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Abstra
t

The Border Gateway Proto
ol (BGP) is the proto
ol used to distribute Internet routes between di�erent

organizations. BGP routing poli
ies are very important be
ause they enable organizations to enfor
e

their business relationships by 
ontrolling route redistribution and route sele
tion. In this paper, we

investigate the semanti
 of BGP poli
ies. We aim to determine whether two poli
ies are equivalent, that

is, if given the same set of in
oming routes, they will generate the same set of outgoing routes. We show

how this problem 
an be solved using the tree automata theory and des
ribe several optimizations. We

also propose a prototype implementing this approa
h. The experimental results are very promising.

They show the e�
ien
y of our approa
h and the interest of using the tree automata theory in the


ontext of BGP routing poli
ies.

Keywords: BGP, routing proto
ols, routing poli
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1. Introdu
tion

The Border Gateway Proto
ol (BGP) [RLH06℄

is the proto
ol used to distribute Internet routes

between di�erent organizations, also 
alled Au-

tonomous Systems (AS). In BGP, routing poli
ies

are very important be
ause they enable ASes to

enfor
e their business relationships by 
ontrolling

route redistribution and route sele
tion. This in

turns in�uen
es how the tra�
 �ows in the Inter-

net. ASes are motivated to 
ontrol tra�
 �ow

as 
arrying tra�
 internally is 
ostly and they

are billed di�erently by the di�erent neighbor-

ing ASes, with whom they have a business rela-

tionship, for sending tra�
 through them. This

billing often relies on the amount of tra�
 sent

to the neighboring AS. For example, an organiza-

tion A 
an buy transit servi
e from an Internet

provider. In addition, it may 
onne
t to another

∗
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organization B for the sole purpose of ex
hanging

information destined to that organization. BGP

poli
ies enable organization A to prevent tra�


between the Internet provider and its peering or-

ganization B to transit through its network. Net-

work operators may wish to implement a wide va-

riety of poli
ies ranging from limiting the adver-

tisement of some pre�xes, to preferring sending

tra�
 to some 
heaper neighboring ASes, to in-

�uen
ing the route sele
tion in distant ASes, and

to stop a DDoS atta
k, to name a few.

The 
on�guration of BGP poli
ies is 
omplex

and often sour
e of errors [MWA02, FB05℄. The

implementation of a single poli
y is distributed

among �lters de�ned on multiple routers, ea
h


on�gured di�erently. Usually, some a
tion takes

pla
e at the entran
e of the AS and a di�erent set

of a
tions takes pla
e at the exit of the AS. Due

to this distribution, it is not easy to build a high

level view of the BGP poli
ies solely based on the

router 
on�guration �les. Furthermore, the 
on-

�guration languages provided by the router ven-

dors are very low level. Ea
h vendor provides a
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di�erent syntax. Translation from one language

to another is 
omplex as the expressiveness of the

languages varies greatly. Even using a single lan-

guage, it is possible to implement a single high

level poli
y in multiple ways. Several attempts

have been made at providing tools to manipu-

late or generate 
orre
t BGP poli
y 
on�gurations

[CGG

+
04, Int97, BFM

+
05, VH09℄.

In this paper, we investigate the semanti
 of

BGP routing �lters. We aim to determine if two

BGP routing �lters have the same semanti
. That

is, if given the same set of in
oming routes, the

two �lters will generate the same set of outgoing

routes. The solution to this problem is impor-

tant as it is the �rst step to being able to de-

te
t routing �lters 
on�guration mistakes before


ommitting a 
on�guration 
hange and thus pre-

vent unne
essary tra�
 disruptions. It enables

to push mu
h further the work started by Grif-

�n et al [GJR03℄, Feamster et al [FB05℄, by Le

et al [LLW

+
09℄ and more re
ently by Perouli et

al [PGM

+
12℄. Identifying if two poli
ies have the

same e�e
t enables network operators to 
he
k the


orre
tness of routing �lter 
on�gurations with re-

gard to the high level poli
ies they aim to enfor
e.

Additionally, su
h a solution is useful for refa
tor-

ing old BGP routing �lter 
on�gurations upon a


hange of network equipment, the a
quisition of

another network, a 
on�guration 
lean up or the

development/deployment of a 
on�guration tool.

The �rst idea that 
omes in mind to test if

two routing poli
ies have the same semanti
 is

the following one: to enumerate all the possi-

ble routes (up to a 
ertain size) and to test if

the two given poli
ies generate the same output

routes. In this paper we propose to rely on tree

automata theory [CDG

+
07℄, a powerful mathe-

mati
al tool well-known for its appli
ations in

XML pro
essing [Hos10℄, and program veri�
a-

tion [FGVTT04℄. We model routes as trees, and

routing poli
ies as tree automata. We use the

tree automata theory to de
ide whether two rout-

ing poli
ies have the same semanti
s, that is, are

equivalent total fun
tions. Therefore 
ontrarily to

the previous algorithm whi
h works at the level of

routes and tests route after route for the equiva-

len
e of poli
ies, we test for equivalen
e dire
tly

at the level of the poli
ies.

The paper is organized as follows. In Se
tion 2,

we brie�y des
ribe how the BGP routing proto-


ol works and how it implements routing poli
ies

with routing �lters. We then formally de�ne the

semanti
s of routing �lters, as total fun
tions op-

erating on routes.

In Se
tion 3, we explain how to model a route

as a tree. We re
all the notion of tree automa-

ton, present some of their useful properties, and

illustrate with some pedagogi
al examples. We

then show progressively how routing �lters 
an

be modeled as tree automata. We start with �l-

ter predi
ates used in routing �lters to test if a

�lter 
an be applied to a route. Su
h predi
ates


an easily and naturally be modeled by tree au-

tomata.

In Se
tion 5, we fo
us on �lter a
tions. An

a
tion is used in a �lter to generate a modi�ed

output route from a given input route. We show

that �lter a
tions 
an also be modeled with tree

automata. To this end, we show that an a
tion


an be seen as a binary tree relation and how to

model this relation as a tree automaton. This

model is again easy and natural. We also show

that a routing �lter 
an be modeled as a tree au-

tomaton, and that the equivalen
e of two �lters

redu
es to the equivalen
e of their related tree au-

tomata. Testing the equivalen
e of two tree au-

tomata is a 
lassi
al operation in tree automata

theory.

In Se
tion 6, we propose a prototype imple-

menting this approa
h. We demonstrate the

equivalen
e test on example Cis
o IOS route-

maps then we dis
uss additional routing �lter ver-

i�
ations that 
ould be provided by our tool in the

long-term.

In Se
tion 7, we des
ribe multiple 
ases where

our approa
h 
ould be applied by network opera-

tors to perform sanity 
he
ks when deploying or

updating routing �lters distributed on multiple

routers. We show the bene�ts of reasoning at the

level of �lters rather than at the level of routes.

In Se
tion 8, we des
ribe several experiments

we performed with the prototype implementation.

We present performan
e measurements as well as

a study of the algorithmi
 
omplexity. Several
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optimizations are brought to the prototype im-

plementation to redu
e its time and spa
e 
om-

plexity. Those optimizations are des
ribed in Se
-

tion 9. The experimental results are very promis-

ing. They show the e�
ien
y of our approa
h and

the interest of using the tree automata theory in

the 
ontext of routing �lters.

2. BGP Routing Poli
ies

The Internet is an inter
onne
tion of several

independent networks 
alled Autonomous Sys-

tems (AS), ea
h being uniquely identi�ed by an

AS number (ASN). The Border Gateway Proto
ol

(BGP) is the de fa
to standard proto
ol used for

routing among ASes.

To 
ompute paths a
ross the Internet, BGP

routers need to ex
hange routing information.

The basi
 unit of routing information in BGP is

a route and its purpose is to announ
e the rea
h-

ability of a remote destination. Although BGP


an be used to advertise the rea
hability of sev-

eral kinds of address families [BRCK00℄, in this

paper we fo
us on IPv4 addresses. For this ad-

dress family, destinations are announ
ed in the

pre�x form. An IP pre�x, expressed as a 
ouple

(address / pre�x length) represents a set of 
on-

tiguous IP addresses that share a 
ommon pre�x.

An example is 192.168.128.0/17 whi
h repre-

sents the set of addresses that share their 17 most

signi�
ant bits with 192.168.128.0. In a route,

we 
all DST_PREFIX the attribute that 
ontains the

destination pre�x.

A BGP route asso
iates a destination pre�x

DST_PREFIX with several path attributes. The

most important path attributes are des
ribed in

the following paragraphs.

• AS_PATH: re
ords the ASNs of the ASes tra-

versed by the route, ordered from the 
los-

est to the nearest. The AS_PATH attribute is

used for loop dete
tion as well as for ranking

routes.

• LOCAL_PREF: used to give a route a prefer-

en
e that has a meaning lo
al to the AS. The

LOCAL_PREF attribute has a default value in

every network. In the remaining of this pa-

per, this default value is assumed to be 100.

• NEXT_HOP: identi�es the router to whi
h

pa
kets must be sent in order to follow this

route.

• MULTI_EXIT_DISC (or MED): used by a neigh-

bor AS to suggest whi
h route should be pre-

ferred.

• COMMUNITIES [CTL96℄ : used to tag the

route as being part of a group of routes that

must undergo the same treatment. Ea
h tag,

named a 
ommunity value, has a semanti


that is usually lo
al to an AS or to an AS

and its dire
t neighbors. Some 
ommunity

values are de�ned with a global semanti
 by

the standard.

Ea
h attribute has a spe
i�
 type whi
h man-

dates how the attribute values are en
oded in a

route. The type of the above attributes are listed

in Table 1.

Other attributes are de�ned by the BGP stan-

dard. We do not list them in Table 1 as they


annot be used in routing �lters. Those at-

tributes are ORIGINATOR_ID, CLUSTER_LIST used

in 
onjun
tion with route-re�e
tors [BCC06℄,

ATOMIC_AGGREGATE and AGGREGATOR used for

route aggregation purposes. Moreover, the def-

inition of sets (AS_SET) in the AS_PATH is also

ignored as it is being depre
ated by the IETF

[KS11℄. The attributes listed in this paragraph

are ignored in the remaining of this paper. How-

ever, should those attribute appear in routing �l-

ters in the future, our model 
ould easily be ex-

tended to support them.

2.1. Routing Filters

An essential feature of the BGP proto
ol is the

ability for any router to �lter routes re
eived from

or sent to neighbors. To �lter a route has two

di�erent meanings: it 
an mean either to reje
t

the route or to a

ept it after its attributes have

possibly been modi�ed. Filtering routes has sev-

eral appli
ations [CR05℄ from enfor
ing routing

poli
ies (reje
ting routes that do not agree with
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Attribute Type

DST_PREFIX Sequen
e of up to 32 bits

(IPv4)

AS_PATH Sequen
e of 16-/32-bits

unsigned integers

LOCAL_PREF Unsigned integer (32-bits)

NEXT_HOP IPv4 address

MULTI_EXIT_DISC Unsigned integer (32 bits)

COMMUNITIES Set of 32-bits unsigned in-

tegers

Table 1: Type of BGP path attributes.

business relationships among domains) to tra�


engineering (in�uen
e how BGP sele
ts the best

route towards a spe
i�
 destination by 
hanging

the route's attributes).

Routing �lters in BGP are de�ned on every sin-

gle router on a per-session basis. That means that

a router 
an a
t di�erently on a route towards

the same destination but re
eived from or sent

to di�erent neighbors. Routing �lters are usually

de�ned by the network operator using the equip-

ment's 
on�guration language. This language is

vendor spe
i�
; the BGP spe
i�
ation [RLH06℄

does not spe
ify routing �lters. The two most

known 
on�guration languages are used on the

routing platforms from Cis
o Systems and Ju-

niper Networks, but other vendors provide their

own language as well.

Generally speaking, a routing �lter 
an be de-

s
ribed using the following formalism. A rout-

ing �lter F is 
omposed of a sequen
e of n rules

(R1, . . . , Rn) that are applied one after the other.

Ea
h rule R = 〈P,A〉 is 
omposed of two parts: a

predi
ate P and an a
tion A. The predi
ate de-

termines if the a
tion applies to a route or not.

A predi
ate is a Boolean 
ombination of atomi


predi
ates where ea
h tests a single attribute of

the route. The a
tion is a sequen
e of atomi
 a
-

tions where ea
h modi�es a single attribute of the

route. The a
tion is applied to the route when the

predi
ate mat
hes the route.

An atomi
 predi
ate tests a single path at-

tribute. Table 2 shows the most 
ommon atomi


predi
ates. Note that 
on�guration languages al-

low the expression of more 
omplex predi
ates

su
h as regular expressions on AS_PATH or the def-

inition of sets of 
ommunity values using regular

expressions. These predi
ates are synta
ti
 sug-

ars for more 
omplex 
ombinations of the above

atomi
 predi
ates.

An atomi
 a
tion modi�es a single path at-

tribute. Table 3 shows the most 
ommon atomi


a
tions. Spe
ial a
tions 
an be used in a �lter

to a

ept or reje
t a route. When su
h a
tion is

used, the �lter pro
essing stops and the remaining

�lter rules are not applied.

Algorithm 1 summarizes how a �lter is applied

to a route. The algorithm returns a modi�ed

version of the route and a mode that indi
ates

if the route was a

epted (a

) or reje
ted (rej)

by the �lter. The algorithm applies ea
h rule in

sequen
e. For ea
h rule, the algorithm tests if

the predi
ate mat
hes or not. If the predi
ate

mat
hes, the algorithm applies the atomi
 a
tions

in sequen
e. Ea
h a
tion modi�es the route. If

spe
ial a

ept() or reje
t() a
tion is en
ountered,

the algorithm �nishes immediately and the 
ur-

rent version of the modi�ed route, along with the

route's mode are returned.

Algorithm 1 Applies a filter to a route

mod_route← route
for all rule in rules(filter) do
if predicate(rule)(mod_route) then
for all action in actions(rule) do
if action = accept then
return (mod_route, acc)

else if action = reject then
return (mod_route, rej)

else

mod_route← action(mod_route)
end if

end for

end if

end for

return (mod_route, acc)

We show in Figure 1 a short BGP routing �lter

expressed in the syntax of Cis
o IOS along with an

example Java 
ode that expresses the same �lter

in our prototype tool.
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Name Predi
ate Des
ription

Community membership 
omm_in(x) True i� the 
ommunity value x belongs to the

COMMUNITIES attribute.

Path membership path_in(x) True i� the ASN x belongs to the AS_PATH attribute.

Path origin path_ori(x) True i� the ASN x appears at the last position in the

AS_PATH. The last ASN in the AS_PATH identi�es the

AS whi
h originated the route.

Path neighbor path_nei(x) True i� the ASN x appears at the �rst position in the

AS_PATH. The �rst ASN in the AS_PATH identi�es the

neighbor AS from whi
h the route was re
eived.

Path subsequen
e path_sub(s) True i� the sequen
e of ASNs, s, is in
luded as is in

the AS_PATH attribute.

Next-hop equality nh_is(x) True i� the NEXT_HOP equals the IP address x.
Next-hop in
lusion nh_in(x) True i� the NEXT_HOP is in
luded in the IP pre�x x.
Destination equality dst_is(x) True i� DST_PREFIX is equal to the IP pre�x x.
Destination in
lusion dst_in(x) True i� DST_PREFIX is in
luded into the IP pre�x x.

Table 2: List of the most 
ommon atomi
 predi
ates.

Name A
tion Des
ription

Absolute preferen
e pref_set(x) Set LOCAL_PREF value to x.
Relative preferen
e pref_add(x) Add x to the LOCAL_PREF value. If the new value

is larger than 232−1, the LOCAL_PREF value is set
to 232 − 1.

pref_sub(x) Subtra
t x from the LOCAL_PREF value. If the

new value is smaller than 0, the LOCAL_PREF

value is set to 0 .

Path prepending path_prepend(x) Add the ASN x at the beginning of the AS_PATH.

Community membership 
omm_add(x) Add a 
ommunity value x to the COMMUNITIES. If

x is already part of the COMMUNITIES, this a
tion

has no e�e
t.


omm_remove(x) Remove a 
ommunity value x from the

COMMUNITIES. If the 
ommunity value x is not

part of the COMMUNITIES, this a
tion has no ef-

fe
t.


omm_
lear() Empty the COMMUNITIES.

Next-hop update nh_set(x) Set NEXT_HOP value to IP address x.
Absolute MED med_set(x) Set the MULTI_EXIT_DISC value to value x.
A

eptan
e a

ept() A

ept the route.

Reje
tion reje
t() Reje
t the route.

Table 3: List of the most 
ommon atomi
 a
tions.

2.2. Problem Statement

The main obje
tive of this paper is to provide

a test for the equivalen
e of two routing �lters.

Let R be the set of possible routes. A routing
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✞ ☎
i p as−path a

e s s− l i s t 1 permit _10_

ip as−path a

e s s− l i s t 2 deny _10_

ip 
ommunity− l i s t 1 permit 20

route−map RM1 permit 10

mat
h as−path 1

s e t 
ommunity 20 add i t i v e

s e t l o 
 a l−p r e f e r en 
 e 200

route−map RM2 permit 20

mat
h as−path 2

mat
h 
ommunity 1

s e t 
ommunity none

✝ ✆

✞ ☎
List<IF i l t e rRu l e> ru l e s = new ArrayList <Fi l t e rRu le >() ;

f inal IP r ed i 
 a t e inPath = new PathIn ( 1 0 ) ;

f inal List<IA
tion> a
 t i on s 1 = new ArrayList <IA
tion >() ;

a 
 t i on s 1 . add (new ComAdd( 2 0 ) ) ;

a 
 t i on s 1 . add (new A

ept ( ) ) ;

r u l e s . add (new F i l t e rRu l e ( inPath , a 
 t i on s 1 ) ) ;

f inal IP r ed i 
 a t e notInPath = new Predi
ateNot ( inPath ) ;

f inal IP r ed i 
 a t e inComm = new CommIn( 2 0 ) ;

f inal List<IA
tion> a
 t i on s 2 = new ArrayList <IA
tion >() ;

a 
 t i on s 2 . add (new ClearCommunities ( ) ) ;

a 
 t i on s 2 . add (new A

ept ( ) ) ;

r u l e s . add (new F i l t e rRu l e (new Predi
ateAnd ( notInPath , inComm) ,

a 
 t i on s 2 ) ) ;

f inal List<IA
tion> a
 t i on s 3 = new ArrayList <IA
tion >() ;

a 
 t i on s 3 . add (new Reje
t ( ) ) ;

r u l e s . add (new F i l t e rRu l e ( null , a 
 t i on s 3 ) ) ;

F i l t e r myFi l ter = new F i l t e r ( r u l e s ) ;

✝ ✆

Figure 1: Cis
o IOS route-map and Java 
ode for 
onstru
ting the 
orresponding �lter.

�lter F as de�ned in Se
tion 2.1 
an be seen as a

total fun
tion asso
iating with ea
h route r ∈ R
another route r′ ∈ R, together with a mode in

{acc, rej} that indi
ates if the route is a

epted or

reje
ted by the �lter.

Equivalen
e. Two routing �lters F1 and F2 are

equivalent if and only if, for all routes, their re-

sults are equal, i.e. F1 ≡ F2 i� F1 and F2 de�ne

the same fun
tion. Two routes are equal if all

their attributes are equal.

The above de�nition of the equivalen
e of rout-

ing �lters leads to a straightforward, naive test

algorithm: enumerate all routes in R, apply the

�lters to ea
h route and 
ompare the results. If no

route was found for whi
h the �lters have di�erent

results, then the test su

eeds. Otherwise, a 
oun-

terexample is found and the test fails. The 
om-

plexity of this algorithm mainly depends on the

size of R. Testing the equivalen
e of routing �l-

ters with the above naive algorithm is 
learly not

pra
ti
al. We provide a 
omparison between our

approa
h and the naive algorithm in Se
tion 8.2.

In this paper, we aim at providing a novel

method for testing the equivalen
e dire
tly at the

level of �lters rather than at the level of routes.

To a
hieve this obje
tive, we model

1. routes with trees. A tree is just a mean of

en
oding the values of all the attributes of a

route.

2. predi
ates with tree automata. A tree

automaton that models a predi
ate re
og-

nizes only the trees 
orresponding to routes

satisfying the predi
ate.

3. a
tions/�lters with tree relation au-

tomata. A
tions and �lters are binary rela-

tions that map a route to its image. Hen
e,

we model a
tions and �lters with automata

that re
ognize a binary tree relation, that is

a set of pairs of trees (a tree and its image by

the relation).

The equivalen
e of routing �lters 
an there-

fore be redu
ed to testing the equivalen
e of au-

tomata, a standard operation in Automata The-

ory [HU79℄.

It is important to note that with the proposed

automata approa
h, a routing �lter is modeled by

an automaton as a relation (that maps routes to

routes), and routing �lters are tested to be equiv-

alent via relations en
oded as automata. The pro-

posed test is thus not done at the level of routes

but rather at the level of relations.

Other Problems. Let us mention some other re-

lated problems. When two routing �lters F1 and

F2 have been de
lared as not being equivalent,

we 
ould be interested to have a witness of non-

equivalen
e, that is, a route leading to two di�er-

6



ent results by F1 and F2. More generally, it 
ould

be interesting to know the set of all (instead of

one) witnesses of non-equivalen
e of two �lters.

Another interesting problem is to be able to

test whether or not a subset of routes satisfying

a given property (for instan
e, routes in
luding


ommunity 1) is transformed by a �lter into a

subset of routes satisfying another property (for

instan
e, routes with lo
al-pref value 150).

We will see in this paper that these problems


an also been solved using Automata Theory, fol-

lowing the same approa
h as for the equivalen
e

test of two �lters.

3. Tree Automata

In this se
tion, we provide the tree automata

ba
kground required to fully understand the pa-

per. We �rst explain what is a tree and how it


an be used to en
ode a 
omplex stru
ture. Se
-

ond, we re
all the notion of tree automaton and

illustrate it with examples. We also make a par-

allel between tree automata and more 
lassi
al

word automata. Third, we introdu
e two tree

automata properties that are important for our

model, namely determinism and 
ompletion. We

illustrate these properties with examples. Finally,

we explain Boolean operations on tree automata.

Those operations are required to model Boolean

operations on �lter predi
ates. These operations

are also at the heart of the 
lassi
al automata

equivalen
e test.

3.1. Trees

We 
onsider ranked trees, i.e. trees where the

number of 
hildren of a node is �xed by its la-

bel. Ranked trees are useful for en
oding 
om-

plex, stru
tured data su
h as a route 
omposed of

multiple attributes.

Let alphabet Σ be the �nite set of labels that


an appear in a tree. Let also ar be a fun
tion

mapping ea
h label a ∈ Σ to a positive integer

ar(a) 
alled its arity. The value ar(a) gives the

number of 
hildren of a node with label a. For


onvenien
e, we write Σn for the set of labels of

arity n: Σn = {a ∈ Σ | ar(a) = n}. A node

labeled by a ∈ Σ is 
alled an a-node.

We note a(t1, . . . , tn) the tree rooted at a with

n subtrees t1 to tn. The set TΣ of trees over Σ is

the least set 
ontaining all �nite trees a(t1, . . . , tn)
where a ∈ Σn and ti ∈ TΣ for all 1 ≤ i ≤ n.
Note that 
hildren of a node are ordered. A tree

language is a subset of TΣ.

Let us illustrate these de�nitions. Consider the

alphabetΣab
d = {a, b, c, d} where ar(a) = ar(b) =
2, ar(c) = 1 and ar(d) = 0. In other words,

Σab
d

2 = {a, b}, Σab
d

1 = {c} and Σab
d

0 = {d}.
The tree a(d) does not belong to TΣab
d

, be
ause

ar(a) = 2, so the root node should have two 
hil-

dren. The tree t = b(a(d, c(a(d, d))), d) belongs to
TΣab
d

. It is depi
ted in Figure 2.

b

a

d c

a

d d

d

Figure 2: A tree t ∈ TΣab
d .

3.2. Tree Automata

In this se
tion, we re
all the notion of tree au-

tomaton and illustrate it with the previous exam-

ple of alphabet Σab
d

. The role of a tree automa-

ton is to re
ognize trees with a given stru
ture.

Tree Automaton. A tree automaton A over Σ is a

tuple (Q,F,Σ, δ) where Q is a �nite set of states,

F ⊆ Q is a set of �nal states, and δ is a set of

transitions of the form (q1, . . . , qn)
a
−→ q with a ∈

Σn and q, q1, . . . , qn ∈ Q. The number of states is
denoted by |Q| and the number of transitions by

|δ|. The size |A| of A is equal to |Q|.

Run. A run of a tree automaton A on a tree t is
a fun
tion ρ mapping a state of A to ea
h node of

t, su
h that for every node π of t, if π is labeled

by a ∈ Σn, then (ρ(π1), . . . , ρ(πn))
a
−→ ρ(π) ∈ δ

where πi is the ith 
hild of node π.
Intuitively, a tree automaton operates in a

bottom-up manner on a tree: it assigns a state

7



to ea
h leaf, and then to ea
h internal node, a
-


ording to the states assigned to its 
hildren. A

run ρ is a

epting if the root π of the tree is as-

signed to a �nal state, i.e. ρ(π) ∈ F . A tree

t ∈ TΣ is a

epted by the tree automaton A if

there is an a

epting run among all runs of A on

this tree.

Re
ognizable Language. The language of A is the

set of trees a

epted by A, and is written L(A).
We say that A re
ognizes L(A). A tree language

L ⊆ TΣ is re
ognizable if there exists a tree au-

tomaton A re
ognizing it.

Equivalen
e. Two tree automata are equivalent if

they re
ognize the same language.

3.3. Example

To illustrate the 
on
ept of a tree automaton,

let us take a simple example. Consider the alpha-

bet Σab
 = {a, b, c}. The arity fun
tion is de�ned

as ar(a) = ar(b) = 2, ar(c) = 0.
Suppose we want to build an automaton that

re
ognizes the language L
a



omposed of trees

over the alphabet Σab


that have at least one

bran
h where an a-node is parent of a c-node.
We propose the tree automaton A

a


=
(Q,F,Σab
, δ) with Q = {q




, qac, q⊥}. State qc is
assigned to a c-node. State qac is assigned to a

node π if and only if it belongs to a bran
h that


ontains an a-node parent of a c-node. State q⊥
is assigned in every other 
ase. There is a single

�nal state; F = {qac}. The transitions in δ are as
follows:

()
c
−→ qc

(qc, qc)
b
−→ q⊥ (qc, qac)

b
−→ qac (qc, q⊥)

b
−→ q⊥

(qac, qc)
b
−→ qac (qac, qac)

b
−→ qac (qac, q⊥)

b
−→ qac

(q⊥, qc)
b
−→ q⊥ (q⊥, qac)

b
−→ qac (q⊥, q⊥)

b
−→ q⊥

(qc, qc)
a
−→ qac (qc, qac)

a
−→ qac (qc, q⊥)

a
−→ qac

(qac, qc)
a
−→ qac (qac, qac)

a
−→ qac (qac, q⊥)

a
−→ qac

(q⊥, qc)
a
−→ qac (q⊥, qac)

a
−→ qac (q⊥, q⊥)

a
−→ q⊥

A b-node is assigned state qac if and only if at

least one of its 
hild nodes was assigned qac. In

every other 
ase a b-node is assigned state q⊥.

An a-node is assigned state qac if and only if at

least one of its 
hild nodes was assigned qac or qc.
If all 
hild nodes are assigned q⊥, then state q⊥ is

assigned to the a-node.
Figure 3 shows a run of A

a


on two di�erent

trees. The run in Figure 3a is non-a

epting as

the tree does not 
ontain an a-node parent of a

c-node. The state assigned to the root node, q⊥ is

not a �nal state. The run in Figure 3b is a

ept-

ing. Indeed, this tree belongs to the language of

the automaton, L(A
a


).

a

b b

c c c c

q⊥

q⊥ q⊥

qc qc qc qc

(a) Non-a

epting run

b

c a

a c

c c

qac

qc qac

qac qc

qc qc

(b) A

epting run

Figure 3: Two runs of A
a


.

3.4. Relation to Word Automata

Tree automata are related to more 
lassi
al

word automata. Tree stru
tures subsume words,

that is every word 
an be 
onsidered as a tree.

For example, a word a1a2 · · · an 
an be 
onsidered

as a tree an(an−1(. . . a1(nil))), so that a word is

mapped to a bran
h. We 
onsider that ea
h word

label has arity 1 when used in the tree alphabet.

A spe
ial label nil of arity 0 is also added to the

tree alphabet. Note that the ordering of labels in

the tree is reversed 
ompared to that of the word.

This is due to the bottom-up pro
essing of tree

automata.

Su
h mapping also holds at the automata level.

A word automaton over Σ is a tuple (Q, I, F,Σ, δ),
where Q is a �nite set of states, I, F ⊆ Q are sets

of initial (resp. �nal) states, and δ is a set of

transitions of the form q
a
−→ q′. A run starts in

an initial state and applies a series of transitions


orresponding to labels of the input word. A word

is a

epted if a run ends in a �nal state. We refer

the reader to [HU79℄ for more details.
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q0 q1
c

a

b

Figure 4: Word automaton re
ognizing (a|b)∗c.

It is also interesting to note that word automata

have the same expressiveness as regular expres-

sions: every regular expression 
an be translated

to a word automaton re
ognizing the same words,

and vi
e-versa. For instan
e the regular expres-

sion (a|b)∗c 
an be translated to the word automa-

ton in Figure 4 su
h that Q = {q0, q1}, q0 (resp.

q1) is the unique initial (resp. �nal) state, and the

transitions are q0
a
−→ q0, q0

b
−→ q0, and q0

c
−→ q1.

3.5. Tree Automata Properties

Some operations on tree automata that are use-

ful in this paper, 
an be realized mu
h more e�-


iently when the tree automata satisfy some prop-

erties: determinism and 
ompleteness.

Determinism. A tree automaton A is determinis-

ti
 if it has no pair of distin
t transitions with

the same left-hand side. Formally, whenever

(q1, . . . , qn)
a
−→ q ∈ δ and (q1, . . . , qn)

a
−→ q′ ∈ δ,

we must have q = q′.
Hen
e, a deterministi
 tree automaton has at

most one run per tree. Every tree automaton 
an

be determinized, i.e., one 
an build an equivalent

deterministi
 tree automaton [CDG

+
07℄. How-

ever, the determinization pro
edure is exponen-

tial in time, and yields automata of exponential

size.

Completeness. Given a language L ⊆ TΣ, a tree

automaton A is L-
omplete if there is at least

one run of A on every t ∈ L. Therefore, if A
is deterministi
 and L-
omplete, there is exa
tly

one run of A on every t ∈ L.
An automaton A is 
omplete if there is at

least one transition for every left-hand side

(q1, . . . , qn)
a
−→ where ar(a) = n. If an automaton

is 
omplete, it is also TΣ-
omplete.

Every tree automaton 
an easily be turned into

an equivalent 
omplete automaton by adding a

(non-�nal) sink state q∗ and transitions going

to it (q1, . . . , qn)
a
−→ q∗, for every left-hand side

(q1, . . . , qn)
a
−→ missing in δ. We name this oper-

ation 
ompletion.

3.6. Example Revisited

The automaton A
a


de�ned in Se
tion 3.3 is

deterministi
 as there is a single transition for

ea
h left-hand side. The automaton is also 
om-

plete as there is a transition for every possible

left-hand side. In this se
tion, we provide a non-

deterministi
 automaton A′
a


that re
ognizes the

same language L
a


as A
a


. Re
all that L
a


is the

set of trees over Σab


that have at least one bran
h

where an a-node is parent of a c-node.
To build su
h an automaton, let us �rst imagine

that the automaton 
an guess a bran
h of the tree

where the a-node is parent of a c-node, and then


he
k it. Let us 
all this bran
h β. Note that the
a
tion of guessing the bran
h is a pure vision of

the mind. The automaton is really an algebrai


obje
t and there is no reason to ask how it 
an

guess the bran
h.

A run of the automaton A′
a


assigns state q⊥ to

every node that is not on β. On β, the automaton

uses states qc and qac to memorize that it has seen

respe
tively a c-node or an a-node above a c-node.
State qac is the unique �nal state. The transi-

tions of the automaton are as follows:

()
c
−→ qc

()
c
−→ q⊥

(q⊥, q⊥)
b
−→ q⊥ (q⊥, qac)

b
−→ qac (qac, q⊥)

b
−→ qac

(q⊥, q⊥)
a
−→ q⊥ (qc, q⊥)

a
−→ qac (q⊥, qc)

a
−→ qac

(q⊥, qac)
a
−→ qac (qac, q⊥)

a
−→ qac

If the automaton guessed the wrong bran
h,

then there is a b-node above a c-leaf whi
h has

been assigned to qc. As no transition exists for

this 
ase, there 
annot be a 
orresponding run for

this guess.

Figure 5 shows an a

epting run of A′
a


on the

same tree as in Figure 3b. The bran
h β that
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has been guessed by the automaton is shown with

thi
k lines. Every node outside the bran
h is

mapped to state q⊥. Note that there are two other
a

epting runs of A′

a


for this tree as there are two

other bran
hes that 
ontain an a-node parent of
a c-node.

b

c a

a c

c c

qac

q⊥ qac

qac q⊥

q⊥ qc

Figure 5: A run of A′
a


.

The automaton A′
a


is non-deterministi
. This


an be observed from the transitions labeled with

c. There is one for the leaf in the β bran
h and the

other one for the leaves outside the bran
h. As a


onsequen
e, if a tree has more than one bran
h

that satis�es the property 
he
ked by A′
a


, then

there 
an be multiple a

epting runs for this tree.

The automaton A′
a


is Lac-
omplete as there is at

least one run for every t in Lac. However, A′
a


is not 
omplete as there is no transition for some

left-hand sides, like for the 
ase (qc, qc)
a
−→ .

3.7. Operations on Tree Automata

Re
ognizable tree languages enjoy 
losure un-

der all standard Boolean operations. The 
om-

plement of a tree language T ⊆ TΣ is the tree

language TΣ \ T , i.e. the set of all trees that are
not in T . The interse
tion and union of two tree

languages T1, T2 ⊆ TΣ are respe
tively T1∩T2 and

T1 ∪ T2.

Theorem 3.1. Re
ognizable tree languages are


losed under 
omplementation, interse
tion and

union.

In other terms, given automata A1 =
(Q1, F1,Σ, δ1) and A2 = (Q2, F2,Σ, δ2), one 
an

always �nd automata A′
1, A

′
2 and A′

3 re
ogniz-

ing respe
tively TΣ \ L(A1), L(A1) ∩ L(A2), and
L(A1) ∪ L(A2). This result is folklore [CDG

+
07℄,

we only give some insights.

Interse
tion and union 
an be obtained by 
om-

puting the syn
hronized produ
t of two automata

A1 and A2. This 
onstru
tion is in time O(|δ1| ·
|δ2|) and yields automata of size O(|A1| · |A2|).
Complementation is obtained by determinizing

the automaton, 
ompleting it (so that ea
h tree

has exa
tly one run on it), and then swapping its

�nal states with its non-�nal states. The 
omple-

mentation pro
edure is exponential in time and

the obtained automaton has a size exponential in

the size of the original automaton.

When the initial automata are deterministi


and 
omplete, better 
omplexities o

ur for the


omplementation operation, as indi
ated in the

next proposition. In this proposition, we 
onsider

the more general situation of automata that are

deterministi
 and L-
omplete. Given a tree au-

tomaton A, we use notation L(A)|L = L(A) ∩ L
to restri
t the language of A to L.

Proposition 3.2. Let A1 and A2 be two au-

tomata that are deterministi
 and L-
omplete.
Then one 
an 
onstru
t automata A′

1, A
′
2 and

A′
3 that are again deterministi
 and L-
omplete,

and su
h that L(A′
1)|L = L \ L(A1)|L, L(A

′
2)|L =

L(A1)|L ∩ L(A2)|L, and L(A′
3)|L = L(A1)|L ∪

L(A2)|L respe
tively. Moreover A′
1 
an be 
on-

stru
ted in time O(|A1|) and with the same size

as A1, and A′
2, A

′
3 
an be 
onstru
ted in time

O(|δ1| · |δ2|) and with size O(|A1| · |A2|).

Let us give some insights about this result. As

ea
h given automaton Ai, i = 1, 2, is determin-

isti
 and L-
omplete, there exists a unique run

for ea
h tree t ∈ L. This run is either a

epting

or reje
ting depending on whether t belongs to

L(Ai)|L or not. Therefore, an automaton A′
1 su
h

that L(A′
1)|L = L\L(A1)|L is simply obtained from

A1 by swapping its �nal states with its non-�nal

states. The resulting automaton is deterministi


and L-
omplete. For the interse
tion and union

operations, we use the syn
hronized produ
t (as

mentioned above) of the automata A1 and A2 to

get automata A′
2 and A′

3 respe
tively. The an-

noun
ed 
omplexities follow.

In this proposition, it is stated that the automa-

ton for the interse
tion and the union operations

is built in time O(|δ1| · |δ2|). In fa
t it 
an be
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built in time O(|A1|
k · |A2|

k · |Σ|) where k is the

maximal arity of the alphabet Σ.1

Thanks to Theorem 3.1, it 
an be 
he
ked

whether two tree automata A1 and A2 are equiv-

alent. Indeed, it su�
es to 
he
k that L(A1) ⊆
L(A2), and 
onversely. The former in
lusion is

equivalent to L(A1) ∩ (TΣ \ L(A2)) = ∅. Empti-

ness of tree automata is de
idable, so we get

[CDG

+
07℄:

Theorem 3.3. Equivalen
e of tree automata is

de
idable.

This test is in exponential time if automata are

non-deterministi
 [CDG

+
07℄, and in polynomial

time otherwise [CGLN09℄.

4. Modeling Routes and Predi
ates

4.1. Model of a Route

We re
all from Se
tion 2 that a route is 
om-

posed of the attributes DST_PREFIX, AS_PATH,

LOCAL_PREF, NEXT_HOP, MULTI_EXIT_DISC,

COMMUNITIES and of a status indi
ating if the

route is still modi�able or de�nitely a

epted or

reje
ted by the routing �lter.

A route 
an be modeled as a tree as shown in

Figure 6. This tree has a root labeled by label

route of arity 5. This node is the parent of �ve

bran
hes: the �rst four bran
hes model some at-

tributes and the last one models the status. It is

easy to support additional attributes in the tree

model of a route by adding new bran
hes under

the root node.

The bran
hes shown in Figure 6 
orrespond

to the next four attributes: a sequen
e of in-

teger values (AS_PATH), a set of integer values

(COMMUNITIES), a single integer (LOCAL_PREF)

and a bitstring (DST_PREFIX). For 
larity reasons,

we 
hoose to not present the MULTI_EXIT_DISC

and NEXT_HOP in the paper as the type and the

a
tions that 
an be applied to these attributes are

1

We just need to store the transitions in a data stru
-

ture where transitions using a given symbol of Σ are re-

trieved in 
onstant time. Then we loop over all symbols of

the alphabet Σ and 
onsider pairs of transitions in δ1× δ2
using ea
h symbol.

route

0

1

1

dest

50

10

20

30

path

100

pref

10

20

40


om

mod

Figure 6: Tree modeling a route.

similar to that of LOCAL_PREF and DST_PREFIX

respe
tively.

The stru
ture of the �ve bran
hes is des
ribed

in the following paragraphs along with their spe-


i�
 alphabet of labels of arity 1.

• dest bran
h: models the destination pre�x

(DST_PREFIX) written in binary, using alpha-

bet Σdest = {0, 1}. The most signi�
ant bit is

at the bottom. For example, the route mod-

eled on Figure 6 has the 192.0.0.0/3 destina-

tion pre�x. The bran
h is ended by leaf dest.

This leaf label is required as a tree automaton

pro
eeds bottom-up and needs to identify on

whi
h bran
h it is working.

• path bran
h: models the sequen
e of ASNs

(AS_PATH) su
h that the �rst ASN is at the

bottom of the bran
h and the last ASN is at

the top of the bran
h. This inverse order al-

lows an easy modeling of the a
tion of path

prepending (see Se
tion 5.2). The bran
h

uses alphabet Σpath = [0, 216−1] whose labels
represent 16-bit ASNs. The bran
h is ended

with leaf path.

• pref bran
h: models the lo
al preferen
e

(LOCAL_PREF). It uses a label of alphabet

Σpref = [0, 232−1]. The bran
h is ended with

leaf pref.

• 
om bran
h: models the set of 
ommunity

values (COMMUNITIES) as a sorted sequen
e

with the least number at the top of the
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bran
h. This bran
h uses Σcom = [0, 232 − 1]
whose labels represent 
ommunities. The

bran
h is ended with leaf 
om.

• status bran
h: indi
ates the status of the

route: either mod (modi�able), a

 (a
-


epted), or rej (reje
ted).

The underlying alphabet ΣR
used to des
ribe

routes as trees is thus de
omposed as follows:

ΣR
5 = {route}, ΣR

4 = ΣR
3 = ΣR

2 = ∅,
ΣR

1 = Σdest ∪ Σpath ∪ Σpref ∪ Σcom
, and ΣR

0 =
{dest, path, pref, com,mod, acc, rej}.
Although the alphabet ΣR

as de�ned at this

stage is quite large, in Se
tion 9.2, we show that

only parts of the alphabets Σdest
, Σpath

, Σpref
and

Σcom
are to be 
onsidered, depending on the rout-

ing �lters submitted for equivalen
e. This obser-

vation will be important for performan
e reasons.

4.2. The Language of Routes

The setR of trees modeling routes is re
ognized

by the following tree automatonAR with a unique

�nal state qf and the transitions

1. ()
dest
−−→ q1, (q1)

i
−→ q1, i ∈ Σdest

,

2. ()
path
−−→ q2, (q2)

i
−→ q2, i ∈ Σpath

,

3. ()
pref
−−→ q3, (q3)

i
−→ q′3, i ∈ Σpref

,

4. ()
com
−−→ q4, (q4)

i
−→ q4,i, i ∈ Σcom

,

(q4,j)
i
−→ q4,i, i, j ∈ Σcom

with j > i,

5. ()
mod
−−→ q5, ()

acc
−→ q5, ()

rej
−→ q5,

6. (q1, q2, q
′
3, q4,i, q5)

route
−−→ qf , i ∈ Σcom

,

(q1, q2, q
′
3, q4, q5)

route
−−→ qf .

In this automaton, transitions 1 des
ribe the dest

bran
h as any sequen
e of bits ended by leaf dest.

To limit its size, this automaton does not 
he
k

that the dest bran
h has length at most 32. We

show in Se
tion 4.4 that this has no impa
t on

the �lters equivalen
e test. Transitions 2 des
ribe

the path bran
h as any sequen
e of labels in Σpath

ended by leaf path. Transitions 3 des
ribe the

pref bran
h as one label in Σpref
followed by leaf

pref. Transitions 4 des
ribe the 
om bran
h as

an ordered sequen
e of labels in Σcom
ended by

leaf 
om. The label j just read is stored in the


urrent state q4,j in order to be 
ompared with

the label i read just after j, and the transition

is applied if j > i. Transitions 5 des
ribe the

three modes, mod, a

, rej, of the route. Finally

transitions 6 are applied at the root of the tree if

the stru
ture of ea
h bran
h has been respe
ted

(when COMMUNITIES is a non-empty set in the �rst


ase, and when it is empty in the se
ond 
ase).

Noti
e that automatonAR is deterministi
, but

non-
omplete. Moreover, it has a �nite number of

states, as states q4,i are restri
ted to i ∈ Σcom
. Its

number of states 
an be large as the number of

transitions required to 
he
k the ordering in the


om bran
h is quadrati
 in the size of the 
om

alphabet. If |Σcom| = n, there are n(n−1)
2

+ n + 1
transitions of type 4.

Quasi-Routes. In order to work with smaller and

simpler tree automata for atomi
 predi
ates and

atomi
 a
tions and thus for routing �lters, we


onsider quasi-routes instead of routes. A quasi-

route is a tree with a root labeled by route,

�ve bran
hes of arbitrary length labeled by el-

ements in ΣR
1 = Σdest ∪ Σpath ∪ Σpref ∪ Σcom

and ended by leaves labeled by elements in

{dest, path, pref, com,mod, acc, rej}. The deter-

ministi
 automaton AquasiR with one �nal state

qf and the following transitions exa
tly a

epts

all quasi-routes:

1. ()
dest
−−→ q0, ()

path
−−→ q0, ()

pref
−−→ q0, ()

com
−−→ q0,

()
mod
−−→ q0, ()

acc
−→ q0, ()

rej
−→ q0,

2. (q0)
i
−→ q0, i ∈ ΣR

1 ,

(q0, q0, q0, q0, q0)
route
−−→ qf .

In the next se
tions, we des
ribe the automata

modeling the atomi
 predi
ates and the atomi


a
tions su
h that ea
h predi
ate operates on a

quasi-route instead of a route, and ea
h a
tion

modi�es a quasi-route instead of a route. Propo-

sition 3.2 from Se
tion 3.7 is an important prop-

erty that we will use with L = R, when model-

ing predi
ates. We show in Se
tion 5.5 where the

automata A,A′
are 
onstru
ted for the two �lters

F, F ′
, how these automata are restri
ted to routes

before testing for equivalen
e.

This approa
h whi
h 
onsists in working with

quasi-routes instead of routes, and restri
ting to

12



routes at the very last step, leads to small tree

automata and thus to a more e�
ient algorithm.

Additional optimizations are detailed in Se
tion 9.

4.3. Filters seen as Tree Automata

We re
all that a routing �lter F is 
omposed

of a sequen
e of rules (R1, . . . Rn). Ea
h rule

R = 〈P,A〉 is 
omposed of a predi
ate P whi
h is

a Boolean 
ombination of atomi
 predi
ates, and

of an a
tion A whi
h is a sequen
e of atomi
 a
-

tions. The problem studied in this arti
le is the

equivalen
e of two routing �lters. We translate

this problem to an equivalen
e test between two

tree automata (one for ea
h �lter).

(1)

(2)

(3) (1) (3) (3)

{
(4) {{{ {(5) (5)

(6)

(7) {
Figure 7: General approa
h for modeling.

The main ideas of our approa
h are depi
ted

in Figure 7 and brie�y des
ribed in the following

paragraphs (the next se
tions detail the 
onstru
-

tions). The numbers between parentheses that

appear in Figure 7 refer to the list items below.

1. Ea
h atomi
 predi
ate appearing in the pred-

i
ate of a rule is modeled by a tree automaton

that a

epts quasi-routes (seen as trees t) sat-
isfying the atomi
 predi
ate (see Se
tion 4.4).

2. By Proposition 3.2, ea
h Boolean 
ombina-

tion of atomi
 predi
ates 
an be modeled by

a tree automaton (see Se
tion 4.5).

3. Ea
h atomi
 a
tion appearing in the a
tion of

a rule is modeled by a tree automaton that

a

epts the pairs of quasi-routes (t, t′) su
h

that t′ is the image of t by the atomi
 a
tion

(see Se
tion 5.2).

4. Ea
h sequen
e of atomi
 a
tions, is modeled

by an automaton obtained by 
omposition of

the automata of the atomi
 a
tions (see Se
-

tion 5.3).

5. Ea
h rule R = 〈P,A〉 is also modeled by a

tree automaton that a

epts pairs of quasi-

routes (t, t′) as follows: if t satis�es predi-


ate P , then t′ is the image of t by a
tion

A, otherwise t′ = t. This automaton 
an

be 
onstru
ted from the automata for P and

A thanks to the 
omposition operation (see

Se
tion 5.4).

6. Finally, a routing �lter F = (R1, . . . , Rn),
is modeled by a tree automaton obtained by


omposing the automata of rules Ri. The re-

sulting automaton is also 
omposed with an

automaton Aid that only a

epts routes.

7. Two �lters F, F ′
are equivalent if their 
orre-

sponding automata are equivalent (see The-

orem 3.3 and Se
tion 5.5).

4.4. Model of an Atomi
 Predi
ate

The most important atomi
 predi
ates used in

routing �lters have been des
ribed in Table 2. We

show in this se
tion that ea
h of those atomi


predi
ates 
an be modeled by a tree automa-

ton. As mentioned in Se
tion 4.2, we make an

atomi
 predi
ate automaton simpler by 
onsider-

ing quasi-routes instead of routes. To this end, to

model atomi
 predi
ate P , we build an automata

AP whose language is su
h that L(AP )|R = {t ∈
R | t satis�es P}. This automata 
an be ob-

tained by using the same transitions as inAquasiR,

ex
ept for the bran
h 
on
erned with predi
ate P .
Moreover, we aim at building tree automata that

are deterministi
 and R-
omplete.

Path Membership. Let us 
onsider in more details

the atomi
 predi
ate Ppm = path_in(x) of path

membership, whi
h tests whether an ASN x be-

longs to the AS_PATH attribute of a route. The

following tree automaton Apm a

epts all quasi-

routes with a path bran
h that 
ontains label x.
The transitions are the following ones:

13



¬x xx

i 6= x i

i ∈ ΣR
1

Figure 8: Word automaton re
ognizing words 
ontaining

x.

1. ()
dest
−−→ q0, ()

pref
−−→ q0, ()

com
−−→ q0,

()
mod
−−→ q0, ()

acc
−→ q0, ()

rej
−→ q0,

(q0)
i
−→ q0, i ∈ ΣR

1 ,

2. ()
path
−−→ q¬x, (q¬x)

x
−→ qx,

(q¬x)
i
−→ q¬x, i ∈ ΣR

1 , i 6= x,

(qx)
i
−→ qx, i ∈ ΣR

1 ,

3. (q0, qx, q0, q0, q0)
route
−−→ q⊤,

(q0, q¬x, q0, q0, q0)
route
−−→ q⊥.

In this automaton, transitions 2 use two states,

qx, q¬x to remember if x has been seen or not on

the se
ond bran
h of the tree. Transitions 1 allow

the same transitions as in automaton AquasiR for

the other bran
hes. Transitions 3 indi
ate that

the �nal state q⊤ is rea
hed in the 
ase x has been

seen, otherwise the non-�nal state q⊥ is rea
hed.

As already mentioned in Se
tion 3.4, tree stru
-

tures subsume words, and tree automata subsume

word automata. In the previous automaton, tran-

sitions 2 a
t like in the word automaton B de-

pi
ted in Figure 8. This automaton uses alphabet

ΣR
1 , it is deterministi
 and 
omplete. A word over

ΣR
1 is a

epted by B if and only if it 
ontains label

x.
We 
an 
he
k that automaton Apm is deter-

ministi
 and R-
omplete. Indeed, for any route

t there is exa
tly one run that assigns q⊤ (resp.

q⊥) to the root when t satis�es (resp. does not

satisfy) predi
ate Ppm. In the sequel we require

this property for ea
h tree automaton asso
iated

with an atomi
 predi
ate. This is ne
essary to

get a 
orre
t modeling of rules (see Se
tion 5.5)

and to optimize the modeling of predi
ates (see

Se
tion 9.3).

Remaining Atomi
 Predi
ates. Let us now 
on-

sider the other atomi
 predi
ates P . For predi-


ate of 
ommunity membership, the treatment of

q
init

x

¬x

x
i

i 6= x i

i ∈ ΣR
1

Figure 9: Word automaton re
ognizing words starting with

x.

the se
ond bran
h by Apm is simply transposed to

the fourth bran
h. For predi
ate of path neigh-

bor, the approa
h is similar as with automaton

Apm, ex
ept that automaton B is modi�ed in or-

der to 
he
k that x is the �rst label of the word,

as indi
ated in Figure 9.

The approa
h is similar for predi
ates of path

origin, path subsequen
e, destination equality,

and destination in
lusion. For the two last pred-

i
ates, dst_is(x) and dst_in(x), the DST_PREFIX

and the IP pre�x x are supposed to be written in

binary and of length at most 32. We re
all (see

Se
tion 3.2) that the automaton AR a

epts the

set R of trees modeling routes su
h that the dest

bran
h is any sequen
e of bits ended by leaf dest,

even those longer than 32. This la
k of 
onstraint

of AR on the dest bran
h is not a problem. Indeed

the automaton for predi
ate dst_is(x) re
ognizes
all routes with dest bran
h equal to x. The jus-

ti�
ation for predi
ate dst_in(x) is divided into

two 
ases. First, for routes where the dest bran
h

is limited to 32 bits, the automaton for predi
ate

dst_in(x) 
he
ks that x is a pre�x of the bran
h.

Se
ond, a route with a longer dest bran
h is a
-


epted if and only if it is a

epted with its dest

bran
h limited to the �rst 32 bits.

Regular Expressions. More generally the ap-

proa
h des
ribed in this se
tion also holds for

atomi
 predi
ates expressed by a regular expres-

sion. Given a regular expression imposing a


ondition on a bran
h of a route, this expres-

sion 
an be translated to a word automaton

(Q, {qinit}, F,Σ, δ) that is deterministi
 and 
om-

plete [HU79℄. Suppose that the predi
ate is 
on-


erned with the path bran
h and Σ = ΣR
1 , then

the 
orresponding tree automaton has the next
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transitions:

1. ()
dest
−−→ q0, ()

pref
−−→ q0, ()

com
−−→ q0,

()
mod
−−→ q0, ()

acc
−→ q0, ()

rej
−→ q0,

(q0)
i
−→ q0, i ∈ ΣR

1 ,

2. ()
path
−−→ qinit,

(p)
i
−→ q, with transition p

i
−→ q in δ,

3. (q0, q, q0, q0, q0)
route
−−→ q⊤, with q ∈ F ,

(q0, q, q0, q0, q0)
route
−−→ q⊥, with q 6∈ F .

Therefore, ea
h atomi
 predi
ate P 
an be

modeled by a tree automaton AP working on

quasi-routes, su
h that L(AP )|R = {t ∈ R |
t satis�es P}. Moreover this automaton is deter-

ministi
 and R-
omplete.

4.5. Model of a Predi
ate

A predi
ate P is a Boolean 
ombination of

atomi
 predi
ates Pi, 1 ≤ i ≤ n. We showed

in Se
tion 4.4 how to build a deterministi
 and

R-
omplete tree automaton Ai for every atomi


predi
ate Pi. In this se
tion, we show that it is

possible to build an automaton that models P ,
the Boolean 
ombination of atomi
 predi
ates Pi,

thanks to Proposition 3.2.

Let P1 and P2 be two predi
ates, and A1 and

A2 their respe
tive deterministi
 and R-
omplete

automata. Noti
e that

{t ∈ R | t satis�es ¬P1}
= R− {t ∈ R | t satis�es P1}
= R− L(A1)|R

and

2

{t ∈ R | t satis�es (P1 ∧ P2)}
= {t ∈ R | t satis�es P1}
∩ {t ∈ R | t satis�es P2}

= (L(A1) ∩ L(A2))|R

Therefore, by Proposition 3.2, one 
an build a de-

terministi
 and R-
omplete automaton for ¬P1,

P1 ∧ P2, and P1 ∨ P2.

More generally, by repeating this pro
ess, one


an 
onstru
t a deterministi
 and R-
omplete au-

tomaton AP modeling a predi
ate P that is a

Boolean 
ombination of atomi
 predi
ates Pi, 1 ≤
i ≤ n.

2

A similar equality holds for the disjun
tion of the two

predi
ates.

a

b c

d

⊛

e

f

g

=

(a, e)

(b, f)

(⋄, g)

(c, ⋄)

(d, ⋄)

Figure 10: Example of overlay.

5. Tree Relations, A
tions and Filters

Up to now, we used tree automata to des
ribe

routes satisfying a predi
ate. In routing �lters,

rules are made of predi
ates and a
tions. An a
-

tion 
onsists in transforming ea
h route t1 to an-

other route t2. Hen
e, we 
an 
onsider an a
tion

(resp. a �lter) as a binary relation R ⊆ TΣ × TΣ


ontaining su
h pairs (t1, t2).

5.1. Binary Tree Relations

In this se
tion, we explain how tree automata


an re
ognize su
h binary relations, not just tree

languages. This is based on an operation mapping

ea
h pair (t1, t2) to a new tree.

The overlay of two trees t1, t2 ∈ TΣ is the tree

t1 ⊛ t2. This tree is obtained by overlapping t1
and t2, in the following top-down way, as illus-

trated in Figure 10. Intuitively, labels of t1 ⊛ t2
are pairs of labels of t1 and t2, and a fresh la-

bel ⋄ is used to �ll the gaps. If roots of t1 and

t2 are labelled by a and b respe
tively, then the

root of t1 ⊛ t2 is labelled by (a, b). The arities

of a and b may di�er, and in this 
ase we use la-

bel ⋄. Let us name a1, . . . , an the 
hildren of the

a-root in t1, and b1, . . . , bp the 
hildren of the b-
root in t2, and let us assume that n > p. Then

(a, b) have n 
hildren equal, from left to right,

to (a1, b1), . . . , (ap, bp), (ap+1, ⋄), . . . , (an, ⋄). The

pro
ess is then repeated indu
tively on these 
hil-

dren. We write Σ⋄ for the 
orresponding alpha-

bet: it 
ontains all labels (a, b) ∈ Σ × Σ with

arity max{ar(a), ar(b)}, and also all labels (a, ⋄)
and (⋄, a), for a ∈ Σ, with arity ar(a). We refer

the reader to [CDG

+
07℄ for a formal de�nition.

A binary tree relation R over Σ is a subset of

TΣ×TΣ, i.e. a set of pairs (t1, t2) with t1, t2 ∈ TΣ.

We say that R is re
ognizable if the tree language

{t1 ⊛ t2 | (t1, t2) ∈ R} is re
ognizable.
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5.2. Modeling Atomi
 A
tions

The most important atomi
 a
tions used in

routing �lters have been des
ribed in Table 3. We

show that ea
h atomi
 a
tion A, seen as a binary

relation, is re
ognizable. In other words, there

exists a tree automaton that a

epts the overlays

of routes t ⊛ t′ su
h that t is transformed into t′

by the a
tion, i.e., (t, t′) ∈ A. Among the atomi


a
tions des
ribed in Table 3, we 
onsider the a
-

tions of absolute preferen
e, relative preferen
e,

path prepending, 
ommunity membership, route

a

eptan
e, and route reje
tion.

We re
all that a route t is modeled as a tree su
h

that the last bran
h indi
ates the status of the

route: mod, a

 or rej. An atomi
 a
tion should

leave un
hanged any route that has a status equal

to a

 or rej.

In order to have small automata for atomi
 a
-

tions, we are going to 
onstru
t them on quasi-

routes instead of routes, as we did for predi
ates

in Se
tions 4.4 and 4.5. However, 
ontrarily to

predi
ates, these automata are non-deterministi


in order to guess in a bottom-up manner if the

quasi-route has to be modi�ed or not (depending

on the status). This simpli�es the automata to

build, and we will see that, in our 
ontext, de-

terminism is not required for testing equivalen
e

e�
iently.

Relative Preferen
e. We begin with the atomi


a
tion pref_add(x) that adds a value x to the

LOCAL_PREF, su
h that the new value is set to

c = 232−1 when it is larger than c. In the remain-

ing of the dis
ussion, we will 
onsider an a
tion

as a tree relation. Let Arp be a tree relation that

transforms t in t′ a

ording to pref_add(x). The
two trees have the same shape and no label ⋄ is
needed for the overlay t ⊛ t′. The 
orresponding

automaton Arp has one �nal state qf and the fol-

lowing transitions:

1. ()
(dest,dest)
−−−−−→ q0, ()

(path,path)
−−−−−−→ q0,

()
(pref,pref)
−−−−−→ q0, ()

(com,com)
−−−−−→ q0,

(q0)
(i,i)
−−→ q0, i ∈ ΣR

1 ,

2. ()
(mod,mod)
−−−−−−→ qmod,

()
(acc,acc)
−−−−−→ qfix, ()

(rej,rej)
−−−−→ qfix,

3. ()
(pref ,pref)
−−−−−→ q1,

(q1)
(i,i+x)
−−−−→ q+x, i ∈ Σpref , i+ x ≤ c,

(q1)
(i,c)
−−→ q+x, i ∈ Σpref , i+ x > c,

4. (q0, q0, q+x, q0, qmod)
(route,route)
−−−−−−−→ qf ,

(q0, q0, q0, q0, qfix)
(route,route)
−−−−−−−→ qf .

Transitions 1 are used by the automaton Arp to


he
k the identity relation on the dest, path and


om bran
hes. The identity is also 
he
ked for the

pref bran
h in 
ase the status of the route is a

 or

rej. Noti
e that a single state q0 is enough to 
he
k
identity as the automaton works on quasi-routes.

Transitions 2 memorize in state qmod (resp. qfix)
whether the status of trees t, t′ is mod (resp. a

,

rej).

Transitions 3 apply the a
tion of relative pref-

eren
e with states q1 and q+x. Note that non-

determinism appears as there are two transitions

with left-hand side ()
(pref ,pref)
−−−−−→ : either the iden-

tity relation is 
he
ked on the pref bran
h with

transitions 1, or the a
tion of relative preferen
e

is performed with transitions 3.

Finally, depending on the status, transitions 4

lead to the �nal state qf , either with the a
tion

Arp performed on the third bran
h, or with the

identity relation on this bran
h.

Automaton Arp deals with quasi-routes instead

of routes. Let R⊛R be the set {t ⊛ t′ | t, t′ ∈
R}. Then we have L(Arp)|R⊛R = {t⊛ t′ | t, t′ ∈
R and (t, t′) ∈ Arp}.

Community Membership. Let us now pro
eed

with the atomi
 a
tion 
omm_add(x) that adds a

ommunity value x to the sorted sequen
e of 
om-

munities. If x is already present, it is not added.

Let Acm be a tree relation that transforms t in

t′ a

ording to 
omm_add(x). If x is not in the


om bran
h of t, then t and t′ have the same shape

ex
ept on the 
om bran
h: the 
om bran
h of t′

has one additional 
ommunity (x) that has been

orre
tly inserted in the 
om bran
h of t.
The 
orresponding automaton Acm is similar to

the previous automaton Arp. It has one �nal state

qf and the following transitions:

1. ()
(dest,dest)
−−−−−→ q0, ()

(path,path)
−−−−−−→ q0,
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q1

q2

q1,i q1,j

qins

(⋄, com)

(com, com)

(com, x)

(i, j)
i > j > x

(x, x)
(i, i)
i > x

(i, i)
i < x

(i, x)
i > x

(j, x)
j > x

(com, i)
i > x

(com, j)
j > x

Figure 11: Transitions 3 of automaton Acm re
ognizing relation Acm.

()
(pref,pref)
−−−−−→ q0, ()

(com,com)
−−−−−→ q0

(q0)
(i,i)
−−→ q0, i ∈ ΣR

1 ,

2. ()
(mod,mod)
−−−−−−→ qmod,

()
(acc,acc)
−−−−−→ qfix, ()

(rej,rej)
−−−−→ qfix,

3. ()
(⋄,com)
−−−−→ q1, (q1)

(com,x)
−−−−→ qins,

(qins)
(i,i)
−−→ qins, i ∈ Σcom, x > i,

(q1)
(com,i)
−−−−→ q1,i, i ∈ Σcom, i > x,

(q1,j)
(j,i)
−−→ q1,i, i, j ∈ Σcom, j > i > x,

(q1,j)
(j,x)
−−→ qins, j ∈ Σcom, j > x,

()
(com,com)
−−−−−→ q2,

(q2)
(i,i)
−−→ q2, i ∈ Σcom, i > x,

(q2)
(x,x)
−−→ qins,

4. (q0, q0, q0, qins, qmod)
(route,route)
−−−−−−−→ qf ,

(q0, q0, q0, q0, qfix)
(route,route)
−−−−−−−→ qf .

Transitions 1 
he
k the identity relation on the

dest, path and pref bran
hes. Transitions 2 mem-

orize if the status of the route is mod or a

/rej.

Transitions 3 
he
k the 
orre
t insertion of x
in the 
om bran
h if the status of t, t′ is mod.

Non-determinism appears on the level of the 
om

bran
h, depending on the 
urrent status.

Transitions 3 need some explanations. They

are illustrated in Figure 11. State qins indi
ates

that x has been inserted. There are three 
ases

of insertion: (1) x is larger than all labels and

it is inserted at the bottom of the bran
h. This


orresponds to the middle path in Figure 11; (2)

x is not the largest value and it is properly in-

serted (state q1,j remembers the last seen value

j). This 
orresponds to the top path; (3) x is al-

ready present and is therefore not inserted. This


orresponds to the bottom path.

As for automaton Arp, we have L(Acm)|R⊛R =
{t⊛ t′ | t, t′ ∈ R and (t, t′) ∈ Acm}.

Route A

eptan
e. We now 
onsider the atomi


a
tion a

ept(). Let Ara be a tree relation that

transforms t in t′ a

ording to a

ept(). Ex
ept

for the status, the 
orresponding automaton Ara


he
ks for identity between t and t′. In 
ase of

mod status for t, it 
he
ks for a

 status for t′. In

ase of a

 or rej status for t, it 
he
ks that the

status is left un
hanged for t′. AutomatonAra has

one �nal state qf and the following transitions:

1. ()
(dest,dest)
−−−−−→ q0, ()

(path,path)
−−−−−−→ q0,

()
(pref ,pref)
−−−−−→ q0, ()

(com,com)
−−−−−→ q0,

(q0)
(i,i)
−−→ q0, i ∈ ΣR

1 ,

2. ()
(mod,acc)
−−−−−→ q1,

()
(acc,acc)
−−−−−→ q1, ()

(rej,rej)
−−−−→ q1,
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3. (q0, q0, q0, q0, q1)
(route,route)
−−−−−−−→ qf .

Remaining Atomi
 A
tions. The approa
h is sim-

ilar for the other atomi
 a
tions. Thus, ea
h

atomi
 a
tion A 
an be modeled by a (non-

deterministi
) tree automaton AA working on

quasi-routes, su
h that L(AA)|R⊛R = {t ⊛ t′ |
t, t′ ∈ R and (t, t′) ∈ A}.

5.3. Modeling A
tions

An a
tion A is a sequen
e (A1, . . . , An) of

atomi
 a
tions, for ea
h of whi
h we 
an build an

automaton AAi
, as explained above. In the sequel

we abuse notations by writing (t, t′) ∈ A whenever

a
tion A transforms route t to the route t′.
In this se
tion, we show how to 
ompute an

automaton AA for A from the automata AAi
, by

using the 
omposition operation denoted ◦. We

start by 
omposing AA1
and AA2

, whi
h gives us

the automaton A′
2, then 
ompose A′

2 with AA3
,

and so on until we 
omposeA′
n−1 withAAn

, whi
h

gives us AA = A′
n. In other words:

AA = (((AA1
◦ AA2

) ◦ AA3
) ◦ · · · ◦ AAn

)

Let us detail how a 
omposition of a
tions

should operate. Given two a
tions A, A′
and their

related automata AA and AA′
, the trees t ⊛ t′

a

epted by AA ◦ AA′
must be those for whi
h

there exists a tree t′′ su
h that t ⊛ t′′ is a

epted
by AA and t′′ ⊛ t′ is a

epted by AA′

. The 
on-

stru
tion of AA ◦ AA′
works as follows. States of

AA ◦AA′
are pairs (q, q′) with q (resp. q′) state of

AA (resp AA′
). For labels of arity 1, a transition

((p, p′))
(a,b)
−−→ (q, q′) is a transition of AA ◦ AA′

if

and only if there is a label c and:

• a transition (p)
(a,c)
−−→ q in AA and

• a transition (p′)
(c,b)
−−→ q′ in AA′

.

The 
onstru
tion is similar for labels of other ar-

ity.

Due to the possibly di�erent shapes of the trees

involved in the 
omposition, the previous pro
e-

dure is in
omplete. Let us explain on an example.

Consider for instan
e the a
tions A and A′
that

respe
tively insert 20 and 40 in the 
om bran
h.

route,route

10, 10

com, 20

⋄, com

(a) t⊛t′′∈L(AA)

route,route

10, 10

20, 20

com, 40

⋄, com

(b) t′′⊛t′∈L(AA′)

route,route

10, 10

com, 20

⋄, 40

⋄, com

(
) t⊛t′∈L(AA◦AA′)

Figure 12: Composition in 
om bran
h.

Let us assume that we start with a route with

only 10 in the 
om bran
h, i.e. 10(com). This

bran
h is transformed into 10(20(com)) by A, and
then into 10(20(40(com))) by A′

. Figure 12a and

12b depi
t the 
orresponding two overlays. If we


ompose the automata AA and AA′
as des
ribed

above, we should obtain the automaton AA ◦AA′

that a

epts the overlay of Figure 12
. This is

not the 
ase: in Figure 12
, we 
an observe that

a transition ()
(⋄,com)
−−−−→ (q, q′) is needed. A

ording

to the 
onstru
tion pro
ess des
ribed above, this

transition is part of AA◦AA′
if there exists a label

c su
h that transition ()
(⋄,c)
−−→ q exists in AA and

transition ()
(c,com)
−−−−→ q′ exists in AA′

. A transition

()
(⋄,com)
−−−−→ q′ exists in AA′

, but the 
ounterpart

()
(⋄,⋄)
−−→ q does not exist in AA.

To avoid the problem illustrated by this exam-

ple, before 
onstru
ting the automaton AA ◦ AA′

as explained above, we �rst slightly modify

3

au-

tomata AA and AA′
, so that they a

ept trees

with an arbitrary number of labels (⋄, ⋄) at the
bottom of bran
hes path and com. We say that we

⋄-�ll these automata. In this way, the bran
hes

path and com (the length of whi
h may vary with

the applied a
tions) now have the same shape

thanks to the added labels (⋄, ⋄), and 
an thus

be properly 
omposed.

3

This modi�
ation is rather simple, and detailed in the

proof of Theorem 5.1.
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After the 
onstru
tion of the automaton AA ◦
AA′

, we must again slightly modify it su
h that it

a

epts trees with no label (⋄, ⋄) at the bottom of

bran
hes path and com. We say that we ⋄-
lean
this automaton. In this way, the language of the

resulting automaton, restri
ted toR⊛R, is equal
to {t ⊛ t′ | t, t′ ∈ R and (t, t′′) ∈ A, (t′′, t′) ∈
A′

for some t′′ ∈ R}.
To summarize, the full 
omposition pro
edure

of two automata AA, AA′
is done in three steps:

�rst we ⋄-�ll these automata, then we 
onstru
t

AA ◦ AA′
, and �nally we ⋄-
lean the 
onstru
ted

automaton. We again denote by ◦ this operation
of full 
omposition.

Hen
e, given an a
tion A = (A1, . . . , An), and
automata AAi

for ea
h atomi
 a
tion Ai, we 
on-

stru
t the automaton AA = ((AA1
◦ AA2

) ◦ · · · ◦
AAn

) su
h that L(AA))|R⊛R = {t ⊛ t′ | t, t′ ∈
R and (t, t′) ∈ A}.

5.4. Modeling Rules

A routing �lter F is a sequen
e of rules, and a

rule R = 〈P,A〉 is 
omposed of a predi
ate P and

an a
tion A. We have explained in the previous

se
tions how to build a tree automaton AP (resp.

AA) for predi
ate P (resp. a
tion A). We re
all

that L(AP )|R = {t ∈ R | t satis�es P}, and
L(AA)|R⊛R = {t⊛ t′ | t, t′ ∈ R and (t, t′) ∈ A}.
In this se
tion, we show how to build an automa-

ton for rule R from the automata AP and AA.

This pro
edure is illustrated in Figure 13. When

restri
ted to routes, AR must a

ept exa
tly all

t⊛ t′ su
h that t′ is the image of t by A if t satis-
�es P , and t′ = t otherwise. This 
orresponds to
the language

L(AR)|R⊛R = { t⊛ t′ | t, t′ ∈ R and

((t satis�es P and (t, t′) ∈ A) or

(t does not satisfy P and t = t′))}

We use the 
omposition operation (presented in

the previous se
tion), however with some 
are

sin
e AP a

epts trees and AA a

epts overlays

of trees.

As AP does not re
ognize a tree relation, the

idea is to turn AP into an automaton BP re
-

ognizing a relation that �marks� a tree t when

t

a

epted

not a

epted

AP

t t′

AA

t
t

t

BP

t′

t

BA

AR

Figure 13: Composing predi
ate P with a
tion A.

it does not satisfy P , and lets t unmarked oth-

erwise. Marking t 
onsists in repla
ing its root

label route with a new label route, and is de-

noted by t. Let R′
be the set R ∪ {t | t ∈ R}.

The language of the needed automaton BP is su
h

that L(BP )|R⊛R′ = {t ⊛ t | t satis�es P} ∪ {t ⊛
t | t does not satisfy P}. This approa
h is illus-

trated in Figure 13.

Similarly, we derive automaton BA from au-

tomaton AA su
h that BA re
ognizes a relation

that turns a marked tree into a unmarked tree,

and turns an unmarked tree into a tree trans-

formed by a
tion A. Formally, L(BA)|R′⊛R =
{t⊛t | t ∈ R}∪{t⊛t′ | t, t′ ∈ R and (t, t′) ∈ A}.

Finally we 
ompute BP ◦ BA. By de�nition of

the 
omposition and thanks to the trees t, the
resulting automaton AR a

epts overlays t⊛ t′ of
trees (when restri
ted to R⊛R) su
h that either

t satis�es P and thus is transformed in t′ by A,
or t does not satisfy P and thus is left un
hanged

by A.

Let us now explain in more details how to


ompute automata BP and BA. Suppose that

AP = (Q,F,ΣR, δ). Re
all that AP is determin-

isti
 and R-
omplete (see Se
tions 4.4 and 4.5).

Then we build BP = (Q, {qf},Σ
R × ΣR, δ′) with

• ()
(a,a)
−−→ q ∈ δ′, if ()

a
−→ q ∈ δ,

• (p)
(a,a)
−−→ q ∈ δ′, if (p)

a
−→ q ∈ δ,
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• (p1, p2, p3, p4, p5)
(route,route)
−−−−−−−→ qf ∈ δ′, if

(p1, p2, p3, p4, p5)
route
−−→ q ∈ δ with q ∈ F ,

(p1, p2, p3, p4, p5)
(route,route)
−−−−−−−→ qf ∈ δ′, if

(p1, p2, p3, p4, p5)
route
−−→ q ∈ δ with q 6∈ F .

This 
onstru
tion works be
ause, given a route t,
there is exa
tly one run for t in AP , and this run

is a

epting if and only if t satis�es P . Thus,

the labels of transitions in AP are dupli
ated in

transitions of BP ex
ept for label route whi
h is

repla
ed by (route, route) (resp. (route, route)) if
the run is (resp. is not) a

epting.

Con
erning a
tion A, we 
onstru
t BA from AA

by adding to the latter automaton two new states

q0 and qf su
h that qf is �nal, and the following

transitions

4

:

1. ()
(dest,dest)
−−−−−→ q0, ()

(path,path)
−−−−−−→ q0,

()
(pref,pref)
−−−−−→ q0, ()

(com,com)
−−−−−→ q0,

()
(mod,mod)
−−−−−−→ q0, ()

(acc,acc)
−−−−−→ q0, ()

(rej,rej)
−−−−→ q0,

2. (q0)
(i,i)
−−→ q0 i ∈ ΣR

1 ,

(q0, q0, q0, q0, q0)
(route,route)
−−−−−−−→ qf .

5.5. Modeling Filters

A routing �lter F is a sequen
e (R1, . . . , Rn) of
rules, for ea
h of whi
h we 
an build an automaton

ARi
as explained above. In the sequel we write

(t, t′) ∈ F when F transforms route t into route

t′. A tree automaton AF for F is simply obtained

by 
omposing the automata AR1
, . . . ,ARn

. Re
all

that this automaton treats quasi-routes instead of

routes, and that L(AF )|R⊛R = {t ⊛ t′ | t, t′ ∈
R and (t, t′) ∈ F}.
It remains to explain how to test the equiv-

alen
e of two �lters. In this aim, it is ne
es-

sary to modify automaton AF into BF su
h that

automaton BF now treats routes (and no longer

quasi-routes). Thanks to the 
omposition opera-

tion, it is easy to 
onstru
t BF su
h that L(BF ) =
L(AF )|R⊛R. We 
onstru
t a tree automaton Aid

su
h that L(Aid) = {t⊛t | t ∈ R}. This automa-

ton is easily built from automatonAR re
ognizing

4

These transitions are similar to the transitions of au-

tomaton AquasiR a

epting quasi-routes (see Se
tion 4.2).

the set of routes (de�ned in Se
tion 4.2). Then we

have BF = Aid ◦ AF .

Given two �lters F, F ′
and their 
orrespond-

ing automata BF ,BF ′
, testing if F, F ′

are equiva-

lent amounts to test if the automata BF ,BF ′
are

equivalent. This test is de
idable in exponential

time (see Theorem 3.3). However this exponential

blow-up 
an be avoided in our 
ontext be
ause the

relations involved in �lters are fun
tional. Indeed,

every a
tion inside a �lter transforms ea
h route

into a unique route.

Theorem 5.1. Let F and F ′
be two �lters. Let

BF and BF ′
be their respe
tive automata with

δF , δF ′
their sets of transitions. Then it 
an be

de
ided in time O(|δF | · |δF ′|) whether F and F ′

are equivalent.

Moreover, in 
ase of non equivalen
e, a tree t is

onstru
ted su
h that (t, t1) ∈ F , (t, t2) ∈ F ′

, with

t1 6= t2.

The proof of this theorem is given in Se
-

tion 9.3. Noti
e that this result also holds for any

pair of tree relations (instead of �lters) as long as

they are total fun
tions. Noti
e also that 
om-

plexity O(|δF | · |δF ′|) in the previous theorem 
an

be repla
ed by O(|BF |
k · |BF ′|k · |Σ|) where k is the

maximal arity of Σ (see Footnote 1).

5.6. Summary

Let us re
all the whole pro
ess to model routing

�lters and its related test of equivalen
e by tree

automata.

• Re
all that a routing �lter F is a sequen
e of

rules, and a rule R = 〈P,A〉 is 
omposed of

a predi
ate P and an a
tion A.

• Given a �lter F , a 
orresponding automaton

AF is 
onstru
ted by indu
tion on the stru
-

ture of the �lter. For e�
ien
y reasons, all

the intermediate automata as well as AF op-

erate on quasi-routes instead of routes in a

way to limit the size of automata.

• For ea
h atomi
 predi
ate and ea
h atomi


a
tion, we have 
onstru
ted a 
orresponding

tree automaton (a

epting trees in the �rst


ase and overlays of two trees in the se
ond
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ase). For an atomi
 predi
ate P , the re-

lated automaton AP is deterministi
 and R-

omplete. In this way, for any route t there
exists exa
tly one run that assigns a �nal

(resp. non �nal) state to the root of t if t
satis�es (resp. does not satisfy) P . The prop-
erty is imposed to AP for e�
ien
y reasons.

For an atomi
 relation A, the related au-

tomaton AA is in general non-deterministi
.

Moreover for ea
h route t, there is exa
tly one
route t′ su
h that t ⊛ t′ is a

epted by AA,

i.e. (t, t′) ∈ A (the relation is fun
tional).

• Ea
h predi
ate P is a Boolean 
ombination

of atomi
 predi
ates Pi, 1 ≤ i ≤ n. The asso-

iated automaton AP 
an be built from the

automata APi
thanks to Theorem 3.1. As

ea
h APi
is deterministi
 and R-
omplete,

the exponential blow-up that 
ould appear at

ea
h 
omplementation operation is avoided

(see Proposition 3.2)

• The 
omposition operation ◦ on two au-

tomata (on overlays of trees) is used at sev-

eral pla
es of the pro
ess: when dealing with

(1) sequen
es of atomi
 a
tions, (2) rules, (3)

sequen
es of rules, and (4) when limiting an

automaton AF for a �lter F to work only for

routes. For te
hni
al reasons due to symbol

⋄ used in the overlay of trees, the two au-

tomata are �rst ⋄-�lled, then 
omposed, and

�nally ⋄-
leaned.

• Ea
h a
tion is a sequen
e (A1, . . . , An) of

atomi
 a
tions. The automaton AA for A is

built from the automata AAi
, 1 ≤ i ≤ n, as

((AA1
◦ AA2

) ◦ · · · ◦ AAn
). A rule R = 〈P,A〉

is 
omposed of a predi
ate P and an a
tion

A. The automataAP and AA are modi�ed in

su
h a way that their 
omposition results in

an automaton AR that a

epts overlays t⊛ t′

of trees (when restri
ted to R⊛R) where ei-
ther t satis�es P and thus is transformed in

t′ by A, or t does not satisfy P and is left

un
hanged by A. Ea
h �lter F is a sequen
e

(R1, . . . , Rn) of rules. The automaton AF for

F is built from the automata ARi
, 1 ≤ i ≤ n,

as ((AR1
◦ AR2

) ◦ · · · ◦ ARn
).

• Given two �lters F, F ′
, before testing

whether they are equivalent, the automata

AF and AF ′
are modi�ed into BF and BF ′

respe
tively in a way to treat routes, in-

stead of quasi-routes. They are then tested

for automata equivalen
e (see Theorem 3.3).

The exponential blow-up of this test 
an be

avoided in our 
ontext be
ause the relations

involved in �lters are fun
tional (see Theo-

rem 5.1).

6. Prototype

We have implemented a prototype in Java, pub-

li
ly available

5

under the GPLv2 li
en
e. It im-

plements all predi
ates and a
tions as presented

in Se
tion 2.2. Filters implementation is based on

the model presented in this paper. The 
onstru
-

tion of the automata follows the indu
tive pro
ess

des
ribed in the pre
eding se
tions, in
luding the

optimizations given in Se
tion 9. Tree automata

obje
ts and standard operations are implemented

inside a separate library, also publi
ly available.

We used a homemade parser to 
onvert Cis
o

IOS 
on�guration �les into Java sour
e 
ode

(see Figure 1 for an example). The parser

only pro
esses route-maps, ip prefix-list, ip


ommunity-list and ip as-path a

ess-list


lauses. Route-map mat
h 
lauses are translated

into a boolean 
ombination of atomi
 predi
ates.

Route-map set 
lauses are translated into se-

quen
es of atomi
 a
tions. Ea
h route-map state-

ment is 
onverted to a single rule. Multiple route-

map statements with the same identi�er form a

�lter.

6.1. Example Run

To illustrate the operation of our prototype,

this se
tion shows how the equivalen
e of two

Cis
o IOS route-maps is tested. The two route-

maps F1 and F2 are shown in Figure 14. No-

ti
e that even if they seem very similar, there is a

slight di�eren
e.

If we provide those two route-maps to our tool,

it will parse them, and produ
e Java 
ode to build

5

https://github.
om/bquoitin/eqrou
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✞ ☎
i p p r e f i x− l i s t 1 seq 1 permit 128 . 0 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 2 permit 128 . 1 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 3 permit 128 . 2 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 4 permit 128 . 3 . 0 . 0 /16

!

ip 
ommunity− l i s t 1 permit 1 :1

!

route−map F1 deny 10

mat
h 
ommunity 1

!

route−map F1 permit 20

mat
h ip addre s s p r e f i x− l i s t 1

s e t l o 
 a l−p r e f e r en 
 e 100

✝ ✆

✞ ☎
i p p r e f i x− l i s t 1 seq 1 permit 128 . 0 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 2 permit 128 . 0 . 1 . 0 /16

ip p r e f i x− l i s t 1 seq 3 permit 128 . 2 . 0 . 0 /16

ip p r e f i x− l i s t 1 seq 4 permit 128 . 3 . 0 . 0 /16

!

ip 
ommunity− l i s t 1 permit 1 :1

!

route−map F2 deny 10

mat
h 
ommunity 1

!

route−map F2 permit 20

mat
h ip addre s s p r e f i x− l i s t 1

s e t l o 
 a l−p r e f e r en 
 e 100

✝ ✆

Figure 14: Example IOS route-maps tested for equivalen
e.

the 
orresponding automata. Those automata are

then tested for equivalen
e. Here, the �lters are

not equivalent as reported by the tool. The equiv-

alen
e test took 340ms on a Intel Core 2 Duo pro-


essor running at 2.8GHz. The 
omplete run took

about 6 se
onds, in
luding parsing, generation of

java 
ode, 
ompilation and exe
ution.

As the �lters are not equivalent, the tool pro-

du
es a route that is a witness of non-equivalen
e.

In this 
ase, the route produ
ed is (DST_PREFIX :
128.1.0.0/16, AS_PATH : {}, LOCAL_PREF :
100, COMMUNITIES : {}). Its image by F1

is (DST_PREFIX : 128.1.0.0/16, AS_PATH :
{}, LOCAL_PREF := 100, COMMUNITIES = {}) and
the route is a

epted. The image of this route

by F2 is the same but the route is reje
ted. This

output is a good hint to tra
k the 
ause of the

di�eren
e between the two �lters.

A route with the same attributes is a

epted

by F1 and reje
ted by F2. We need to 
he
k

the predi
ates used in the permit 
lause of our

route-maps. Here the 
ulprit is the se
ond ip

prefix-list statement where the permitted pre-

�xes are di�erent in F1 and F2. Manually �nding

the reason why two routes are handled di�erently

by two �lters 
an still be di�
ult. In the future,

the tool 
ould be used to automati
ally pinpoint

the rules responsible for a

epting or reje
ting a

route.

6.2. Extensibility of the Approa
h

We have showed earlier how to model by au-

tomata the 
lassi
al atomi
 predi
ates and a
tions

used in routing �lters. New atomi
 predi
ates 
an

easily be in
orporated, provided that they 
an be

en
oded by automata. This is true for instan
e for

atomi
 predi
ates expressed by a regular expres-

sion as explained in Se
tion 4.4. Similarly, new

atomi
 a
tions 
an also be easily in
orporated un-

der the same hypothesis.

6.3. Beyond Equivalen
e

In the previous se
tions, we have explained how

to test the equivalen
e of two �lters using tools

from tree automata theory. Some other related

problems 
an also be tested with the same ap-

proa
h. We here list some of these problems and

provide a rough idea how to solve them.

Witnesses of non-Universality. When two �lters

have been modeled by two automata, they are

tested for equivalen
e by testing the equivalen
e

of their related automata thanks to Theorem 5.1.

When the �lters are de
lared non-equivalent, it is

useful to have a route that is a witness of su
h

an non-equivalen
e, and more generally to have

all the witnesses of non-equivalen
e. In the proof

of Theorem 5.1 given in Se
tion 9, we show how

to 
onstru
t one tree (witness) that has di�erent

images by the two �lters when they are not equiv-

alent. As a matter of fa
t, the proof 
an easily

provide a tree automaton that exa
tly a

epts all

the routes that have di�erent images by the two

�lters. Su
h an automaton modeling all the wit-

nesses of non-universality 
an then be used to un-

derstand why the two �lters are not equivalent.

This will be explained in the next paragraph.
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Behavior of a Filter under some Properties. An-

other interesting problem is to test whether or not

a subset of routes satisfying a 
ertain property is

transformed by a �lter into a subset of routes sat-

isfying another property. For instan
e, we would

like to test if the set of routes having 
ommu-

nity 1234 and destination in
luded in 62.17/16 is

transformed by a given �lter so as to have lo
al-

preferen
e 150 and a new 
ommunity 5678. Su
h

a problem 
an be solved using automata theory

provided the two properties respe
tively imposed

to the input routes and the output routes 
an

be modeled by tree automata (this is the 
ase of

the previous example). Using standard automata

properties su
h as in Se
tion 3, it is possible to

suitably 
ombine the automaton modeling the �l-

ter with the two automata modeling the proper-

ties in a way to solve this problem.

Noti
e that su
h questions 
an also be asked

(and similarly solved) about the set of witnesses

of non-universality of two �lters. Indeed we have

explained above that this set of witnesses 
an be

modeled by a tree automaton. We 
an thus have

a better understanding of this set of routes by

testing some properties (modeled by automata)

on it. This method 
ould help debug errors in

�lters.

7. Appli
ations

In this se
tion, we propose three appli
ations

of the equivalen
e test of two �lters, illustrated

by some examples. We start by motivating the

need for an equivalen
e test as is, then move on to

show some other, more 
omplex, appli
ations. We

end with a longer-term appli
ation 
onsisting of

the 
omposition and testing of distributed routing

�lters.

7.1. Redundant BGP Sessions in Multi-Vendor

Networks

A 
ommon pra
ti
e used by network opera-

tors to in
rease the robustness of their interdo-

main 
onne
tivity is to ex
hange routing infor-

mation with neighbor AS over multiple redun-

dant sessions. These often end on distin
t physi-


al routers. They may even terminate on routers

from di�erent vendors to de
rease the risk of both

routers being simultaneously a�e
ted by a 
om-

mon bug.

In su
h 
on�gurations, the routing �lters de-

ployed on both eBGP sessions are usually the

same. However, 
he
king that both routing �l-

ters are equivalent, up to now, was not a trivial

task. Using equipment from di�erent vendors also

means writing routing �lters using di�erent 
on-

�guration languages. Moreover, even in an en-

vironment where a single vendor is in use, 
on-

�guration languages might di�er among di�erent

versions of the vendor's operating system. Our

approa
h provides a universal representation of

the �lters, a means to 
he
k their equivalen
e and

to further reason about them.

In order to assess how often parallel sessions

are deployed and how often routers from multi-

ple vendors are in use, we analysed the 
on�gu-

ration of all the routers in a large, modern, ISP

network

6

. First, we determined for every neighbor

AS x the number of di�erent lo
al routers peering

with x. We observed that although 58% of AS are


onne
ted through a single session, the remaining

42% are 
onne
ted using at least 2 sessions, as

illustrated in Figure 15. This ISP has a neigh-

bor AS that 
onne
ts at as mu
h as 9 di�erent

lo
ations.
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Figure 15: Number of peering lo
ations for ea
h neighbor

AS in a large ISP.

In addition to this, 27% of the neighbor AS

peer with routers that do not understand a single


ommon 
on�guration language. Those routers

6

We 
annot dis
lose the name of this ISP.
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are either from di�erent router vendors or from

the same vendor but using versions of the operat-

ing system with di�erent 
on�guration languages

(e.g. IOS versus IOS XR).

A network operator 
ould use our tool to per-

form routing �lters sanity 
he
k in the environ-

ment just des
ribed. For example, when new ses-

sions are added or the business agreement and the

routing poli
ies with a neighbor AS 
hange, the

tool 
ould be used to ensure the 
hanges are de-

ployed in the same way for all the sessions with

that AS. Su
h veri�
ation 
ould be done nightly.

7.2. Verifying Routing Filters

Today, network operators have no tool to 
he
k

if a BGP routing �lter works as intended. This


annot be done just by looking at the poli
y. Poli-


ies are often long and the semanti
 of the 
on�g-

uration languages is 
omplex. Moreover, routers

in a large network are not 
on�gured by a sin-

gle person and di�erent operators may 
on�gure

a router di�erently to perform the same task.

Network operators will usually rely on the

router operating system to 
he
k if a �lter a

epts,

reje
ts or modi�es a route as intended. This is

typi
ally done by inje
ting 
arefully 
rafted routes

into a router (virtualized or in the lab) through

a test session on whi
h the �lter applies and ob-

serve if the out
ome of the route mat
hes the in-

tention. It should be noted that this approa
h

is not pra
ti
al if all routes are tested individu-

ally, as in the naive approa
h we des
ribed in Se
-

tion 2.2. Instead of performing an exhaustive test,

the network operator pi
ks a few sample routes

and limit its test to those routes, with the risk of

missing 
orner 
ases of the �lter that would 
ause

an untested route to be mishandled.

As explained in Se
tion 6.3, it is possible using

our automata approa
h to verify if the image of

one set of routes by a �lter satis�es some prop-

erty, provided this property 
an be expressed by

an automaton. As an example, a network opera-

tor 
ould want to 
he
k that all the routes with

a destination pre�x in some set will be reje
ted

by the �lter, or it 
ould want to 
he
k that some


ommunities have been added by the �lter.

As this is a mid-term goal, our tool does not

yet support the test of su
h properties. We plan

to support this in the near future. It is likely

to require some optimizations su
h as des
ribed

in Se
tion 9 to be pra
ti
al. One 
an imagine

that those properties 
ould be expressed using

languages similar to those provided by the router

vendors. Moreover, the most usual properties


ould be pre-de�ned and available as libraries.

7.3. Composition of Distributed Routing Filters

Another possible appli
ation of our framework

is the veri�
ation of a distributed routing �lter. In

a transit network, a route re
eived through a ses-

sion with a provider is typi
ally redistributed to

every 
ustomer. Most BGP sessions have inbound

and outbound �lters. This means a route going

from one provider to a 
ustomer is pro
essed by

two di�erent �lters, de�ned on di�erent routers,

possibly using di�erent languages : it is �rst pro-


essed by the inbound �lter on the session with

the provider and later by the outbound �lter on

the session with the 
ustomer.

The tree automata approa
h allows the inbound

and outbound �lters to be 
omposed, resulting in

a single automaton. Reasoning 
an then happen

on this automaton: the veri�
ation of routing �l-

ters as des
ribed in Se
tion 7.2 
an be applied on

it. For example, it would then be possible to 
he
k

that a route transiting from a provider to a 
us-

tomer is marked with some 
ommunity. It 
ould

also be used to verify that distributed routing �l-

ters 
orre
tly prevent some routes to be leaked

from one session to another. For example, a route

re
eived from a provider is typi
ally tagged with

a spe
ial 
ommunity value by the inbound �lter.

The outbound �lter on a session with another

provider should prevent a route tagged with this


ommunity value to be redistributed to another

provider.

Composition of routing �lters 
an also be used

to 
he
k that the preferen
e of a route (or a set

of routes) always de
reases, a property that is im-

portant for BGP to 
onverge to a stable solution

[Gri10℄. This is important in the 
ase of a 
on-

federation of ASs or when poli
ies are applied on

iBGP sessions [CBV10℄.
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Che
king the equivalen
e of routing �lters is a

key feature in being able to validate a network


on�guration, its 
hanges and maintain the net-

work in good operational shape.

8. Evaluation

8.1. Experiments

We used the prototype des
ribed in Se
tion 6

to perform several experiments. Their results are

presented in this se
tion. Our experiments show

the link between �lter size, tree automaton size

and running-time of the equivalen
e test. All tests

were performed on a 
omputer running Linux 3.2

with an Intel Core2 Duo CPU and 4GB of RAM.

We used Java 1.6 through OpenJDK (I
edTea6).

Instan
es. We tested our algorithm on �ve fami-

lies of �lters. The �rst family of �lters, 
alled 
is
o

in our �gures, has been generated from the BGP

routing �lters de�ned in the Cis
o IOS 
on�gu-

ration of a router from a large European transit

network. The 
on�guration 
ontained 48 route-

maps ea
h of them des
ribing a single �lter. We

fo
used on 12 �lters supported by a prior version

of our tool (the 
urrent version supports 45 �l-

ters). Ea
h of them has then been tested against

its sub�lters, where the n-th sub�lter is obtained

from the original one by keeping its �rst n rules.

Usually, su
h �lters are not equivalent to their

sub�lters, ex
ept for the full sub�lter 
ontaining

all rules of the original �lter. This way we get

both equivalent and non-equivalent pairs of �l-

ters.

The remaining four families were built by hand.

Family eq_
om is the set of �lters with n rules


ontaining only a
tion 
omm_add(1). In
reas-

ing values of n yielded �lters of in
reasing sizes.

Family eq_path_
om is the same as eq_
om, but

ea
h rule also 
ontains a predi
ate path_in(1).
Family path_
om is 
omposed of �lters with ith
rule made of a predi
ate path_in(i) and an a
tion


omm_add(i). Finally, family path_
om_a

 is

similar to path_
om, ex
ept that the a
tion is the


omposition of 
omm_add(i) with a

ept(). For

ea
h family, we generated 10 modi�ed versions

of ea
h �lter by performing a random permuta-

tion of its rules. We then tested the equivalen
e

between a �lter and its modi�ed versions. Ea
h

equivalen
e test was positive, ex
ept for the fam-

ily path_
om_a

.

Results. We show the results of our experiments

in �gures 16 to 19. Note that the y axis is in log-

arithmi
 s
ale for all �gures in this se
tion. Note

also that positive instan
es, i.e. those for whi
h

equivalen
e holds, are denoted by +, and negative
instan
es by ×.
Figure 16 shows how the size of the resulting

automaton varies with the �lter size. We re
all

that the size |A| of an automaton A is the number

of its states. Con
erning the �lters, the size |F | of
a �lter F is the sum of the sizes of its rules. The

size |R| of a rule R = 〈P,A〉 is de�ned as |P |+ |A|
where |P | is the number of atomi
 predi
ates of

P and |A| is the number of atomi
 a
tions of A.
In Figure 16, there is a point for ea
h �lter in

the families des
ribed earlier in the se
tion as well

as for the shu�ed versions. We observe a linear

alignment of the points, showing that the size of

the automaton is exponential in the size of the

�lter, as proved in Se
tion 8.2.
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Figure 16: Size of automata.

Figure 17 shows how the time to build the au-

tomaton also follows this 
omplexity, as des
ribed

in Se
tion 8.2. We 
an observe that for very small

�lters, automata are built in a few millise
onds.

It takes about one se
ond for a �lter of size 16.

As we will see, this is negligible 
ompared to the

time needed for testing equivalen
e.
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Figure 17: Time for building automata.

Figure 18 shows how the exe
ution time of the

equivalen
e test varies with the produ
t of the au-

tomata sizes. Note that the x axis is shown on a

logarithmi
 s
ale. The �gure suggests that there

is a linear relationship (in logarithmi
 s
ale) be-

tween the produ
t of the automata sizes and the

running time of the algorithm, denoting a polyno-

mial relationship between these quantities (with-

out logarithmi
 s
ale). We state formally in The-

orem 5.1 that testing the equivalen
e of two �lters

F and F ′
is in time O(|BF |

k · |BF ′|k · |Σ|) when the

input is the two automata BF and BF ′
, and k = 5

is the maximal arity of Σ.7

The overall 
omplexity of testing equivalen
e

between two �lters F and F ′
is thus a single ex-

ponential in the size of the �lters, more pre
isely

O(p5(|F |+|F ′|) · |Σ|) for a �xed p as explained in

Se
tion 8.2. Our experiments 
on�rm this 
om-

plexity, as depi
ted in Figure 19.

We note that real-world �lters, like those ob-

tained from the Cis
o 
on�guration �le, are gene-

rally more e�
iently pro
essed by our algorithm

than the syntheti
 �lters. One explanation for

this behaviour is the existen
e of an a

ept() or
reje
t() a
tion in every rule of the 
is
o �lters that
prevent further pro
essing of the routes. More-

over, equivalen
e is generally faster on negative in-

stan
es, as explained in the proof of Theorem 5.1.

7

The alphabet Σ is either Σ
R

or its redu
tion as ex-

plained in Se
tion 9.2.
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e from automata.
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We also tried to 
ompare our e�
ient equiv-

alen
e test proposed in Theorem 5.1 with the

usual equivalen
e test based on Boolean opera-

tions on tree automata (see Theorem 3.3). For

very small �lters made of only one rule with one

a
tion, our algorithm takes 1 millise
ond, while

the usual equivalen
e test based on Boolean op-

erations takes 28 minutes.

8.2. Complexity

In this se
tion, we 
ompare the 
omplexity of

our algorithm with the 
omplexity of a naive al-

gorithm.

Complexity of our algorithm. Let us evaluate the


omplexity of our algorithm. Consider the 
on-
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stant p, de�ned as the maximal size among all

atomi
 predi
ate and a
tion automata sizes. Let

us show that the automaton 
onstru
ted for a �l-

ter F has size O(p|F |) and 
an be 
onstru
ted in

timeO(p5|F |·|Σ|), and that testing the equivalen
e
of two �lters F, F ′

is done in time

O(p5(|F |+|F ′|) · |Σ|)

by our algorithm.

First, when 
onstru
ting the automaton AP for

a predi
ate P from the automata for the atomi


predi
ates of P , we are able to avoid the expo-

nential blow-up due to the 
omplementation of

non-deterministi
 automata (see Theorem 3.1 and

Proposition 3.2). Therefore the most 
ostly op-

erations are the union and interse
tion based on

the syn
hronized produ
t of two automata. In

Proposition 3.2, it is stated that the automaton

for the interse
tion and the union operations is

built in time O(|δ1| · |δ2|), or equivalently in time

O(|A1|
5 · |A2|

5 · |Σ|) (see Footnote 1).
The worst 
ase for automaton AP

is when the shape of P is P =
(((P1 o1 P2) o2 P3) o3 · · · on−1 Pn) where

ea
h Pi is an atomi
 predi
ate and ea
h oi is

either ∨ or ∧. In this 
ase, the size of AP is

in O(p|P |) and the time to 
onstru
t it in is

O(((p5)2 + (p5)3 + · · · + (p5)n) · |Σ|), whi
h is in

O(p5|P | · |Σ|).
Se
ond, when 
onstru
ting the automaton AA

for an a
tion A from the automata for the atomi


a
tions of A, the needed 
omposition operation

also requires some produ
t of two automata (see

Se
tion 5.3). This results in a 
omplexity O(p|A|)
for the size of AA and O(p5|A| · |Σ|) for the time

to build it (with an argument similar to predi
ate

P ).
Third, the 
omposition operation is also used

for a rule and for a sequen
e of rules. Therefore

for one rule R = 〈P,A〉, we get for automaton

AR a size in O(p|P |+|A|) = O(p|R|) and a time


omplexity to 
onstru
t it in O((p5|P | + p5|A| +
p5(|P |+|A|))·|Σ|) whi
h is inO(p5|R|·|Σ|). For a �lter
F = (R1, . . . , Rn), we get an automaton BF of size

O(p|F |) in time O((Σn
i=1p

5|Ri|+Σn
i=2p

5(|R1|+···+|Ri|))·
|Σ|) = O(p5|F | · |Σ|), yielding the announ
ed 
om-

plexities.

Finally, given two automata for two �lters

F, F ′
, we 
an avoid a se
ond exponential blow-up

and test in time O(p5(|F |+|F ′|) · |Σ|) whether these
�lters are equivalent (see Theorems 3.3 and 5.1).

Complexity of a naive algorithm. A naive algo-

rithm to test the equivalen
e of two �lters F, F ′


onsists in enumerating all the possible routes (up

to a 
ertain size) and to test if F, F ′
modify them

into the same routes.

Let us evaluate the 
omplexity of this algo-

rithm. We make the hypothesis that during the

appli
ation of a �lter to a given route, 
onstant

time O(1) is 
onsumed by ea
h atomi
 predi
ate

(resp. a
tion) of this �lter. Therefore testing if

two �lters F, F ′
modify a given route into the

same route 
an be performed in O(|F | + |F ′|).
It remains to evaluate the total number of tested

routes. We re
all that su
h a route has four at-

tributes: the DST_PREFIX of length bounded by

ldest (when written in binary), the LOCAL_PREF


omposed of one label, the AS_PATH of length

bounded by lpath and the COMMUNITIES of length

bounded by lcom (re
all that the set COMMUNITIES

is represented as a sorted sequen
e). The max-

imum pre�x length ldest equals 32 bits for IPv4.

The length of the AS_PATH and COMMUNITIES is

limited by the maximum size of a BGP mes-

sage whi
h is 4096 bytes. This 
onstrains

8 lpath
to remain below 2048 and lcom below 1024. We

will use these bounds in our next 
omplexity


omputations. We 
an also remember the sta-

tus (a

epted, reje
ted) of the route as given

by one label. Con
erning the possible values of

LOCAL_PREF, and of the elements of AS_PATH and

COMMUNITIES, we suppose that they are bounded

by cpref = 232 (32-bit value), cpath = 216 (16-bit

ASN) and ccom = 232 (32-bit values) respe
tively.

Therefore, the total number of routes nroutes is

bounded by the produ
t ndest ·npath ·npref ·ncom ·nstat

of the numbers of attributes of ea
h kind (in
lud-

ing the status), su
h that

• ndest =
∑ldest

i=0 2
i = 2ldest+1 − 1,

8

This is a rough approximation as the message header,

the destination pre�x and other path attributes further

limit these lengths.
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• npath =
∑lpath

i=0 c
i
path = c

lpath+1
path /(cpath − 1),

• npref = cpref ,

• ncom =
∑lcom

i=0

(

ccom
i

)

whi
h 
an be bounded by

clcom+1
com /(ccom − 1)

• and nstat = 2.

It follows that the 
omplexity of the naive al-

gorithm is in

O(nroutes(|F |+ |F
′|)).

with nroutes in O(2 ·2ldest+1 · c
lpath
path · cpref · c

lcom
com). With

the bounds given above, the quantity inside the O
notation for nroutes is bounded by the huge num-

ber 266 · 22
16

.

Let us 
ompare this 
omplexity with our exper-

imental results. For our largest instan
e with size

|F | + |F ′| = 34, our algorithm takes (in the pes-

simisti
 
ase) about 210 se
onds (see Figure 19).

To be 
ompetitive, the naive algorithm has to

treat 266 · 22
16

routes in 210 se
onds, i.e. 256 · 22
16

routes per se
ond, whi
h is far beyond what is

possible. So our algorithm remains more e�
ient

for reasonable �lter sizes.

Note that our algorithm integrates the opti-

mizations des
ribed in Se
tion 9. The naive algo-

rithm 
ould also bene�t from the redu
tion of the

alphabets as des
ribed in Se
tion 9.2. With this

optimization, by inspe
ting the instan
e of size

|F |+ |F ′| = 34, the previous 
onstants cpath, cpref
and ccom de
rease to the values 2, 1, 4 respe
tively,
and nroutes is now bounded by 234 · 22

12

. Never-

theless, the naive algorithm has to still treat the

huge number of 224 · 22
12

routes per se
ond, to be


ompetitive with our algorithm.

Moreover, the algorithm proposed in this pa-

per is less dependent to 
hanges in route mod-

els. For instan
e if we plan to implement IPv6

routes instead of IPv4 ones, the DST_PREFIX 
an


ontain 128-bit addresses instead of 32-bit ones.

This will not 
hange the way automata are built in

our framework, but automata for dst_is(x) and
dst_in(x) may grow by a linear fa
tor, as the IP

pre�x x grows. On the opposite, the number of

routes to be 
onsidered by the naive algorithm

in
reases a lot, by a fa
tor 2128−32 = 296.

It should also be noted that adding a new at-

tribute to the route model, that is, an additional

bran
h to the trees, would multiply the 
omplex-

ity by a fa
tor p.

9. Optimizations

In this se
tion, we propose several optimiza-

tions to get a more e�
ient algorithm for testing

the equivalen
e of routing �lters.

9.1. Prepro
essing A
tions

When 
onsidering an a
tion A = (A1, . . . , An),
two trivial optimizations 
an be applied to redu
e

the number n of atomi
 a
tions, while keeping an

a
tion equivalent to A.
The �rst one is obtained by removing all atomi


a
tions following an atomi
 a
tion a

ept() (resp.
reje
t()). Indeed, if Ai = a

ept(), then all atomi


a
tions Aj with j > i will not modify any route,

as all of them will be in acc status. Hen
e A is

equivalent to (A1, . . . , Ai).
The se
ond optimization applies to the pref

bran
h. Three atomi
 a
tions relate to this

bran
h: absolute preferen
e pref_set(x), and rela-
tive preferen
e pref_add(x) and pref_sub(x) (see
Table 3). Assume that Ai = pref_set(a). Then

all atomi
 a
tions Aj of absolute and relative pref-

eren
e with j < i 
an be removed, as their ef-

fe
ts will be repla
ed by the e�e
t of pref_set(a).
Hen
e, one 
an remove all relative and absolute

preferen
e atomi
 a
tions pre
eding the last ab-

solute preferen
e atomi
 a
tion.

9.2. Redu
ing Alphabet Size

In this se
tion, we show that it is possible to

optimize the proposed modeling of routing �lters,

by redu
ing the sizes of the built tree automata,

espe
ially by redu
ing the sizes of their underlying

alphabet ΣR
.

Let F and F ′
be two routing �lters that we want

to test for equivalen
e. We show below that we


an restri
t routes to 
onsider to those having only

labels appearing in atomi
 predi
ates and a
tions

of F and F ′
(with some re�nement in the path

bran
h).
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Consider for instan
e the 
om bran
h. The

atomi
 predi
ates possibly used by F and F ′

are 
ommunity membership (see 
omm_in(x)
in Table 2) and the atomi
 a
tions are


ommunity membership and 
lear 
ommuni-

ties (see 
omm_add(x), 
omm_remove(x) and


omm_
lear() in Table 3). Let us denote by

Σcom
F the set of labels a in Σcom

su
h that

a appears in an atomi
 predi
ate/a
tion of

F or F ′
, as 
omm_in(a), 
omm_add(a), or


omm_remove(a).

If a is a 
ommunity of route t su
h that a 6∈
Σcom

F , then there is no need to store it in the 
om

bran
h of t. Indeed, all atomi
 predi
ates and a
-

tions relative to the 
om bran
h behave the same

on t and on the route t without a. Therefore,

for all routes t, we only store their 
ommunities

a ∈ Σcom
F in the 
om bran
h. Moreover the alpha-

bet used by the automata on the 
om bran
h is

redu
ed to Σcom
F (instead of Σcom

).

The same kind of argument 
an be repeated

for the path bran
h. In this 
ase, we de�ne

by Σ
path
F the set of labels a in Σpath

su
h that

a appears in an atomi
 predi
ate/a
tion of F
or F ′

, as path_in(a), path_ori(a), path_nei(a),
path_sub(s) with a a label in word s, and

path_prepend(a). We also add to Σ
path
F a new la-

bel denoted by ⋆. This label is used at the pla
e

of ea
h a ∈ Σpath \Σpath
F in the path bran
h. Con-

trarily to the 
om bran
h, we 
annot forget any

symbol not in Σ
path
F , due to predi
ate path_sub(s).

Let us illustrate this with an example. As-

sume that F uses predi
ate P = path_sub(ab),
and route t has a path bran
h b(c(d(a(path))))
with c, d 6∈ Σ

path
F . If we forget c, d, then the

path bran
h is repla
ed by b(a(path)) (instead of

b(⋆(⋆(a(path))))). Predi
ate P is then satis�ed,

whi
h is not 
orre
t. In this way, the alphabet

used by the automata on the path bran
h is re-

du
ed to Σ
path
F .

Similarly, on the dest bran
h, if no predi
ate

dst_is(x) or dst_in(x) appears in F nor F ′
, we


an take Σdest
F = ∅.

On the pref bran
h, we 
an also avoid to 
on-

sider the whole range [0, 232 − 1] for alphabet

Σpref
. Indeed, when entering a routing �lter,

LOCAL_PREF is set to a �xed value for all in
om-

ing routes. Re
all that the default for this value is

100. Moreover, ea
h a
tion has a unique e�e
t on

the value of LOCAL_PREF: given an input value, it

generates a unique possible output value. Hen
e,

for ea
h �lter rule Ri = 〈Pi, Ai〉, ea
h input value

p of LOCAL_PREF 
an yield two output values: p
if predi
ate Pi is false, and the result of applying

Ai on p otherwise. This gives at most 2n values

to 
onsider, for a �lter with n rules, therefore re-

du
ing the size of Σpref
when n is small.

9.3. E�
ient Automata Operations

In this se
tion, we 
ome ba
k to the automata

operations used for testing equivalen
e of �lters.

In Theorems 3.1 and 3.3, the prohibitive (expo-

nential) operation is the 
omplementation of a

non-deterministi
 automaton A. In our 
ontext,

instead of using these two theorems, we were able

to use the more e�
ient 
ounterparts given by

Proposition 3.2 and Theorem 5.1.

Boolean Combination of Atomi
 Predi
ates.

Proposition 3.2 shows how to avoid an exponen-

tial blow-up by working with automata that are

deterministi
 and L-
omplete. This approa
h has

been applied to model predi
ates with tree au-

tomata (with L = R).

Equivalen
e Test of Routing Filters. As stated in

Theorem 5.1, a se
ond exponential blow-up has

been avoided for the equivalen
e test of two tree

automata, due to the fun
tionality of �lters. We

here give the proof of this theorem.

Proof of Theorem 5.1. Let L be the set of trees

t1 ⊛ t2 su
h that

∃t, (t, t1) ∈ F, (t, t2) ∈ F ′
and t1 6= t2.

The relations F and F ′
are total fun
tions on

the set R of routes: for every t ∈ R, there is

a unique t′ su
h that (t, t′) ∈ F (resp. F ′
). Thus

we have that L = ∅ if and only if F and F ′
are

equivalent.

From the de�nition of BF and BF ′
, we have L =

{t1 ⊛ t2 | ∃t ∈ R, t ⊛ t1 ∈ L(BF ) ∧ t ⊛ t2 ∈
L(BF ′) ∧ t1 6= t2}. Let δF and δF ′

the respe
tive

sets of transitions of BF and BF ′
. We now build
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an automaton A re
ognizing L in time O(|δF | ·
|δF ′|) and of size O(|BF | · |BF ′|). As emptiness

of tree automata is de
idable in linear time, and

a 
ounterexample is 
onstru
ted in 
ase of non

emptiness [CDG

+
07℄, this will prove the result.

9

The way we 
onstru
t automaton A is in the

same vein as for the 
omposition operation (see

Se
tion 5.3).

First we ⋄-�ll BF , i.e. we transform BF to B⋄
F

su
h that BF a

epts a tree t if and only if B⋄
F a
-


epts it with an arbitrary number of labels (⋄, ⋄)
at the bottom of bran
hes path and com. This

pro
edure needs one more state q⋄, and the fol-

lowing transitions:

• ()
(⋄,⋄)
−−→ q⋄

• (q⋄)
(⋄,⋄)1
−−−→ q⋄

10

• (q⋄)
(a,b)1
−−−→ q, for ea
h transition ()

(a,b)
−−→ q in

BF with a, b ∈ {path, com, ⋄}.

We pro
eed similarly for BF ′
.

Then we build A from B⋄
F and B⋄

F ′. For ea
h

run of B⋄
F on t⊛ t1 and ea
h run of B⋄

F ′ on t⊛ t2,
with the same t, A has a run on t1 ⊛ t2. A state

of A is thus a pair (q1, q2)X (resp. (q1, q2)⊥) where
q1 (resp. q2) is the state of the 
orresponding run
of B⋄

F (resp. B⋄
F ′), and X (resp. ⊥) indi
ates

whether t1 = t2 (resp. t1 6= t2). The �nal states

of A are pairs (q1, q2)⊥ su
h that ea
h q1 (resp.

q2) is a �nal state in B
⋄
F (resp. B⋄

F ′). Let us illus-

trate transitions for labels of arity 1. Assume for

instan
e that:

(p1)
(a,b)
−−→ q1 and (p2)

(a,c)
−−→ q2

are transitions in B⋄
F and B⋄

F ′ respe
tively. Then,

if b = c, we add the transition:

((p1, p2)X)
(b,c)
−−→ (q1, q2)X

9

More pre
isely, the 
ounterexample would give t1 ⊛ t2
instead of t, but the algorithm 
an easily be adapted to

identify t.
10

Given label (a, b) with arity 0, (a, b)1 is a fresh label

with arity 1.

while, if b 6= c, we add the transition:

((p1, p2)X)
(b,c)
−−→ (q1, q2)⊥

In both 
ases, we also propagate a previously de-

te
ted di�eren
e:

((p1, p2)⊥)
(b,c)
−−→ (q1, q2)⊥

Hen
e we only have to 
onsider pairs of transi-

tions, and the overall pro
edure (in
luding the ⋄-
�lling of the automata) runs in time O(|δF | · |δF ′|)
and yields an automaton A of size O(|BF | · |BF ′|).
Noti
e that A does not exa
tly re
ognizes L

sin
e the automata BF and BF ′
have been ⋄-�lled.

It 
ould be ⋄-
leaned as explained in Se
tion 5.3.

However in this 
ontext, this is not ne
essary, be-


ause L(A) = ∅ i� L = ∅.

Remark that the worst-
ase 
omplexity of The-

orem 5.1 
an be avoided when equivalen
e fails.

Indeed, the rule generation 
an be limited to a
-


essible states, starting from leaf-rules. Hen
e,

on
e a state (q1, q2)⊥ is generated, with q1 (resp.
q2) a �nal state of BF (resp. BF ′

), we know that

�lters are not equivalent.

We show in Figure 20 the 
ode 
orresponding to

this equivalen
e test. When �lters are not equiv-

alent, it generates a route (i.e. a tree) whi
h is

a

epted by one �lter but not by the other. It is

part of the 
lass FilterAutomaton, and takes a

se
ond FilterAutomaton as input, and a boolean

indi
ating whether a 
ounterexample should be

built in 
ase of non-equivalen
e.

We give a brief des
ription of subrou-

tines. Fun
tion rea
hedStatesAtLeaves re-

turns the set of pairs (q1, q2)v (of Java type

Equivalen
eState, where v is a Boolean) that


an be built from symbols of arity 0. These

pairs initiate the saturation pro
ess. Fun
tion

equivalen
eStateForRules takes one rule of

ea
h automaton, and possibly returns a new pair

(q1, q2)v, as des
ribed in the proof. This adds new

pairs to saturate. Fun
tion filterState1 (resp.

filterState2) returns q1 (resp. q2) when applied
on pair (q1, q2)v. Fun
tion provesNonEquiv tests

whether a witness of non-equivalen
e has been

found, i.e. whether the pair (q1, q2)v on whi
h it is

alled is su
h that q1 and q2 are �nal and v = ⊥.
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✞ ☎
private ITerm<LabelPair > synthes izeSeparat ionTerm ( FilterAutomaton o th e rF i l t e r , boolean 
omputeSepTerm ){

// the separa t ion term i s b u i l t by a s s o 
 i a t i n g a term to ea
h

// equ i va l en
e term

ITerm<LabelPair> sepTerm = null ;

Map<Equivalen
eState , ITerm<LabelPair>> sepMap =

new HashMap<Equivalen
eState , ITerm<LabelPair >>();

// f i r s t add diamond r u l e s

f inal FilterAutomaton automaton1 = this . addDiamondRules ( ) ;

f inal FilterAutomaton automaton2 = o t h e r F i l t e r . addDiamondRules ( ) ;

// then look f o r a 
ounterexample to e qu i va l en
e

Set<Equivalen
eState > agenda = new HashSet<Equivalen
eState >() ;

boolean equ i va l en t = true ;

Set<Equivalen
eState > rea
hedState s =

rea
hedStatesAtLeaves ( automaton1 , automaton2 , 
omputeSepTerm , sepMap ) ;

agenda . addAll ( r ea
hedState s ) ;

while ( e qu i va l en t && ! agenda . isEmpty ( ) ) {

f inal Equiva l en
eState s t a t e = agenda . i t e r a t o r ( ) . next ( ) ;

agenda . remove ( s t a t e ) ;

for ( IRule<LabelPair , F i l t e r S t a t e > ru l e 1 :

automaton1 . ge tRu le sUs ingLe f tSta te ( s t a t e . f i l t e r S t a t e 1 ( ) ) ) {

for ( IRule<LabelPair , F i l t e r S t a t e > ru l e 2 :

automaton2 . ge tRu le sUs ingLe f tSta te ( s t a t e . f i l t e r S t a t e 2 ( ) ) ) {

f inal Equiva l en
eState equ ivState =

equ iva l en
eStateForRule s ( ru le1 , ru le2 , automaton1 , automaton2 , rea
hedState s ,


omputeSepTerm , sepMap ) ;

i f ( equ ivState != null ) {

rea
hedState s . add ( equ ivState ) ;

agenda . add ( equ ivState ) ;

i f ( equ ivState . d i f f e r s ( ) ) {

equ i va l en t = ! equ ivState . provesNonEquiv ( automaton1 , automaton2 ) ;

i f ( 
omputeSepTerm && ! equ i va l en t ) {

sepTerm = sepMap . get ( equ ivState ) ;

}

}

}

}

}

}

i f ( ! e qu i va l en t && ! 
omputeSepTerm ) {

// a dummy non−nu l l term

sepTerm = new Term<LabelPair >(

this . getAlphabet ( ) ,

new ArrayList <ITerm<LabelPair >>(),

A
tionAlphabet .REJREJ ) ;

}

return sepTerm ;

}

✝ ✆

Figure 20: Java 
ode for the equivalen
e test, returning a 
ounterexample to equivalen
e when it exists, and null

otherwise.
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10. Con
lusion

In this paper, we have investigated the semanti


of BGP routing �lters, with the aim of determin-

ing whether two given �lters are equivalent or not.

We have shown how this problem 
ould be solved

using tree automata theory. Our approa
h was as

follows: routes were modeled as trees, and rout-

ing �lters as tree automata. Testing the equiva-

len
e of two �lters was then redu
ed to testing if

their 
orresponding tree automata are equivalent.

This is a 
lassi
al operation in tree automata the-

ory. Using this approa
h has the additional ben-

e�t that when two �lters are not equivalent, the

test generates a 
ounterexample.

We have implemented our model in a fully-

fun
tional prototype. This tool takes as input

BGP routing �lters expressed in the Cis
o IOS


on�guration language, generates 
orresponding

tree automata and tests their equivalen
e. To

make the tool of pra
ti
al use, we had to enhan
e

it with several optimizations. Most optimizations

were brought to the model so as to redu
e the size

of automata and the running time of the equiva-

len
e test. The �rst optimization avoids an expo-

nential blow-up at the level of predi
ates used in

�lters, by translating them into deterministi
 au-

tomata. The se
ond optimization avoids another

exponential blow-up by taking into a

ount that

routing �lters are total fun
tions. With a third

optimization, we have tried to redu
e the size of

the 
onstru
ted automata by using quasi-routes

instead of routes and by limiting the ranges of

values (ASNs, 
ommunity values...) to be 
onsid-

ered.

We used our prototype tool to 
ondu
t several

experiments to assess the pra
ti
al feasibility of

our approa
h. We performed these experiments

on two di�erent datasets. The �rst dataset was


omposed of routing �lters 
oming from routers

of a large European transit network. The se
ond

dataset 
ontained syntheti
 �lters that we gener-

ated to stress-test the s
alability of our approa
h.

The experimental results are promising. They

show the e�
ien
y of our approa
h and the inter-

est of using tree automata theory in the 
ontext

of routing �lters.

Beyond equivalen
e, our modelisation allows to


he
k properties of �lters. Tree automata en-

joy great expressiveness. We 
ould 
he
k linear

bran
hes against regular expressions (for IP ad-

dresses for instan
e), but also express non-lo
al

properties, like: Do all a

epted routes 
ontain at

least 3 
ommunities in the 
om-bran
h, ea
h time

the pref-value is greater than 150? In this paper

we only used a restri
ted part of tree automata

theory. Many other innovative appli
ations 
ould

arise from a deeper use of this theory.
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