2 = {a, b}, Σabd

1 = {c} and Σabd

0 = {d}.
The tree a(d) does not belong to TΣabd

, beause

ar(a) = 2, so the root node should have two hil-

dren. The tree t = b(a(d, c(a(d, d))), d) belongs to
TΣabd

. It is depited in Figure 2.

b

a

d c

a

d d

d

Figure 2: A tree t ∈ TΣabd .

3.2. Tree Automata

In this setion, we reall the notion of tree au-

tomaton and illustrate it with the previous exam-

ple of alphabet Σabd

. The role of a tree automa-

ton is to reognize trees with a given struture.

Tree Automaton. A tree automaton A over Σ is a

tuple (Q,F,Σ, δ) where Q is a �nite set of states,

F ⊆ Q is a set of �nal states, and δ is a set of

transitions of the form (q1, . . . , qn)
a
−→ q with a ∈

Σn and q, q1, . . . , qn ∈ Q. The number of states is
denoted by |Q| and the number of transitions by

|δ|. The size |A| of A is equal to |Q|.

Run. A run of a tree automaton A on a tree t is
a funtion ρ mapping a state of A to eah node of

t, suh that for every node π of t, if π is labeled

by a ∈ Σn, then (ρ(π1), . . . , ρ(πn))
a
−→ ρ(π) ∈ δ

where πi is the ith hild of node π.
Intuitively, a tree automaton operates in a

bottom-up manner on a tree: it assigns a state
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to eah leaf, and then to eah internal node, a-

ording to the states assigned to its hildren. A

run ρ is aepting if the root π of the tree is as-

signed to a �nal state, i.e. ρ(π) ∈ F . A tree

t ∈ TΣ is aepted by the tree automaton A if

there is an aepting run among all runs of A on

this tree.

Reognizable Language. The language of A is the

set of trees aepted by A, and is written L(A).
We say that A reognizes L(A). A tree language

L ⊆ TΣ is reognizable if there exists a tree au-

tomaton A reognizing it.

Equivalene. Two tree automata are equivalent if

they reognize the same language.

3.3. Example

To illustrate the onept of a tree automaton,

let us take a simple example. Consider the alpha-

bet Σab = {a, b, c}. The arity funtion is de�ned

as ar(a) = ar(b) = 2, ar(c) = 0.
Suppose we want to build an automaton that

reognizes the language L
a

omposed of trees

over the alphabet Σab

that have at least one

branh where an a-node is parent of a c-node.
We propose the tree automaton A

a

=
(Q,F,Σab, δ) with Q = {q



, qac, q⊥}. State qc is
assigned to a c-node. State qac is assigned to a

node π if and only if it belongs to a branh that

ontains an a-node parent of a c-node. State q⊥
is assigned in every other ase. There is a single

�nal state; F = {qac}. The transitions in δ are as
follows:

()
c
−→ qc

(qc, qc)
b
−→ q⊥ (qc, qac)

b
−→ qac (qc, q⊥)

b
−→ q⊥

(qac, qc)
b
−→ qac (qac, qac)

b
−→ qac (qac, q⊥)

b
−→ qac

(q⊥, qc)
b
−→ q⊥ (q⊥, qac)

b
−→ qac (q⊥, q⊥)

b
−→ q⊥

(qc, qc)
a
−→ qac (qc, qac)

a
−→ qac (qc, q⊥)

a
−→ qac

(qac, qc)
a
−→ qac (qac, qac)

a
−→ qac (qac, q⊥)

a
−→ qac

(q⊥, qc)
a
−→ qac (q⊥, qac)

a
−→ qac (q⊥, q⊥)

a
−→ q⊥

A b-node is assigned state qac if and only if at

least one of its hild nodes was assigned qac. In

every other ase a b-node is assigned state q⊥.

An a-node is assigned state qac if and only if at

least one of its hild nodes was assigned qac or qc.
If all hild nodes are assigned q⊥, then state q⊥ is

assigned to the a-node.
Figure 3 shows a run of A

a

on two di�erent

trees. The run in Figure 3a is non-aepting as

the tree does not ontain an a-node parent of a

c-node. The state assigned to the root node, q⊥ is

not a �nal state. The run in Figure 3b is aept-

ing. Indeed, this tree belongs to the language of

the automaton, L(A
a

).

a

b b

c c c c

q⊥

q⊥ q⊥

qc qc qc qc

(a) Non-aepting run

b

c a

a c

c c

qac

qc qac

qac qc

qc qc

(b) Aepting run

Figure 3: Two runs of A
a

.

3.4. Relation to Word Automata

Tree automata are related to more lassial

word automata. Tree strutures subsume words,

that is every word an be onsidered as a tree.

For example, a word a1a2 · · · an an be onsidered

as a tree an(an−1(. . . a1(nil))), so that a word is

mapped to a branh. We onsider that eah word

label has arity 1 when used in the tree alphabet.

A speial label nil of arity 0 is also added to the

tree alphabet. Note that the ordering of labels in

the tree is reversed ompared to that of the word.

This is due to the bottom-up proessing of tree

automata.

Suh mapping also holds at the automata level.

A word automaton over Σ is a tuple (Q, I, F,Σ, δ),
where Q is a �nite set of states, I, F ⊆ Q are sets

of initial (resp. �nal) states, and δ is a set of

transitions of the form q
a
−→ q′. A run starts in

an initial state and applies a series of transitions

orresponding to labels of the input word. A word

is aepted if a run ends in a �nal state. We refer

the reader to [HU79℄ for more details.
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q0 q1
c

a

b

Figure 4: Word automaton reognizing (a|b)∗c.

It is also interesting to note that word automata

have the same expressiveness as regular expres-

sions: every regular expression an be translated

to a word automaton reognizing the same words,

and vie-versa. For instane the regular expres-

sion (a|b)∗c an be translated to the word automa-

ton in Figure 4 suh that Q = {q0, q1}, q0 (resp.

q1) is the unique initial (resp. �nal) state, and the

transitions are q0
a
−→ q0, q0

b
−→ q0, and q0

c
−→ q1.

3.5. Tree Automata Properties

Some operations on tree automata that are use-

ful in this paper, an be realized muh more e�-

iently when the tree automata satisfy some prop-

erties: determinism and ompleteness.

Determinism. A tree automaton A is determinis-

ti if it has no pair of distint transitions with

the same left-hand side. Formally, whenever

(q1, . . . , qn)
a
−→ q ∈ δ and (q1, . . . , qn)

a
−→ q′ ∈ δ,

we must have q = q′.
Hene, a deterministi tree automaton has at

most one run per tree. Every tree automaton an

be determinized, i.e., one an build an equivalent

deterministi tree automaton [CDG

+
07℄. How-

ever, the determinization proedure is exponen-

tial in time, and yields automata of exponential

size.

Completeness. Given a language L ⊆ TΣ, a tree

automaton A is L-omplete if there is at least

one run of A on every t ∈ L. Therefore, if A
is deterministi and L-omplete, there is exatly

one run of A on every t ∈ L.
An automaton A is omplete if there is at

least one transition for every left-hand side

(q1, . . . , qn)
a
−→ where ar(a) = n. If an automaton

is omplete, it is also TΣ-omplete.

Every tree automaton an easily be turned into

an equivalent omplete automaton by adding a

(non-�nal) sink state q∗ and transitions going

to it (q1, . . . , qn)
a
−→ q∗, for every left-hand side

(q1, . . . , qn)
a
−→ missing in δ. We name this oper-

ation ompletion.

3.6. Example Revisited

The automaton A
a

de�ned in Setion 3.3 is

deterministi as there is a single transition for

eah left-hand side. The automaton is also om-

plete as there is a transition for every possible

left-hand side. In this setion, we provide a non-

deterministi automaton A′
a

that reognizes the

same language L
a

as A
a

. Reall that L
a

is the

set of trees over Σab

that have at least one branh

where an a-node is parent of a c-node.
To build suh an automaton, let us �rst imagine

that the automaton an guess a branh of the tree

where the a-node is parent of a c-node, and then

hek it. Let us all this branh β. Note that the
ation of guessing the branh is a pure vision of

the mind. The automaton is really an algebrai

objet and there is no reason to ask how it an

guess the branh.

A run of the automaton A′
a

assigns state q⊥ to

every node that is not on β. On β, the automaton

uses states qc and qac to memorize that it has seen

respetively a c-node or an a-node above a c-node.
State qac is the unique �nal state. The transi-

tions of the automaton are as follows:

()
c
−→ qc

()
c
−→ q⊥

(q⊥, q⊥)
b
−→ q⊥ (q⊥, qac)

b
−→ qac (qac, q⊥)

b
−→ qac

(q⊥, q⊥)
a
−→ q⊥ (qc, q⊥)

a
−→ qac (q⊥, qc)

a
−→ qac

(q⊥, qac)
a
−→ qac (qac, q⊥)

a
−→ qac

If the automaton guessed the wrong branh,

then there is a b-node above a c-leaf whih has

been assigned to qc. As no transition exists for

this ase, there annot be a orresponding run for

this guess.

Figure 5 shows an aepting run of A′
a

on the

same tree as in Figure 3b. The branh β that

9



has been guessed by the automaton is shown with

thik lines. Every node outside the branh is

mapped to state q⊥. Note that there are two other
aepting runs of A′

a

for this tree as there are two

other branhes that ontain an a-node parent of
a c-node.

b

c a

a c

c c

qac

q⊥ qac

qac q⊥

q⊥ qc

Figure 5: A run of A′
a

.

The automaton A′
a

is non-deterministi. This

an be observed from the transitions labeled with

c. There is one for the leaf in the β branh and the

other one for the leaves outside the branh. As a

onsequene, if a tree has more than one branh

that satis�es the property heked by A′
a

, then

there an be multiple aepting runs for this tree.

The automaton A′
a

is Lac-omplete as there is at

least one run for every t in Lac. However, A′
a

is not omplete as there is no transition for some

left-hand sides, like for the ase (qc, qc)
a
−→ .

3.7. Operations on Tree Automata

Reognizable tree languages enjoy losure un-

der all standard Boolean operations. The om-

plement of a tree language T ⊆ TΣ is the tree

language TΣ \ T , i.e. the set of all trees that are
not in T . The intersetion and union of two tree

languages T1, T2 ⊆ TΣ are respetively T1∩T2 and

T1 ∪ T2.

Theorem 3.1. Reognizable tree languages are

losed under omplementation, intersetion and

union.

In other terms, given automata A1 =
(Q1, F1,Σ, δ1) and A2 = (Q2, F2,Σ, δ2), one an

always �nd automata A′
1, A

′
2 and A′

3 reogniz-

ing respetively TΣ \ L(A1), L(A1) ∩ L(A2), and
L(A1) ∪ L(A2). This result is folklore [CDG

+
07℄,

we only give some insights.

Intersetion and union an be obtained by om-

puting the synhronized produt of two automata

A1 and A2. This onstrution is in time O(|δ1| ·
|δ2|) and yields automata of size O(|A1| · |A2|).
Complementation is obtained by determinizing

the automaton, ompleting it (so that eah tree

has exatly one run on it), and then swapping its

�nal states with its non-�nal states. The omple-

mentation proedure is exponential in time and

the obtained automaton has a size exponential in

the size of the original automaton.

When the initial automata are deterministi

and omplete, better omplexities our for the

omplementation operation, as indiated in the

next proposition. In this proposition, we onsider

the more general situation of automata that are

deterministi and L-omplete. Given a tree au-

tomaton A, we use notation L(A)|L = L(A) ∩ L
to restrit the language of A to L.

Proposition 3.2. Let A1 and A2 be two au-

tomata that are deterministi and L-omplete.
Then one an onstrut automata A′

1, A
′
2 and

A′
3 that are again deterministi and L-omplete,

and suh that L(A′
1)|L = L \ L(A1)|L, L(A

′
2)|L =

L(A1)|L ∩ L(A2)|L, and L(A′
3)|L = L(A1)|L ∪

L(A2)|L respetively. Moreover A′
1 an be on-

struted in time O(|A1|) and with the same size

as A1, and A′
2, A

′
3 an be onstruted in time

O(|δ1| · |δ2|) and with size O(|A1| · |A2|).

Let us give some insights about this result. As

eah given automaton Ai, i = 1, 2, is determin-

isti and L-omplete, there exists a unique run

for eah tree t ∈ L. This run is either aepting

or rejeting depending on whether t belongs to

L(Ai)|L or not. Therefore, an automaton A′
1 suh

that L(A′
1)|L = L\L(A1)|L is simply obtained from

A1 by swapping its �nal states with its non-�nal

states. The resulting automaton is deterministi

and L-omplete. For the intersetion and union

operations, we use the synhronized produt (as

mentioned above) of the automata A1 and A2 to

get automata A′
2 and A′

3 respetively. The an-

nouned omplexities follow.

In this proposition, it is stated that the automa-

ton for the intersetion and the union operations

is built in time O(|δ1| · |δ2|). In fat it an be
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built in time O(|A1|
k · |A2|

k · |Σ|) where k is the

maximal arity of the alphabet Σ.1

Thanks to Theorem 3.1, it an be heked

whether two tree automata A1 and A2 are equiv-

alent. Indeed, it su�es to hek that L(A1) ⊆
L(A2), and onversely. The former inlusion is

equivalent to L(A1) ∩ (TΣ \ L(A2)) = ∅. Empti-

ness of tree automata is deidable, so we get

[CDG

+
07℄:

Theorem 3.3. Equivalene of tree automata is

deidable.

This test is in exponential time if automata are

non-deterministi [CDG

+
07℄, and in polynomial

time otherwise [CGLN09℄.

4. Modeling Routes and Prediates

4.1. Model of a Route

We reall from Setion 2 that a route is om-

posed of the attributes DST_PREFIX, AS_PATH,

LOCAL_PREF, NEXT_HOP, MULTI_EXIT_DISC,

COMMUNITIES and of a status indiating if the

route is still modi�able or de�nitely aepted or

rejeted by the routing �lter.

A route an be modeled as a tree as shown in

Figure 6. This tree has a root labeled by label

route of arity 5. This node is the parent of �ve

branhes: the �rst four branhes model some at-

tributes and the last one models the status. It is

easy to support additional attributes in the tree

model of a route by adding new branhes under

the root node.

The branhes shown in Figure 6 orrespond

to the next four attributes: a sequene of in-

teger values (AS_PATH), a set of integer values

(COMMUNITIES), a single integer (LOCAL_PREF)

and a bitstring (DST_PREFIX). For larity reasons,

we hoose to not present the MULTI_EXIT_DISC

and NEXT_HOP in the paper as the type and the

ations that an be applied to these attributes are

1

We just need to store the transitions in a data stru-

ture where transitions using a given symbol of Σ are re-

trieved in onstant time. Then we loop over all symbols of

the alphabet Σ and onsider pairs of transitions in δ1× δ2
using eah symbol.

route

0

1

1

dest

50

10

20

30

path

100

pref

10

20

40

om

mod

Figure 6: Tree modeling a route.

similar to that of LOCAL_PREF and DST_PREFIX

respetively.

The struture of the �ve branhes is desribed

in the following paragraphs along with their spe-

i� alphabet of labels of arity 1.

• dest branh: models the destination pre�x

(DST_PREFIX) written in binary, using alpha-

bet Σdest = {0, 1}. The most signi�ant bit is

at the bottom. For example, the route mod-

eled on Figure 6 has the 192.0.0.0/3 destina-

tion pre�x. The branh is ended by leaf dest.

This leaf label is required as a tree automaton

proeeds bottom-up and needs to identify on

whih branh it is working.

• path branh: models the sequene of ASNs

(AS_PATH) suh that the �rst ASN is at the

bottom of the branh and the last ASN is at

the top of the branh. This inverse order al-

lows an easy modeling of the ation of path

prepending (see Setion 5.2). The branh

uses alphabet Σpath = [0, 216−1] whose labels
represent 16-bit ASNs. The branh is ended

with leaf path.

• pref branh: models the loal preferene

(LOCAL_PREF). It uses a label of alphabet

Σpref = [0, 232−1]. The branh is ended with

leaf pref.

• om branh: models the set of ommunity

values (COMMUNITIES) as a sorted sequene

with the least number at the top of the
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branh. This branh uses Σcom = [0, 232 − 1]
whose labels represent ommunities. The

branh is ended with leaf om.

• status branh: indiates the status of the

route: either mod (modi�able), a (a-

epted), or rej (rejeted).

The underlying alphabet ΣR
used to desribe

routes as trees is thus deomposed as follows:

ΣR
5 = {route}, ΣR

4 = ΣR
3 = ΣR

2 = ∅,
ΣR

1 = Σdest ∪ Σpath ∪ Σpref ∪ Σcom
, and ΣR

0 =
{dest, path, pref, com,mod, acc, rej}.
Although the alphabet ΣR

as de�ned at this

stage is quite large, in Setion 9.2, we show that

only parts of the alphabets Σdest
, Σpath

, Σpref
and

Σcom
are to be onsidered, depending on the rout-

ing �lters submitted for equivalene. This obser-

vation will be important for performane reasons.

4.2. The Language of Routes

The setR of trees modeling routes is reognized

by the following tree automatonAR with a unique

�nal state qf and the transitions

1. ()
dest
−−→ q1, (q1)

i
−→ q1, i ∈ Σdest

,

2. ()
path
−−→ q2, (q2)

i
−→ q2, i ∈ Σpath

,

3. ()
pref
−−→ q3, (q3)

i
−→ q′3, i ∈ Σpref

,

4. ()
com
−−→ q4, (q4)

i
−→ q4,i, i ∈ Σcom

,

(q4,j)
i
−→ q4,i, i, j ∈ Σcom

with j > i,

5. ()
mod
−−→ q5, ()

acc
−→ q5, ()

rej
−→ q5,

6. (q1, q2, q
′
3, q4,i, q5)

route
−−→ qf , i ∈ Σcom

,

(q1, q2, q
′
3, q4, q5)

route
−−→ qf .

In this automaton, transitions 1 desribe the dest

branh as any sequene of bits ended by leaf dest.

To limit its size, this automaton does not hek

that the dest branh has length at most 32. We

show in Setion 4.4 that this has no impat on

the �lters equivalene test. Transitions 2 desribe

the path branh as any sequene of labels in Σpath

ended by leaf path. Transitions 3 desribe the

pref branh as one label in Σpref
followed by leaf

pref. Transitions 4 desribe the om branh as

an ordered sequene of labels in Σcom
ended by

leaf om. The label j just read is stored in the

urrent state q4,j in order to be ompared with

the label i read just after j, and the transition

is applied if j > i. Transitions 5 desribe the

three modes, mod, a, rej, of the route. Finally

transitions 6 are applied at the root of the tree if

the struture of eah branh has been respeted

(when COMMUNITIES is a non-empty set in the �rst

ase, and when it is empty in the seond ase).

Notie that automatonAR is deterministi, but

non-omplete. Moreover, it has a �nite number of

states, as states q4,i are restrited to i ∈ Σcom
. Its

number of states an be large as the number of

transitions required to hek the ordering in the

om branh is quadrati in the size of the om

alphabet. If |Σcom| = n, there are n(n−1)
2

+ n + 1
transitions of type 4.

Quasi-Routes. In order to work with smaller and

simpler tree automata for atomi prediates and

atomi ations and thus for routing �lters, we

onsider quasi-routes instead of routes. A quasi-

route is a tree with a root labeled by route,

�ve branhes of arbitrary length labeled by el-

ements in ΣR
1 = Σdest ∪ Σpath ∪ Σpref ∪ Σcom

and ended by leaves labeled by elements in

{dest, path, pref, com,mod, acc, rej}. The deter-

ministi automaton AquasiR with one �nal state

qf and the following transitions exatly aepts

all quasi-routes:

1. ()
dest
−−→ q0, ()

path
−−→ q0, ()

pref
−−→ q0, ()

com
−−→ q0,

()
mod
−−→ q0, ()

acc
−→ q0, ()

rej
−→ q0,

2. (q0)
i
−→ q0, i ∈ ΣR

1 ,

(q0, q0, q0, q0, q0)
route
−−→ qf .

In the next setions, we desribe the automata

modeling the atomi prediates and the atomi

ations suh that eah prediate operates on a

quasi-route instead of a route, and eah ation

modi�es a quasi-route instead of a route. Propo-

sition 3.2 from Setion 3.7 is an important prop-

erty that we will use with L = R, when model-

ing prediates. We show in Setion 5.5 where the

automata A,A′
are onstruted for the two �lters

F, F ′
, how these automata are restrited to routes

before testing for equivalene.

This approah whih onsists in working with

quasi-routes instead of routes, and restriting to
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routes at the very last step, leads to small tree

automata and thus to a more e�ient algorithm.

Additional optimizations are detailed in Setion 9.

4.3. Filters seen as Tree Automata

We reall that a routing �lter F is omposed

of a sequene of rules (R1, . . . Rn). Eah rule

R = 〈P,A〉 is omposed of a prediate P whih is

a Boolean ombination of atomi prediates, and

of an ation A whih is a sequene of atomi a-

tions. The problem studied in this artile is the

equivalene of two routing �lters. We translate

this problem to an equivalene test between two

tree automata (one for eah �lter).

(1)

(2)

(3) (1) (3) (3)

{
(4) {{{ {(5) (5)

(6)

(7) {
Figure 7: General approah for modeling.

The main ideas of our approah are depited

in Figure 7 and brie�y desribed in the following

paragraphs (the next setions detail the onstru-

tions). The numbers between parentheses that

appear in Figure 7 refer to the list items below.

1. Eah atomi prediate appearing in the pred-

iate of a rule is modeled by a tree automaton

that aepts quasi-routes (seen as trees t) sat-
isfying the atomi prediate (see Setion 4.4).

2. By Proposition 3.2, eah Boolean ombina-

tion of atomi prediates an be modeled by

a tree automaton (see Setion 4.5).

3. Eah atomi ation appearing in the ation of

a rule is modeled by a tree automaton that

aepts the pairs of quasi-routes (t, t′) suh

that t′ is the image of t by the atomi ation

(see Setion 5.2).

4. Eah sequene of atomi ations, is modeled

by an automaton obtained by omposition of

the automata of the atomi ations (see Se-

tion 5.3).

5. Eah rule R = 〈P,A〉 is also modeled by a

tree automaton that aepts pairs of quasi-

routes (t, t′) as follows: if t satis�es predi-

ate P , then t′ is the image of t by ation

A, otherwise t′ = t. This automaton an

be onstruted from the automata for P and

A thanks to the omposition operation (see

Setion 5.4).

6. Finally, a routing �lter F = (R1, . . . , Rn),
is modeled by a tree automaton obtained by

omposing the automata of rules Ri. The re-

sulting automaton is also omposed with an

automaton Aid that only aepts routes.

7. Two �lters F, F ′
are equivalent if their orre-

sponding automata are equivalent (see The-

orem 3.3 and Setion 5.5).

4.4. Model of an Atomi Prediate

The most important atomi prediates used in

routing �lters have been desribed in Table 2. We

show in this setion that eah of those atomi

prediates an be modeled by a tree automa-

ton. As mentioned in Setion 4.2, we make an

atomi prediate automaton simpler by onsider-

ing quasi-routes instead of routes. To this end, to

model atomi prediate P , we build an automata

AP whose language is suh that L(AP )|R = {t ∈
R | t satis�es P}. This automata an be ob-

tained by using the same transitions as inAquasiR,

exept for the branh onerned with prediate P .
Moreover, we aim at building tree automata that

are deterministi and R-omplete.

Path Membership. Let us onsider in more details

the atomi prediate Ppm = path_in(x) of path

membership, whih tests whether an ASN x be-

longs to the AS_PATH attribute of a route. The

following tree automaton Apm aepts all quasi-

routes with a path branh that ontains label x.
The transitions are the following ones:
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¬x xx

i 6= x i

i ∈ ΣR
1

Figure 8: Word automaton reognizing words ontaining

x.

1. ()
dest
−−→ q0, ()

pref
−−→ q0, ()

com
−−→ q0,

()
mod
−−→ q0, ()

acc
−→ q0, ()

rej
−→ q0,

(q0)
i
−→ q0, i ∈ ΣR

1 ,

2. ()
path
−−→ q¬x, (q¬x)

x
−→ qx,

(q¬x)
i
−→ q¬x, i ∈ ΣR

1 , i 6= x,

(qx)
i
−→ qx, i ∈ ΣR

1 ,

3. (q0, qx, q0, q0, q0)
route
−−→ q⊤,

(q0, q¬x, q0, q0, q0)
route
−−→ q⊥.

In this automaton, transitions 2 use two states,

qx, q¬x to remember if x has been seen or not on

the seond branh of the tree. Transitions 1 allow

the same transitions as in automaton AquasiR for

the other branhes. Transitions 3 indiate that

the �nal state q⊤ is reahed in the ase x has been

seen, otherwise the non-�nal state q⊥ is reahed.

As already mentioned in Setion 3.4, tree stru-

tures subsume words, and tree automata subsume

word automata. In the previous automaton, tran-

sitions 2 at like in the word automaton B de-

pited in Figure 8. This automaton uses alphabet

ΣR
1 , it is deterministi and omplete. A word over

ΣR
1 is aepted by B if and only if it ontains label

x.
We an hek that automaton Apm is deter-

ministi and R-omplete. Indeed, for any route

t there is exatly one run that assigns q⊤ (resp.

q⊥) to the root when t satis�es (resp. does not

satisfy) prediate Ppm. In the sequel we require

this property for eah tree automaton assoiated

with an atomi prediate. This is neessary to

get a orret modeling of rules (see Setion 5.5)

and to optimize the modeling of prediates (see

Setion 9.3).

Remaining Atomi Prediates. Let us now on-

sider the other atomi prediates P . For predi-

ate of ommunity membership, the treatment of

q
init

x

¬x

x
i

i 6= x i

i ∈ ΣR
1

Figure 9: Word automaton reognizing words starting with

x.

the seond branh by Apm is simply transposed to

the fourth branh. For prediate of path neigh-

bor, the approah is similar as with automaton

Apm, exept that automaton B is modi�ed in or-

der to hek that x is the �rst label of the word,

as indiated in Figure 9.

The approah is similar for prediates of path

origin, path subsequene, destination equality,

and destination inlusion. For the two last pred-

iates, dst_is(x) and dst_in(x), the DST_PREFIX

and the IP pre�x x are supposed to be written in

binary and of length at most 32. We reall (see

Setion 3.2) that the automaton AR aepts the

set R of trees modeling routes suh that the dest

branh is any sequene of bits ended by leaf dest,

even those longer than 32. This lak of onstraint

of AR on the dest branh is not a problem. Indeed

the automaton for prediate dst_is(x) reognizes
all routes with dest branh equal to x. The jus-

ti�ation for prediate dst_in(x) is divided into

two ases. First, for routes where the dest branh

is limited to 32 bits, the automaton for prediate

dst_in(x) heks that x is a pre�x of the branh.

Seond, a route with a longer dest branh is a-

epted if and only if it is aepted with its dest

branh limited to the �rst 32 bits.

Regular Expressions. More generally the ap-

proah desribed in this setion also holds for

atomi prediates expressed by a regular expres-

sion. Given a regular expression imposing a

ondition on a branh of a route, this expres-

sion an be translated to a word automaton

(Q, {qinit}, F,Σ, δ) that is deterministi and om-

plete [HU79℄. Suppose that the prediate is on-

erned with the path branh and Σ = ΣR
1 , then

the orresponding tree automaton has the next
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transitions:

1. ()
dest
−−→ q0, ()

pref
−−→ q0, ()

com
−−→ q0,

()
mod
−−→ q0, ()

acc
−→ q0, ()

rej
−→ q0,

(q0)
i
−→ q0, i ∈ ΣR

1 ,

2. ()
path
−−→ qinit,

(p)
i
−→ q, with transition p

i
−→ q in δ,

3. (q0, q, q0, q0, q0)
route
−−→ q⊤, with q ∈ F ,

(q0, q, q0, q0, q0)
route
−−→ q⊥, with q 6∈ F .

Therefore, eah atomi prediate P an be

modeled by a tree automaton AP working on

quasi-routes, suh that L(AP )|R = {t ∈ R |
t satis�es P}. Moreover this automaton is deter-

ministi and R-omplete.

4.5. Model of a Prediate

A prediate P is a Boolean ombination of

atomi prediates Pi, 1 ≤ i ≤ n. We showed

in Setion 4.4 how to build a deterministi and

R-omplete tree automaton Ai for every atomi

prediate Pi. In this setion, we show that it is

possible to build an automaton that models P ,
the Boolean ombination of atomi prediates Pi,

thanks to Proposition 3.2.

Let P1 and P2 be two prediates, and A1 and

A2 their respetive deterministi and R-omplete

automata. Notie that

{t ∈ R | t satis�es ¬P1}
= R− {t ∈ R | t satis�es P1}
= R− L(A1)|R

and

2

{t ∈ R | t satis�es (P1 ∧ P2)}
= {t ∈ R | t satis�es P1}
∩ {t ∈ R | t satis�es P2}

= (L(A1) ∩ L(A2))|R

Therefore, by Proposition 3.2, one an build a de-

terministi and R-omplete automaton for ¬P1,

P1 ∧ P2, and P1 ∨ P2.

More generally, by repeating this proess, one

an onstrut a deterministi and R-omplete au-

tomaton AP modeling a prediate P that is a

Boolean ombination of atomi prediates Pi, 1 ≤
i ≤ n.

2

A similar equality holds for the disjuntion of the two

prediates.

a

b c

d

⊛

e

f

g

=

(a, e)

(b, f)

(⋄, g)

(c, ⋄)

(d, ⋄)

Figure 10: Example of overlay.

5. Tree Relations, Ations and Filters

Up to now, we used tree automata to desribe

routes satisfying a prediate. In routing �lters,

rules are made of prediates and ations. An a-

tion onsists in transforming eah route t1 to an-

other route t2. Hene, we an onsider an ation

(resp. a �lter) as a binary relation R ⊆ TΣ × TΣ

ontaining suh pairs (t1, t2).

5.1. Binary Tree Relations

In this setion, we explain how tree automata

an reognize suh binary relations, not just tree

languages. This is based on an operation mapping

eah pair (t1, t2) to a new tree.

The overlay of two trees t1, t2 ∈ TΣ is the tree

t1 ⊛ t2. This tree is obtained by overlapping t1
and t2, in the following top-down way, as illus-

trated in Figure 10. Intuitively, labels of t1 ⊛ t2
are pairs of labels of t1 and t2, and a fresh la-

bel ⋄ is used to �ll the gaps. If roots of t1 and

t2 are labelled by a and b respetively, then the

root of t1 ⊛ t2 is labelled by (a, b). The arities

of a and b may di�er, and in this ase we use la-

bel ⋄. Let us name a1, . . . , an the hildren of the

a-root in t1, and b1, . . . , bp the hildren of the b-
root in t2, and let us assume that n > p. Then

(a, b) have n hildren equal, from left to right,

to (a1, b1), . . . , (ap, bp), (ap+1, ⋄), . . . , (an, ⋄). The

proess is then repeated indutively on these hil-

dren. We write Σ⋄ for the orresponding alpha-

bet: it ontains all labels (a, b) ∈ Σ × Σ with

arity max{ar(a), ar(b)}, and also all labels (a, ⋄)
and (⋄, a), for a ∈ Σ, with arity ar(a). We refer

the reader to [CDG

+
07℄ for a formal de�nition.

A binary tree relation R over Σ is a subset of

TΣ×TΣ, i.e. a set of pairs (t1, t2) with t1, t2 ∈ TΣ.

We say that R is reognizable if the tree language

{t1 ⊛ t2 | (t1, t2) ∈ R} is reognizable.
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5.2. Modeling Atomi Ations

The most important atomi ations used in

routing �lters have been desribed in Table 3. We

show that eah atomi ation A, seen as a binary

relation, is reognizable. In other words, there

exists a tree automaton that aepts the overlays

of routes t ⊛ t′ suh that t is transformed into t′

by the ation, i.e., (t, t′) ∈ A. Among the atomi

ations desribed in Table 3, we onsider the a-

tions of absolute preferene, relative preferene,

path prepending, ommunity membership, route

aeptane, and route rejetion.

We reall that a route t is modeled as a tree suh

that the last branh indiates the status of the

route: mod, a or rej. An atomi ation should

leave unhanged any route that has a status equal

to a or rej.

In order to have small automata for atomi a-

tions, we are going to onstrut them on quasi-

routes instead of routes, as we did for prediates

in Setions 4.4 and 4.5. However, ontrarily to

prediates, these automata are non-deterministi

in order to guess in a bottom-up manner if the

quasi-route has to be modi�ed or not (depending

on the status). This simpli�es the automata to

build, and we will see that, in our ontext, de-

terminism is not required for testing equivalene

e�iently.

Relative Preferene. We begin with the atomi

ation pref_add(x) that adds a value x to the

LOCAL_PREF, suh that the new value is set to

c = 232−1 when it is larger than c. In the remain-

ing of the disussion, we will onsider an ation

as a tree relation. Let Arp be a tree relation that

transforms t in t′ aording to pref_add(x). The
two trees have the same shape and no label ⋄ is
needed for the overlay t ⊛ t′. The orresponding

automaton Arp has one �nal state qf and the fol-

lowing transitions:

1. ()
(dest,dest)
−−−−−→ q0, ()

(path,path)
−−−−−−→ q0,

()
(pref,pref)
−−−−−→ q0, ()

(com,com)
−−−−−→ q0,

(q0)
(i,i)
−−→ q0, i ∈ ΣR

1 ,

2. ()
(mod,mod)
−−−−−−→ qmod,

()
(acc,acc)
−−−−−→ qfix, ()

(rej,rej)
−−−−→ qfix,

3. ()
(pref ,pref)
−−−−−→ q1,

(q1)
(i,i+x)
−−−−→ q+x, i ∈ Σpref , i+ x ≤ c,

(q1)
(i,c)
−−→ q+x, i ∈ Σpref , i+ x > c,

4. (q0, q0, q+x, q0, qmod)
(route,route)
−−−−−−−→ qf ,

(q0, q0, q0, q0, qfix)
(route,route)
−−−−−−−→ qf .

Transitions 1 are used by the automaton Arp to

hek the identity relation on the dest, path and

om branhes. The identity is also heked for the

pref branh in ase the status of the route is a or

rej. Notie that a single state q0 is enough to hek
identity as the automaton works on quasi-routes.

Transitions 2 memorize in state qmod (resp. qfix)
whether the status of trees t, t′ is mod (resp. a,

rej).

Transitions 3 apply the ation of relative pref-

erene with states q1 and q+x. Note that non-

determinism appears as there are two transitions

with left-hand side ()
(pref ,pref)
−−−−−→ : either the iden-

tity relation is heked on the pref branh with

transitions 1, or the ation of relative preferene

is performed with transitions 3.

Finally, depending on the status, transitions 4

lead to the �nal state qf , either with the ation

Arp performed on the third branh, or with the

identity relation on this branh.

Automaton Arp deals with quasi-routes instead

of routes. Let R⊛R be the set {t ⊛ t′ | t, t′ ∈
R}. Then we have L(Arp)|R⊛R = {t⊛ t′ | t, t′ ∈
R and (t, t′) ∈ Arp}.

Community Membership. Let us now proeed

with the atomi ation omm_add(x) that adds a
ommunity value x to the sorted sequene of om-

munities. If x is already present, it is not added.

Let Acm be a tree relation that transforms t in

t′ aording to omm_add(x). If x is not in the

om branh of t, then t and t′ have the same shape

exept on the om branh: the om branh of t′

has one additional ommunity (x) that has been
orretly inserted in the om branh of t.
The orresponding automaton Acm is similar to

the previous automaton Arp. It has one �nal state

qf and the following transitions:

1. ()
(dest,dest)
−−−−−→ q0, ()

(path,path)
−−−−−−→ q0,
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q1

q2

q1,i q1,j

qins

(⋄, com)

(com, com)

(com, x)

(i, j)
i > j > x

(x, x)
(i, i)
i > x

(i, i)
i < x

(i, x)
i > x

(j, x)
j > x

(com, i)
i > x

(com, j)
j > x

Figure 11: Transitions 3 of automaton Acm reognizing relation Acm.

()
(pref,pref)
−−−−−→ q0, ()

(com,com)
−−−−−→ q0

(q0)
(i,i)
−−→ q0, i ∈ ΣR

1 ,

2. ()
(mod,mod)
−−−−−−→ qmod,

()
(acc,acc)
−−−−−→ qfix, ()

(rej,rej)
−−−−→ qfix,

3. ()
(⋄,com)
−−−−→ q1, (q1)

(com,x)
−−−−→ qins,

(qins)
(i,i)
−−→ qins, i ∈ Σcom, x > i,

(q1)
(com,i)
−−−−→ q1,i, i ∈ Σcom, i > x,

(q1,j)
(j,i)
−−→ q1,i, i, j ∈ Σcom, j > i > x,

(q1,j)
(j,x)
−−→ qins, j ∈ Σcom, j > x,

()
(com,com)
−−−−−→ q2,

(q2)
(i,i)
−−→ q2, i ∈ Σcom, i > x,

(q2)
(x,x)
−−→ qins,

4. (q0, q0, q0, qins, qmod)
(route,route)
−−−−−−−→ qf ,

(q0, q0, q0, q0, qfix)
(route,route)
−−−−−−−→ qf .

Transitions 1 hek the identity relation on the

dest, path and pref branhes. Transitions 2 mem-

orize if the status of the route is mod or a/rej.

Transitions 3 hek the orret insertion of x
in the om branh if the status of t, t′ is mod.

Non-determinism appears on the level of the om

branh, depending on the urrent status.

Transitions 3 need some explanations. They

are illustrated in Figure 11. State qins indiates

that x has been inserted. There are three ases

of insertion: (1) x is larger than all labels and

it is inserted at the bottom of the branh. This

orresponds to the middle path in Figure 11; (2)

x is not the largest value and it is properly in-

serted (state q1,j remembers the last seen value

j). This orresponds to the top path; (3) x is al-

ready present and is therefore not inserted. This

orresponds to the bottom path.

As for automaton Arp, we have L(Acm)|R⊛R =
{t⊛ t′ | t, t′ ∈ R and (t, t′) ∈ Acm}.

Route Aeptane. We now onsider the atomi

ation aept(). Let Ara be a tree relation that

transforms t in t′ aording to aept(). Exept

for the status, the orresponding automaton Ara

heks for identity between t and t′. In ase of

mod status for t, it heks for a status for t′. In
ase of a or rej status for t, it heks that the

status is left unhanged for t′. AutomatonAra has

one �nal state qf and the following transitions:

1. ()
(dest,dest)
−−−−−→ q0, ()

(path,path)
−−−−−−→ q0,

()
(pref ,pref)
−−−−−→ q0, ()

(com,com)
−−−−−→ q0,

(q0)
(i,i)
−−→ q0, i ∈ ΣR

1 ,

2. ()
(mod,acc)
−−−−−→ q1,

()
(acc,acc)
−−−−−→ q1, ()

(rej,rej)
−−−−→ q1,
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3. (q0, q0, q0, q0, q1)
(route,route)
−−−−−−−→ qf .

Remaining Atomi Ations. The approah is sim-

ilar for the other atomi ations. Thus, eah

atomi ation A an be modeled by a (non-

deterministi) tree automaton AA working on

quasi-routes, suh that L(AA)|R⊛R = {t ⊛ t′ |
t, t′ ∈ R and (t, t′) ∈ A}.

5.3. Modeling Ations

An ation A is a sequene (A1, . . . , An) of

atomi ations, for eah of whih we an build an

automaton AAi
, as explained above. In the sequel

we abuse notations by writing (t, t′) ∈ A whenever

ation A transforms route t to the route t′.
In this setion, we show how to ompute an

automaton AA for A from the automata AAi
, by

using the omposition operation denoted ◦. We

start by omposing AA1
and AA2

, whih gives us

the automaton A′
2, then ompose A′

2 with AA3
,

and so on until we omposeA′
n−1 withAAn

, whih

gives us AA = A′
n. In other words:

AA = (((AA1
◦ AA2

) ◦ AA3
) ◦ · · · ◦ AAn

)

Let us detail how a omposition of ations

should operate. Given two ations A, A′
and their

related automata AA and AA′
, the trees t ⊛ t′

aepted by AA ◦ AA′
must be those for whih

there exists a tree t′′ suh that t ⊛ t′′ is aepted
by AA and t′′ ⊛ t′ is aepted by AA′

. The on-

strution of AA ◦ AA′
works as follows. States of

AA ◦AA′
are pairs (q, q′) with q (resp. q′) state of

AA (resp AA′
). For labels of arity 1, a transition

((p, p′))
(a,b)
−−→ (q, q′) is a transition of AA ◦ AA′

if

and only if there is a label c and:

• a transition (p)
(a,c)
−−→ q in AA and

• a transition (p′)
(c,b)
−−→ q′ in AA′

.

The onstrution is similar for labels of other ar-

ity.

Due to the possibly di�erent shapes of the trees

involved in the omposition, the previous proe-

dure is inomplete. Let us explain on an example.

Consider for instane the ations A and A′
that

respetively insert 20 and 40 in the om branh.

route,route

10, 10

com, 20

⋄, com

(a) t⊛t′′∈L(AA)

route,route

10, 10

20, 20

com, 40

⋄, com

(b) t′′⊛t′∈L(AA′)

route,route

10, 10

com, 20

⋄, 40

⋄, com

() t⊛t′∈L(AA◦AA′)

Figure 12: Composition in om branh.

Let us assume that we start with a route with

only 10 in the om branh, i.e. 10(com). This

branh is transformed into 10(20(com)) by A, and
then into 10(20(40(com))) by A′

. Figure 12a and

12b depit the orresponding two overlays. If we

ompose the automata AA and AA′
as desribed

above, we should obtain the automaton AA ◦AA′

that aepts the overlay of Figure 12. This is

not the ase: in Figure 12, we an observe that

a transition ()
(⋄,com)
−−−−→ (q, q′) is needed. Aording

to the onstrution proess desribed above, this

transition is part of AA◦AA′
if there exists a label

c suh that transition ()
(⋄,c)
−−→ q exists in AA and

transition ()
(c,com)
−−−−→ q′ exists in AA′

. A transition

()
(⋄,com)
−−−−→ q′ exists in AA′

, but the ounterpart

()
(⋄,⋄)
−−→ q does not exist in AA.

To avoid the problem illustrated by this exam-

ple, before onstruting the automaton AA ◦ AA′

as explained above, we �rst slightly modify

3

au-

tomata AA and AA′
, so that they aept trees

with an arbitrary number of labels (⋄, ⋄) at the
bottom of branhes path and com. We say that we

⋄-�ll these automata. In this way, the branhes

path and com (the length of whih may vary with

the applied ations) now have the same shape

thanks to the added labels (⋄, ⋄), and an thus

be properly omposed.

3

This modi�ation is rather simple, and detailed in the

proof of Theorem 5.1.
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After the onstrution of the automaton AA ◦
AA′

, we must again slightly modify it suh that it

aepts trees with no label (⋄, ⋄) at the bottom of

branhes path and com. We say that we ⋄-lean
this automaton. In this way, the language of the

resulting automaton, restrited toR⊛R, is equal
to {t ⊛ t′ | t, t′ ∈ R and (t, t′′) ∈ A, (t′′, t′) ∈
A′

for some t′′ ∈ R}.
To summarize, the full omposition proedure

of two automata AA, AA′
is done in three steps:

�rst we ⋄-�ll these automata, then we onstrut

AA ◦ AA′
, and �nally we ⋄-lean the onstruted

automaton. We again denote by ◦ this operation
of full omposition.

Hene, given an ation A = (A1, . . . , An), and
automata AAi

for eah atomi ation Ai, we on-

strut the automaton AA = ((AA1
◦ AA2

) ◦ · · · ◦
AAn

) suh that L(AA))|R⊛R = {t ⊛ t′ | t, t′ ∈
R and (t, t′) ∈ A}.

5.4. Modeling Rules

A routing �lter F is a sequene of rules, and a

rule R = 〈P,A〉 is omposed of a prediate P and

an ation A. We have explained in the previous

setions how to build a tree automaton AP (resp.

AA) for prediate P (resp. ation A). We reall

that L(AP )|R = {t ∈ R | t satis�es P}, and
L(AA)|R⊛R = {t⊛ t′ | t, t′ ∈ R and (t, t′) ∈ A}.
In this setion, we show how to build an automa-

ton for rule R from the automata AP and AA.

This proedure is illustrated in Figure 13. When

restrited to routes, AR must aept exatly all

t⊛ t′ suh that t′ is the image of t by A if t satis-
�es P , and t′ = t otherwise. This orresponds to
the language

L(AR)|R⊛R = { t⊛ t′ | t, t′ ∈ R and

((t satis�es P and (t, t′) ∈ A) or

(t does not satisfy P and t = t′))}

We use the omposition operation (presented in

the previous setion), however with some are

sine AP aepts trees and AA aepts overlays

of trees.

As AP does not reognize a tree relation, the

idea is to turn AP into an automaton BP re-

ognizing a relation that �marks� a tree t when

t

aepted

not aepted

AP

t t′

AA

t
t

t

BP

t′

t

BA

AR

Figure 13: Composing prediate P with ation A.

it does not satisfy P , and lets t unmarked oth-

erwise. Marking t onsists in replaing its root

label route with a new label route, and is de-

noted by t. Let R′
be the set R ∪ {t | t ∈ R}.

The language of the needed automaton BP is suh

that L(BP )|R⊛R′ = {t ⊛ t | t satis�es P} ∪ {t ⊛
t | t does not satisfy P}. This approah is illus-

trated in Figure 13.

Similarly, we derive automaton BA from au-

tomaton AA suh that BA reognizes a relation

that turns a marked tree into a unmarked tree,

and turns an unmarked tree into a tree trans-

formed by ation A. Formally, L(BA)|R′⊛R =
{t⊛t | t ∈ R}∪{t⊛t′ | t, t′ ∈ R and (t, t′) ∈ A}.

Finally we ompute BP ◦ BA. By de�nition of

the omposition and thanks to the trees t, the
resulting automaton AR aepts overlays t⊛ t′ of
trees (when restrited to R⊛R) suh that either

t satis�es P and thus is transformed in t′ by A,
or t does not satisfy P and thus is left unhanged

by A.

Let us now explain in more details how to

ompute automata BP and BA. Suppose that

AP = (Q,F,ΣR, δ). Reall that AP is determin-

isti and R-omplete (see Setions 4.4 and 4.5).

Then we build BP = (Q, {qf},Σ
R × ΣR, δ′) with

• ()
(a,a)
−−→ q ∈ δ′, if ()

a
−→ q ∈ δ,

• (p)
(a,a)
−−→ q ∈ δ′, if (p)

a
−→ q ∈ δ,
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• (p1, p2, p3, p4, p5)
(route,route)
−−−−−−−→ qf ∈ δ′, if

(p1, p2, p3, p4, p5)
route
−−→ q ∈ δ with q ∈ F ,

(p1, p2, p3, p4, p5)
(route,route)
−−−−−−−→ qf ∈ δ′, if

(p1, p2, p3, p4, p5)
route
−−→ q ∈ δ with q 6∈ F .

This onstrution works beause, given a route t,
there is exatly one run for t in AP , and this run

is aepting if and only if t satis�es P . Thus,

the labels of transitions in AP are dupliated in

transitions of BP exept for label route whih is

replaed by (route, route) (resp. (route, route)) if
the run is (resp. is not) aepting.

Conerning ation A, we onstrut BA from AA

by adding to the latter automaton two new states

q0 and qf suh that qf is �nal, and the following

transitions

4

:

1. ()
(dest,dest)
−−−−−→ q0, ()

(path,path)
−−−−−−→ q0,

()
(pref,pref)
−−−−−→ q0, ()

(com,com)
−−−−−→ q0,

()
(mod,mod)
−−−−−−→ q0, ()

(acc,acc)
−−−−−→ q0, ()

(rej,rej)
−−−−→ q0,

2. (q0)
(i,i)
−−→ q0 i ∈ ΣR

1 ,

(q0, q0, q0, q0, q0)
(route,route)
−−−−−−−→ qf .

5.5. Modeling Filters

A routing �lter F is a sequene (R1, . . . , Rn) of
rules, for eah of whih we an build an automaton

ARi
as explained above. In the sequel we write

(t, t′) ∈ F when F transforms route t into route

t′. A tree automaton AF for F is simply obtained

by omposing the automata AR1
, . . . ,ARn

. Reall

that this automaton treats quasi-routes instead of

routes, and that L(AF )|R⊛R = {t ⊛ t′ | t, t′ ∈
R and (t, t′) ∈ F}.
It remains to explain how to test the equiv-

alene of two �lters. In this aim, it is nees-

sary to modify automaton AF into BF suh that

automaton BF now treats routes (and no longer

quasi-routes). Thanks to the omposition opera-

tion, it is easy to onstrut BF suh that L(BF ) =
L(AF )|R⊛R. We onstrut a tree automaton Aid

suh that L(Aid) = {t⊛t | t ∈ R}. This automa-

ton is easily built from automatonAR reognizing

4

These transitions are similar to the transitions of au-

tomaton AquasiR aepting quasi-routes (see Setion 4.2).

the set of routes (de�ned in Setion 4.2). Then we

have BF = Aid ◦ AF .

Given two �lters F, F ′
and their orrespond-

ing automata BF ,BF ′
, testing if F, F ′

are equiva-

lent amounts to test if the automata BF ,BF ′
are

equivalent. This test is deidable in exponential

time (see Theorem 3.3). However this exponential

blow-up an be avoided in our ontext beause the

relations involved in �lters are funtional. Indeed,

every ation inside a �lter transforms eah route

into a unique route.

Theorem 5.1. Let F and F ′
be two �lters. Let

BF and BF ′
be their respetive automata with

δF , δF ′
their sets of transitions. Then it an be

deided in time O(|δF | · |δF ′|) whether F and F ′

are equivalent.

Moreover, in ase of non equivalene, a tree t is
onstruted suh that (t, t1) ∈ F , (t, t2) ∈ F ′

, with

t1 6= t2.

The proof of this theorem is given in Se-

tion 9.3. Notie that this result also holds for any

pair of tree relations (instead of �lters) as long as

they are total funtions. Notie also that om-

plexity O(|δF | · |δF ′|) in the previous theorem an

be replaed by O(|BF |
k · |BF ′|k · |Σ|) where k is the

maximal arity of Σ (see Footnote 1).

5.6. Summary

Let us reall the whole proess to model routing

�lters and its related test of equivalene by tree

automata.

• Reall that a routing �lter F is a sequene of

rules, and a rule R = 〈P,A〉 is omposed of

a prediate P and an ation A.

• Given a �lter F , a orresponding automaton

AF is onstruted by indution on the stru-

ture of the �lter. For e�ieny reasons, all

the intermediate automata as well as AF op-

erate on quasi-routes instead of routes in a

way to limit the size of automata.

• For eah atomi prediate and eah atomi

ation, we have onstruted a orresponding

tree automaton (aepting trees in the �rst

ase and overlays of two trees in the seond
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ase). For an atomi prediate P , the re-

lated automaton AP is deterministi and R-
omplete. In this way, for any route t there
exists exatly one run that assigns a �nal

(resp. non �nal) state to the root of t if t
satis�es (resp. does not satisfy) P . The prop-
erty is imposed to AP for e�ieny reasons.

For an atomi relation A, the related au-

tomaton AA is in general non-deterministi.

Moreover for eah route t, there is exatly one
route t′ suh that t ⊛ t′ is aepted by AA,

i.e. (t, t′) ∈ A (the relation is funtional).

• Eah prediate P is a Boolean ombination

of atomi prediates Pi, 1 ≤ i ≤ n. The asso-
iated automaton AP an be built from the

automata APi
thanks to Theorem 3.1. As

eah APi
is deterministi and R-omplete,

the exponential blow-up that ould appear at

eah omplementation operation is avoided

(see Proposition 3.2)

• The omposition operation ◦ on two au-

tomata (on overlays of trees) is used at sev-

eral plaes of the proess: when dealing with

(1) sequenes of atomi ations, (2) rules, (3)

sequenes of rules, and (4) when limiting an

automaton AF for a �lter F to work only for

routes. For tehnial reasons due to symbol

⋄ used in the overlay of trees, the two au-

tomata are �rst ⋄-�lled, then omposed, and

�nally ⋄-leaned.

• Eah ation is a sequene (A1, . . . , An) of

atomi ations. The automaton AA for A is

built from the automata AAi
, 1 ≤ i ≤ n, as

((AA1
◦ AA2

) ◦ · · · ◦ AAn
). A rule R = 〈P,A〉

is omposed of a prediate P and an ation

A. The automataAP and AA are modi�ed in

suh a way that their omposition results in

an automaton AR that aepts overlays t⊛ t′

of trees (when restrited to R⊛R) where ei-
ther t satis�es P and thus is transformed in

t′ by A, or t does not satisfy P and is left

unhanged by A. Eah �lter F is a sequene

(R1, . . . , Rn) of rules. The automaton AF for

F is built from the automata ARi
, 1 ≤ i ≤ n,

as ((AR1
◦ AR2

) ◦ · · · ◦ ARn
).

• Given two �lters F, F ′
, before testing

whether they are equivalent, the automata

AF and AF ′
are modi�ed into BF and BF ′

respetively in a way to treat routes, in-

stead of quasi-routes. They are then tested

for automata equivalene (see Theorem 3.3).

The exponential blow-up of this test an be

avoided in our ontext beause the relations

involved in �lters are funtional (see Theo-

rem 5.1).

6. Prototype

We have implemented a prototype in Java, pub-

lily available

5

under the GPLv2 liene. It im-

plements all prediates and ations as presented

in Setion 2.2. Filters implementation is based on

the model presented in this paper. The onstru-

tion of the automata follows the indutive proess

desribed in the preeding setions, inluding the

optimizations given in Setion 9. Tree automata

objets and standard operations are implemented

inside a separate library, also publily available.

We used a homemade parser to onvert Ciso

IOS on�guration �les into Java soure ode

(see Figure 1 for an example). The parser

only proesses route-maps, ip prefix-list, ip

ommunity-list and ip as-path aess-list

lauses. Route-map math lauses are translated

into a boolean ombination of atomi prediates.

Route-map set lauses are translated into se-

quenes of atomi ations. Eah route-map state-

ment is onverted to a single rule. Multiple route-

map statements with the same identi�er form a

�lter.

6.1. Example Run

To illustrate the operation of our prototype,

this setion shows how the equivalene of two

Ciso IOS route-maps is tested. The two route-

maps F1 and F2 are shown in Figure 14. No-

tie that even if they seem very similar, there is a

slight di�erene.

If we provide those two route-maps to our tool,

it will parse them, and produe Java ode to build

5

https://github.om/bquoitin/eqrou

21



✞ ☎
i p p r e f i x− l i s t 1 seq 1 permit 128 . 0 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 2 permit 128 . 1 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 3 permit 128 . 2 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 4 permit 128 . 3 . 0 . 0 /16

!

ip ommunity− l i s t 1 permit 1 :1

!

route−map F1 deny 10

math ommunity 1

!

route−map F1 permit 20

math ip addre s s p r e f i x− l i s t 1

s e t l o  a l−p r e f e r en  e 100

✝ ✆

✞ ☎
i p p r e f i x− l i s t 1 seq 1 permit 128 . 0 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 2 permit 128 . 0 . 1 . 0 /16

ip p r e f i x− l i s t 1 seq 3 permit 128 . 2 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 4 permit 128 . 3 . 0 . 0 /16

!

ip ommunity− l i s t 1 permit 1 :1

!

route−map F2 deny 10

math ommunity 1

!

route−map F2 permit 20

math ip addre s s p r e f i x− l i s t 1

s e t l o  a l−p r e f e r en  e 100

✝ ✆

Figure 14: Example IOS route-maps tested for equivalene.

the orresponding automata. Those automata are

then tested for equivalene. Here, the �lters are

not equivalent as reported by the tool. The equiv-

alene test took 340ms on a Intel Core 2 Duo pro-

essor running at 2.8GHz. The omplete run took

about 6 seonds, inluding parsing, generation of

java ode, ompilation and exeution.

As the �lters are not equivalent, the tool pro-

dues a route that is a witness of non-equivalene.

In this ase, the route produed is (DST_PREFIX :
128.1.0.0/16, AS_PATH : {}, LOCAL_PREF :
100, COMMUNITIES : {}). Its image by F1

is (DST_PREFIX : 128.1.0.0/16, AS_PATH :
{}, LOCAL_PREF := 100, COMMUNITIES = {}) and
the route is aepted. The image of this route

by F2 is the same but the route is rejeted. This

output is a good hint to trak the ause of the

di�erene between the two �lters.

A route with the same attributes is aepted

by F1 and rejeted by F2. We need to hek

the prediates used in the permit lause of our

route-maps. Here the ulprit is the seond ip

prefix-list statement where the permitted pre-

�xes are di�erent in F1 and F2. Manually �nding

the reason why two routes are handled di�erently

by two �lters an still be di�ult. In the future,

the tool ould be used to automatially pinpoint

the rules responsible for aepting or rejeting a

route.

6.2. Extensibility of the Approah

We have showed earlier how to model by au-

tomata the lassial atomi prediates and ations

used in routing �lters. New atomi prediates an

easily be inorporated, provided that they an be

enoded by automata. This is true for instane for

atomi prediates expressed by a regular expres-

sion as explained in Setion 4.4. Similarly, new

atomi ations an also be easily inorporated un-

der the same hypothesis.

6.3. Beyond Equivalene

In the previous setions, we have explained how

to test the equivalene of two �lters using tools

from tree automata theory. Some other related

problems an also be tested with the same ap-

proah. We here list some of these problems and

provide a rough idea how to solve them.

Witnesses of non-Universality. When two �lters

have been modeled by two automata, they are

tested for equivalene by testing the equivalene

of their related automata thanks to Theorem 5.1.

When the �lters are delared non-equivalent, it is

useful to have a route that is a witness of suh

an non-equivalene, and more generally to have

all the witnesses of non-equivalene. In the proof

of Theorem 5.1 given in Setion 9, we show how

to onstrut one tree (witness) that has di�erent

images by the two �lters when they are not equiv-

alent. As a matter of fat, the proof an easily

provide a tree automaton that exatly aepts all

the routes that have di�erent images by the two

�lters. Suh an automaton modeling all the wit-

nesses of non-universality an then be used to un-

derstand why the two �lters are not equivalent.

This will be explained in the next paragraph.
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Behavior of a Filter under some Properties. An-

other interesting problem is to test whether or not

a subset of routes satisfying a ertain property is

transformed by a �lter into a subset of routes sat-

isfying another property. For instane, we would

like to test if the set of routes having ommu-

nity 1234 and destination inluded in 62.17/16 is

transformed by a given �lter so as to have loal-

preferene 150 and a new ommunity 5678. Suh

a problem an be solved using automata theory

provided the two properties respetively imposed

to the input routes and the output routes an

be modeled by tree automata (this is the ase of

the previous example). Using standard automata

properties suh as in Setion 3, it is possible to

suitably ombine the automaton modeling the �l-

ter with the two automata modeling the proper-

ties in a way to solve this problem.

Notie that suh questions an also be asked

(and similarly solved) about the set of witnesses

of non-universality of two �lters. Indeed we have

explained above that this set of witnesses an be

modeled by a tree automaton. We an thus have

a better understanding of this set of routes by

testing some properties (modeled by automata)

on it. This method ould help debug errors in

�lters.

7. Appliations

In this setion, we propose three appliations

of the equivalene test of two �lters, illustrated

by some examples. We start by motivating the

need for an equivalene test as is, then move on to

show some other, more omplex, appliations. We

end with a longer-term appliation onsisting of

the omposition and testing of distributed routing

�lters.

7.1. Redundant BGP Sessions in Multi-Vendor

Networks

A ommon pratie used by network opera-

tors to inrease the robustness of their interdo-

main onnetivity is to exhange routing infor-

mation with neighbor AS over multiple redun-

dant sessions. These often end on distint physi-

al routers. They may even terminate on routers

from di�erent vendors to derease the risk of both

routers being simultaneously a�eted by a om-

mon bug.

In suh on�gurations, the routing �lters de-

ployed on both eBGP sessions are usually the

same. However, heking that both routing �l-

ters are equivalent, up to now, was not a trivial

task. Using equipment from di�erent vendors also

means writing routing �lters using di�erent on-

�guration languages. Moreover, even in an en-

vironment where a single vendor is in use, on-

�guration languages might di�er among di�erent

versions of the vendor's operating system. Our

approah provides a universal representation of

the �lters, a means to hek their equivalene and

to further reason about them.

In order to assess how often parallel sessions

are deployed and how often routers from multi-

ple vendors are in use, we analysed the on�gu-

ration of all the routers in a large, modern, ISP

network

6

. First, we determined for every neighbor

AS x the number of di�erent loal routers peering

with x. We observed that although 58% of AS are

onneted through a single session, the remaining

42% are onneted using at least 2 sessions, as

illustrated in Figure 15. This ISP has a neigh-

bor AS that onnets at as muh as 9 di�erent

loations.
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Figure 15: Number of peering loations for eah neighbor

AS in a large ISP.

In addition to this, 27% of the neighbor AS

peer with routers that do not understand a single

ommon on�guration language. Those routers

6

We annot dislose the name of this ISP.
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are either from di�erent router vendors or from

the same vendor but using versions of the operat-

ing system with di�erent on�guration languages

(e.g. IOS versus IOS XR).

A network operator ould use our tool to per-

form routing �lters sanity hek in the environ-

ment just desribed. For example, when new ses-

sions are added or the business agreement and the

routing poliies with a neighbor AS hange, the

tool ould be used to ensure the hanges are de-

ployed in the same way for all the sessions with

that AS. Suh veri�ation ould be done nightly.

7.2. Verifying Routing Filters

Today, network operators have no tool to hek

if a BGP routing �lter works as intended. This

annot be done just by looking at the poliy. Poli-

ies are often long and the semanti of the on�g-

uration languages is omplex. Moreover, routers

in a large network are not on�gured by a sin-

gle person and di�erent operators may on�gure

a router di�erently to perform the same task.

Network operators will usually rely on the

router operating system to hek if a �lter aepts,

rejets or modi�es a route as intended. This is

typially done by injeting arefully rafted routes

into a router (virtualized or in the lab) through

a test session on whih the �lter applies and ob-

serve if the outome of the route mathes the in-

tention. It should be noted that this approah

is not pratial if all routes are tested individu-

ally, as in the naive approah we desribed in Se-

tion 2.2. Instead of performing an exhaustive test,

the network operator piks a few sample routes

and limit its test to those routes, with the risk of

missing orner ases of the �lter that would ause

an untested route to be mishandled.

As explained in Setion 6.3, it is possible using

our automata approah to verify if the image of

one set of routes by a �lter satis�es some prop-

erty, provided this property an be expressed by

an automaton. As an example, a network opera-

tor ould want to hek that all the routes with

a destination pre�x in some set will be rejeted

by the �lter, or it ould want to hek that some

ommunities have been added by the �lter.

As this is a mid-term goal, our tool does not

yet support the test of suh properties. We plan

to support this in the near future. It is likely

to require some optimizations suh as desribed

in Setion 9 to be pratial. One an imagine

that those properties ould be expressed using

languages similar to those provided by the router

vendors. Moreover, the most usual properties

ould be pre-de�ned and available as libraries.

7.3. Composition of Distributed Routing Filters

Another possible appliation of our framework

is the veri�ation of a distributed routing �lter. In

a transit network, a route reeived through a ses-

sion with a provider is typially redistributed to

every ustomer. Most BGP sessions have inbound

and outbound �lters. This means a route going

from one provider to a ustomer is proessed by

two di�erent �lters, de�ned on di�erent routers,

possibly using di�erent languages : it is �rst pro-

essed by the inbound �lter on the session with

the provider and later by the outbound �lter on

the session with the ustomer.

The tree automata approah allows the inbound

and outbound �lters to be omposed, resulting in

a single automaton. Reasoning an then happen

on this automaton: the veri�ation of routing �l-

ters as desribed in Setion 7.2 an be applied on

it. For example, it would then be possible to hek

that a route transiting from a provider to a us-

tomer is marked with some ommunity. It ould

also be used to verify that distributed routing �l-

ters orretly prevent some routes to be leaked

from one session to another. For example, a route

reeived from a provider is typially tagged with

a speial ommunity value by the inbound �lter.

The outbound �lter on a session with another

provider should prevent a route tagged with this

ommunity value to be redistributed to another

provider.

Composition of routing �lters an also be used

to hek that the preferene of a route (or a set

of routes) always dereases, a property that is im-

portant for BGP to onverge to a stable solution

[Gri10℄. This is important in the ase of a on-

federation of ASs or when poliies are applied on

iBGP sessions [CBV10℄.
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Cheking the equivalene of routing �lters is a

key feature in being able to validate a network

on�guration, its hanges and maintain the net-

work in good operational shape.

8. Evaluation

8.1. Experiments

We used the prototype desribed in Setion 6

to perform several experiments. Their results are

presented in this setion. Our experiments show

the link between �lter size, tree automaton size

and running-time of the equivalene test. All tests

were performed on a omputer running Linux 3.2

with an Intel Core2 Duo CPU and 4GB of RAM.

We used Java 1.6 through OpenJDK (IedTea6).

Instanes. We tested our algorithm on �ve fami-

lies of �lters. The �rst family of �lters, alled iso

in our �gures, has been generated from the BGP

routing �lters de�ned in the Ciso IOS on�gu-

ration of a router from a large European transit

network. The on�guration ontained 48 route-

maps eah of them desribing a single �lter. We

foused on 12 �lters supported by a prior version

of our tool (the urrent version supports 45 �l-

ters). Eah of them has then been tested against

its sub�lters, where the n-th sub�lter is obtained

from the original one by keeping its �rst n rules.

Usually, suh �lters are not equivalent to their

sub�lters, exept for the full sub�lter ontaining

all rules of the original �lter. This way we get

both equivalent and non-equivalent pairs of �l-

ters.

The remaining four families were built by hand.

Family eq_om is the set of �lters with n rules

ontaining only ation omm_add(1). Inreas-

ing values of n yielded �lters of inreasing sizes.

Family eq_path_om is the same as eq_om, but

eah rule also ontains a prediate path_in(1).
Family path_om is omposed of �lters with ith
rule made of a prediate path_in(i) and an ation

omm_add(i). Finally, family path_om_a is

similar to path_om, exept that the ation is the

omposition of omm_add(i) with aept(). For

eah family, we generated 10 modi�ed versions

of eah �lter by performing a random permuta-

tion of its rules. We then tested the equivalene

between a �lter and its modi�ed versions. Eah

equivalene test was positive, exept for the fam-

ily path_om_a.

Results. We show the results of our experiments

in �gures 16 to 19. Note that the y axis is in log-

arithmi sale for all �gures in this setion. Note

also that positive instanes, i.e. those for whih

equivalene holds, are denoted by +, and negative
instanes by ×.
Figure 16 shows how the size of the resulting

automaton varies with the �lter size. We reall

that the size |A| of an automaton A is the number

of its states. Conerning the �lters, the size |F | of
a �lter F is the sum of the sizes of its rules. The

size |R| of a rule R = 〈P,A〉 is de�ned as |P |+ |A|
where |P | is the number of atomi prediates of

P and |A| is the number of atomi ations of A.
In Figure 16, there is a point for eah �lter in

the families desribed earlier in the setion as well

as for the shu�ed versions. We observe a linear

alignment of the points, showing that the size of

the automaton is exponential in the size of the

�lter, as proved in Setion 8.2.
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Figure 16: Size of automata.

Figure 17 shows how the time to build the au-

tomaton also follows this omplexity, as desribed

in Setion 8.2. We an observe that for very small

�lters, automata are built in a few milliseonds.

It takes about one seond for a �lter of size 16.

As we will see, this is negligible ompared to the

time needed for testing equivalene.
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Figure 17: Time for building automata.

Figure 18 shows how the exeution time of the

equivalene test varies with the produt of the au-

tomata sizes. Note that the x axis is shown on a

logarithmi sale. The �gure suggests that there

is a linear relationship (in logarithmi sale) be-

tween the produt of the automata sizes and the

running time of the algorithm, denoting a polyno-

mial relationship between these quantities (with-

out logarithmi sale). We state formally in The-

orem 5.1 that testing the equivalene of two �lters

F and F ′
is in time O(|BF |

k · |BF ′|k · |Σ|) when the

input is the two automata BF and BF ′
, and k = 5

is the maximal arity of Σ.7

The overall omplexity of testing equivalene

between two �lters F and F ′
is thus a single ex-

ponential in the size of the �lters, more preisely

O(p5(|F |+|F ′|) · |Σ|) for a �xed p as explained in

Setion 8.2. Our experiments on�rm this om-

plexity, as depited in Figure 19.

We note that real-world �lters, like those ob-

tained from the Ciso on�guration �le, are gene-

rally more e�iently proessed by our algorithm

than the syntheti �lters. One explanation for

this behaviour is the existene of an aept() or
rejet() ation in every rule of the iso �lters that
prevent further proessing of the routes. More-

over, equivalene is generally faster on negative in-

stanes, as explained in the proof of Theorem 5.1.

7

The alphabet Σ is either Σ
R

or its redution as ex-

plained in Setion 9.2.
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Figure 18: Testing equivalene from automata.
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Figure 19: Testing equivalene from �lters.

We also tried to ompare our e�ient equiv-

alene test proposed in Theorem 5.1 with the

usual equivalene test based on Boolean opera-

tions on tree automata (see Theorem 3.3). For

very small �lters made of only one rule with one

ation, our algorithm takes 1 milliseond, while

the usual equivalene test based on Boolean op-

erations takes 28 minutes.

8.2. Complexity

In this setion, we ompare the omplexity of

our algorithm with the omplexity of a naive al-

gorithm.

Complexity of our algorithm. Let us evaluate the

omplexity of our algorithm. Consider the on-
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stant p, de�ned as the maximal size among all

atomi prediate and ation automata sizes. Let

us show that the automaton onstruted for a �l-

ter F has size O(p|F |) and an be onstruted in

timeO(p5|F |·|Σ|), and that testing the equivalene
of two �lters F, F ′

is done in time

O(p5(|F |+|F ′|) · |Σ|)

by our algorithm.

First, when onstruting the automaton AP for

a prediate P from the automata for the atomi

prediates of P , we are able to avoid the expo-

nential blow-up due to the omplementation of

non-deterministi automata (see Theorem 3.1 and

Proposition 3.2). Therefore the most ostly op-

erations are the union and intersetion based on

the synhronized produt of two automata. In

Proposition 3.2, it is stated that the automaton

for the intersetion and the union operations is

built in time O(|δ1| · |δ2|), or equivalently in time

O(|A1|
5 · |A2|

5 · |Σ|) (see Footnote 1).
The worst ase for automaton AP

is when the shape of P is P =
(((P1 o1 P2) o2 P3) o3 · · · on−1 Pn) where

eah Pi is an atomi prediate and eah oi is

either ∨ or ∧. In this ase, the size of AP is

in O(p|P |) and the time to onstrut it in is

O(((p5)2 + (p5)3 + · · · + (p5)n) · |Σ|), whih is in

O(p5|P | · |Σ|).
Seond, when onstruting the automaton AA

for an ation A from the automata for the atomi

ations of A, the needed omposition operation

also requires some produt of two automata (see

Setion 5.3). This results in a omplexity O(p|A|)
for the size of AA and O(p5|A| · |Σ|) for the time

to build it (with an argument similar to prediate

P ).
Third, the omposition operation is also used

for a rule and for a sequene of rules. Therefore

for one rule R = 〈P,A〉, we get for automaton

AR a size in O(p|P |+|A|) = O(p|R|) and a time

omplexity to onstrut it in O((p5|P | + p5|A| +
p5(|P |+|A|))·|Σ|) whih is inO(p5|R|·|Σ|). For a �lter
F = (R1, . . . , Rn), we get an automaton BF of size

O(p|F |) in time O((Σn
i=1p

5|Ri|+Σn
i=2p

5(|R1|+···+|Ri|))·
|Σ|) = O(p5|F | · |Σ|), yielding the announed om-

plexities.

Finally, given two automata for two �lters

F, F ′
, we an avoid a seond exponential blow-up

and test in time O(p5(|F |+|F ′|) · |Σ|) whether these
�lters are equivalent (see Theorems 3.3 and 5.1).

Complexity of a naive algorithm. A naive algo-

rithm to test the equivalene of two �lters F, F ′

onsists in enumerating all the possible routes (up

to a ertain size) and to test if F, F ′
modify them

into the same routes.

Let us evaluate the omplexity of this algo-

rithm. We make the hypothesis that during the

appliation of a �lter to a given route, onstant

time O(1) is onsumed by eah atomi prediate

(resp. ation) of this �lter. Therefore testing if

two �lters F, F ′
modify a given route into the

same route an be performed in O(|F | + |F ′|).
It remains to evaluate the total number of tested

routes. We reall that suh a route has four at-

tributes: the DST_PREFIX of length bounded by

ldest (when written in binary), the LOCAL_PREF

omposed of one label, the AS_PATH of length

bounded by lpath and the COMMUNITIES of length

bounded by lcom (reall that the set COMMUNITIES

is represented as a sorted sequene). The max-

imum pre�x length ldest equals 32 bits for IPv4.

The length of the AS_PATH and COMMUNITIES is

limited by the maximum size of a BGP mes-

sage whih is 4096 bytes. This onstrains

8 lpath
to remain below 2048 and lcom below 1024. We

will use these bounds in our next omplexity

omputations. We an also remember the sta-

tus (aepted, rejeted) of the route as given

by one label. Conerning the possible values of

LOCAL_PREF, and of the elements of AS_PATH and

COMMUNITIES, we suppose that they are bounded

by cpref = 232 (32-bit value), cpath = 216 (16-bit

ASN) and ccom = 232 (32-bit values) respetively.

Therefore, the total number of routes nroutes is

bounded by the produt ndest ·npath ·npref ·ncom ·nstat

of the numbers of attributes of eah kind (inlud-

ing the status), suh that

• ndest =
∑ldest

i=0 2
i = 2ldest+1 − 1,

8

This is a rough approximation as the message header,

the destination pre�x and other path attributes further

limit these lengths.

27



• npath =
∑lpath

i=0 c
i
path = c

lpath+1
path /(cpath − 1),

• npref = cpref ,

• ncom =
∑lcom

i=0

(

ccom
i

)

whih an be bounded by

clcom+1
com /(ccom − 1)

• and nstat = 2.

It follows that the omplexity of the naive al-

gorithm is in

O(nroutes(|F |+ |F
′|)).

with nroutes in O(2 ·2ldest+1 · c
lpath
path · cpref · c

lcom
com). With

the bounds given above, the quantity inside the O
notation for nroutes is bounded by the huge num-

ber 266 · 22
16

.

Let us ompare this omplexity with our exper-

imental results. For our largest instane with size

|F | + |F ′| = 34, our algorithm takes (in the pes-

simisti ase) about 210 seonds (see Figure 19).

To be ompetitive, the naive algorithm has to

treat 266 · 22
16

routes in 210 seonds, i.e. 256 · 22
16

routes per seond, whih is far beyond what is

possible. So our algorithm remains more e�ient

for reasonable �lter sizes.

Note that our algorithm integrates the opti-

mizations desribed in Setion 9. The naive algo-

rithm ould also bene�t from the redution of the

alphabets as desribed in Setion 9.2. With this

optimization, by inspeting the instane of size

|F |+ |F ′| = 34, the previous onstants cpath, cpref
and ccom derease to the values 2, 1, 4 respetively,
and nroutes is now bounded by 234 · 22

12

. Never-

theless, the naive algorithm has to still treat the

huge number of 224 · 22
12

routes per seond, to be

ompetitive with our algorithm.

Moreover, the algorithm proposed in this pa-

per is less dependent to hanges in route mod-

els. For instane if we plan to implement IPv6

routes instead of IPv4 ones, the DST_PREFIX an

ontain 128-bit addresses instead of 32-bit ones.

This will not hange the way automata are built in

our framework, but automata for dst_is(x) and
dst_in(x) may grow by a linear fator, as the IP

pre�x x grows. On the opposite, the number of

routes to be onsidered by the naive algorithm

inreases a lot, by a fator 2128−32 = 296.

It should also be noted that adding a new at-

tribute to the route model, that is, an additional

branh to the trees, would multiply the omplex-

ity by a fator p.

9. Optimizations

In this setion, we propose several optimiza-

tions to get a more e�ient algorithm for testing

the equivalene of routing �lters.

9.1. Preproessing Ations

When onsidering an ation A = (A1, . . . , An),
two trivial optimizations an be applied to redue

the number n of atomi ations, while keeping an

ation equivalent to A.
The �rst one is obtained by removing all atomi

ations following an atomi ation aept() (resp.
rejet()). Indeed, if Ai = aept(), then all atomi

ations Aj with j > i will not modify any route,

as all of them will be in acc status. Hene A is

equivalent to (A1, . . . , Ai).
The seond optimization applies to the pref

branh. Three atomi ations relate to this

branh: absolute preferene pref_set(x), and rela-
tive preferene pref_add(x) and pref_sub(x) (see
Table 3). Assume that Ai = pref_set(a). Then

all atomi ations Aj of absolute and relative pref-

erene with j < i an be removed, as their ef-

fets will be replaed by the e�et of pref_set(a).
Hene, one an remove all relative and absolute

preferene atomi ations preeding the last ab-

solute preferene atomi ation.

9.2. Reduing Alphabet Size

In this setion, we show that it is possible to

optimize the proposed modeling of routing �lters,

by reduing the sizes of the built tree automata,

espeially by reduing the sizes of their underlying

alphabet ΣR
.

Let F and F ′
be two routing �lters that we want

to test for equivalene. We show below that we

an restrit routes to onsider to those having only

labels appearing in atomi prediates and ations

of F and F ′
(with some re�nement in the path

branh).
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Consider for instane the om branh. The

atomi prediates possibly used by F and F ′

are ommunity membership (see omm_in(x)
in Table 2) and the atomi ations are

ommunity membership and lear ommuni-

ties (see omm_add(x), omm_remove(x) and

omm_lear() in Table 3). Let us denote by

Σcom
F the set of labels a in Σcom

suh that

a appears in an atomi prediate/ation of

F or F ′
, as omm_in(a), omm_add(a), or

omm_remove(a).

If a is a ommunity of route t suh that a 6∈
Σcom

F , then there is no need to store it in the om

branh of t. Indeed, all atomi prediates and a-

tions relative to the om branh behave the same

on t and on the route t without a. Therefore,

for all routes t, we only store their ommunities

a ∈ Σcom
F in the om branh. Moreover the alpha-

bet used by the automata on the om branh is

redued to Σcom
F (instead of Σcom

).

The same kind of argument an be repeated

for the path branh. In this ase, we de�ne

by Σ
path
F the set of labels a in Σpath

suh that

a appears in an atomi prediate/ation of F
or F ′

, as path_in(a), path_ori(a), path_nei(a),
path_sub(s) with a a label in word s, and

path_prepend(a). We also add to Σ
path
F a new la-

bel denoted by ⋆. This label is used at the plae

of eah a ∈ Σpath \Σpath
F in the path branh. Con-

trarily to the om branh, we annot forget any

symbol not in Σ
path
F , due to prediate path_sub(s).

Let us illustrate this with an example. As-

sume that F uses prediate P = path_sub(ab),
and route t has a path branh b(c(d(a(path))))
with c, d 6∈ Σ

path
F . If we forget c, d, then the

path branh is replaed by b(a(path)) (instead of

b(⋆(⋆(a(path))))). Prediate P is then satis�ed,

whih is not orret. In this way, the alphabet

used by the automata on the path branh is re-

dued to Σ
path
F .

Similarly, on the dest branh, if no prediate

dst_is(x) or dst_in(x) appears in F nor F ′
, we

an take Σdest
F = ∅.

On the pref branh, we an also avoid to on-

sider the whole range [0, 232 − 1] for alphabet

Σpref
. Indeed, when entering a routing �lter,

LOCAL_PREF is set to a �xed value for all inom-

ing routes. Reall that the default for this value is

100. Moreover, eah ation has a unique e�et on

the value of LOCAL_PREF: given an input value, it

generates a unique possible output value. Hene,

for eah �lter rule Ri = 〈Pi, Ai〉, eah input value

p of LOCAL_PREF an yield two output values: p
if prediate Pi is false, and the result of applying

Ai on p otherwise. This gives at most 2n values

to onsider, for a �lter with n rules, therefore re-

duing the size of Σpref
when n is small.

9.3. E�ient Automata Operations

In this setion, we ome bak to the automata

operations used for testing equivalene of �lters.

In Theorems 3.1 and 3.3, the prohibitive (expo-

nential) operation is the omplementation of a

non-deterministi automaton A. In our ontext,

instead of using these two theorems, we were able

to use the more e�ient ounterparts given by

Proposition 3.2 and Theorem 5.1.

Boolean Combination of Atomi Prediates.

Proposition 3.2 shows how to avoid an exponen-

tial blow-up by working with automata that are

deterministi and L-omplete. This approah has

been applied to model prediates with tree au-

tomata (with L = R).

Equivalene Test of Routing Filters. As stated in

Theorem 5.1, a seond exponential blow-up has

been avoided for the equivalene test of two tree

automata, due to the funtionality of �lters. We

here give the proof of this theorem.

Proof of Theorem 5.1. Let L be the set of trees

t1 ⊛ t2 suh that

∃t, (t, t1) ∈ F, (t, t2) ∈ F ′
and t1 6= t2.

The relations F and F ′
are total funtions on

the set R of routes: for every t ∈ R, there is

a unique t′ suh that (t, t′) ∈ F (resp. F ′
). Thus

we have that L = ∅ if and only if F and F ′
are

equivalent.

From the de�nition of BF and BF ′
, we have L =

{t1 ⊛ t2 | ∃t ∈ R, t ⊛ t1 ∈ L(BF ) ∧ t ⊛ t2 ∈
L(BF ′) ∧ t1 6= t2}. Let δF and δF ′

the respetive

sets of transitions of BF and BF ′
. We now build
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an automaton A reognizing L in time O(|δF | ·
|δF ′|) and of size O(|BF | · |BF ′|). As emptiness

of tree automata is deidable in linear time, and

a ounterexample is onstruted in ase of non

emptiness [CDG

+
07℄, this will prove the result.

9

The way we onstrut automaton A is in the

same vein as for the omposition operation (see

Setion 5.3).

First we ⋄-�ll BF , i.e. we transform BF to B⋄
F

suh that BF aepts a tree t if and only if B⋄
F a-

epts it with an arbitrary number of labels (⋄, ⋄)
at the bottom of branhes path and com. This

proedure needs one more state q⋄, and the fol-

lowing transitions:

• ()
(⋄,⋄)
−−→ q⋄

• (q⋄)
(⋄,⋄)1
−−−→ q⋄

10

• (q⋄)
(a,b)1
−−−→ q, for eah transition ()

(a,b)
−−→ q in

BF with a, b ∈ {path, com, ⋄}.

We proeed similarly for BF ′
.

Then we build A from B⋄
F and B⋄

F ′. For eah

run of B⋄
F on t⊛ t1 and eah run of B⋄

F ′ on t⊛ t2,
with the same t, A has a run on t1 ⊛ t2. A state

of A is thus a pair (q1, q2)X (resp. (q1, q2)⊥) where
q1 (resp. q2) is the state of the orresponding run
of B⋄

F (resp. B⋄
F ′), and X (resp. ⊥) indiates

whether t1 = t2 (resp. t1 6= t2). The �nal states

of A are pairs (q1, q2)⊥ suh that eah q1 (resp.

q2) is a �nal state in B
⋄
F (resp. B⋄

F ′). Let us illus-

trate transitions for labels of arity 1. Assume for

instane that:

(p1)
(a,b)
−−→ q1 and (p2)

(a,c)
−−→ q2

are transitions in B⋄
F and B⋄

F ′ respetively. Then,

if b = c, we add the transition:

((p1, p2)X)
(b,c)
−−→ (q1, q2)X

9

More preisely, the ounterexample would give t1 ⊛ t2
instead of t, but the algorithm an easily be adapted to

identify t.
10

Given label (a, b) with arity 0, (a, b)1 is a fresh label

with arity 1.

while, if b 6= c, we add the transition:

((p1, p2)X)
(b,c)
−−→ (q1, q2)⊥

In both ases, we also propagate a previously de-

teted di�erene:

((p1, p2)⊥)
(b,c)
−−→ (q1, q2)⊥

Hene we only have to onsider pairs of transi-

tions, and the overall proedure (inluding the ⋄-
�lling of the automata) runs in time O(|δF | · |δF ′|)
and yields an automaton A of size O(|BF | · |BF ′|).
Notie that A does not exatly reognizes L

sine the automata BF and BF ′
have been ⋄-�lled.

It ould be ⋄-leaned as explained in Setion 5.3.

However in this ontext, this is not neessary, be-

ause L(A) = ∅ i� L = ∅.

Remark that the worst-ase omplexity of The-

orem 5.1 an be avoided when equivalene fails.

Indeed, the rule generation an be limited to a-

essible states, starting from leaf-rules. Hene,

one a state (q1, q2)⊥ is generated, with q1 (resp.
q2) a �nal state of BF (resp. BF ′

), we know that

�lters are not equivalent.

We show in Figure 20 the ode orresponding to

this equivalene test. When �lters are not equiv-

alent, it generates a route (i.e. a tree) whih is

aepted by one �lter but not by the other. It is

part of the lass FilterAutomaton, and takes a

seond FilterAutomaton as input, and a boolean

indiating whether a ounterexample should be

built in ase of non-equivalene.

We give a brief desription of subrou-

tines. Funtion reahedStatesAtLeaves re-

turns the set of pairs (q1, q2)v (of Java type

EquivaleneState, where v is a Boolean) that

an be built from symbols of arity 0. These

pairs initiate the saturation proess. Funtion

equivaleneStateForRules takes one rule of

eah automaton, and possibly returns a new pair

(q1, q2)v, as desribed in the proof. This adds new

pairs to saturate. Funtion filterState1 (resp.

filterState2) returns q1 (resp. q2) when applied
on pair (q1, q2)v. Funtion provesNonEquiv tests

whether a witness of non-equivalene has been

found, i.e. whether the pair (q1, q2)v on whih it is
alled is suh that q1 and q2 are �nal and v = ⊥.
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✞ ☎
private ITerm<LabelPair > synthes izeSeparat ionTerm ( FilterAutomaton o th e rF i l t e r , boolean omputeSepTerm ){

// the separa t ion term i s b u i l t by a s s o  i a t i n g a term to eah

// equ i va l ene term

ITerm<LabelPair> sepTerm = null ;

Map<EquivaleneState , ITerm<LabelPair>> sepMap =

new HashMap<EquivaleneState , ITerm<LabelPair >>();

// f i r s t add diamond r u l e s

f inal FilterAutomaton automaton1 = this . addDiamondRules ( ) ;

f inal FilterAutomaton automaton2 = o t h e r F i l t e r . addDiamondRules ( ) ;

// then look f o r a ounterexample to e qu i va l ene

Set<EquivaleneState > agenda = new HashSet<EquivaleneState >() ;

boolean equ i va l en t = true ;

Set<EquivaleneState > reahedState s =

reahedStatesAtLeaves ( automaton1 , automaton2 , omputeSepTerm , sepMap ) ;

agenda . addAll ( r eahedState s ) ;

while ( e qu i va l en t && ! agenda . isEmpty ( ) ) {

f inal Equiva l eneState s t a t e = agenda . i t e r a t o r ( ) . next ( ) ;

agenda . remove ( s t a t e ) ;

for ( IRule<LabelPair , F i l t e r S t a t e > ru l e 1 :

automaton1 . ge tRu le sUs ingLe f tSta te ( s t a t e . f i l t e r S t a t e 1 ( ) ) ) {

for ( IRule<LabelPair , F i l t e r S t a t e > ru l e 2 :

automaton2 . ge tRu le sUs ingLe f tSta te ( s t a t e . f i l t e r S t a t e 2 ( ) ) ) {

f inal Equiva l eneState equ ivState =

equ iva l eneStateForRule s ( ru le1 , ru le2 , automaton1 , automaton2 , reahedState s ,

omputeSepTerm , sepMap ) ;

i f ( equ ivState != null ) {

reahedState s . add ( equ ivState ) ;

agenda . add ( equ ivState ) ;

i f ( equ ivState . d i f f e r s ( ) ) {

equ i va l en t = ! equ ivState . provesNonEquiv ( automaton1 , automaton2 ) ;

i f ( omputeSepTerm && ! equ i va l en t ) {

sepTerm = sepMap . get ( equ ivState ) ;

}

}

}

}

}

}

i f ( ! e qu i va l en t && ! omputeSepTerm ) {

// a dummy non−nu l l term

sepTerm = new Term<LabelPair >(

this . getAlphabet ( ) ,

new ArrayList <ITerm<LabelPair >>(),

AtionAlphabet .REJREJ ) ;

}

return sepTerm ;

}

✝ ✆

Figure 20: Java ode for the equivalene test, returning a ounterexample to equivalene when it exists, and null

otherwise.
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10. Conlusion

In this paper, we have investigated the semanti

of BGP routing �lters, with the aim of determin-

ing whether two given �lters are equivalent or not.

We have shown how this problem ould be solved

using tree automata theory. Our approah was as

follows: routes were modeled as trees, and rout-

ing �lters as tree automata. Testing the equiva-

lene of two �lters was then redued to testing if

their orresponding tree automata are equivalent.

This is a lassial operation in tree automata the-

ory. Using this approah has the additional ben-

e�t that when two �lters are not equivalent, the

test generates a ounterexample.

We have implemented our model in a fully-

funtional prototype. This tool takes as input

BGP routing �lters expressed in the Ciso IOS

on�guration language, generates orresponding

tree automata and tests their equivalene. To

make the tool of pratial use, we had to enhane

it with several optimizations. Most optimizations

were brought to the model so as to redue the size

of automata and the running time of the equiva-

lene test. The �rst optimization avoids an expo-

nential blow-up at the level of prediates used in

�lters, by translating them into deterministi au-

tomata. The seond optimization avoids another

exponential blow-up by taking into aount that

routing �lters are total funtions. With a third

optimization, we have tried to redue the size of

the onstruted automata by using quasi-routes

instead of routes and by limiting the ranges of

values (ASNs, ommunity values...) to be onsid-

ered.

We used our prototype tool to ondut several

experiments to assess the pratial feasibility of

our approah. We performed these experiments

on two di�erent datasets. The �rst dataset was

omposed of routing �lters oming from routers

of a large European transit network. The seond

dataset ontained syntheti �lters that we gener-

ated to stress-test the salability of our approah.

The experimental results are promising. They

show the e�ieny of our approah and the inter-

est of using tree automata theory in the ontext

of routing �lters.

Beyond equivalene, our modelisation allows to

hek properties of �lters. Tree automata en-

joy great expressiveness. We ould hek linear

branhes against regular expressions (for IP ad-

dresses for instane), but also express non-loal

properties, like: Do all aepted routes ontain at

least 3 ommunities in the om-branh, eah time

the pref-value is greater than 150? In this paper

we only used a restrited part of tree automata

theory. Many other innovative appliations ould

arise from a deeper use of this theory.
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