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Abstract

The Border Gateway Protocol (BGP) is the protocol used to distribute Internet routes between different
organizations. BGP routing policies are very important because they enable organizations to enforce
their business relationships by controlling route redistribution and route selection. In this paper, we
investigate the semantic of BGP policies. We aim to determine whether two policies are equivalent, that
is, if given the same set of incoming routes, they will generate the same set of outgoing routes. We show
how this problem can be solved using the tree automata theory and describe several optimizations. We
also propose a prototype implementing this approach. The experimental results are very promising.
They show the efficiency of our approach and the interest of using the tree automata theory in the

context of BGP routing policies.
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1. Introduction

The Border Gateway Protocol (BGP) [RLHO6]
is the protocol used to distribute Internet routes
between different organizations, also called Au-
tonomous Systems (AS). In BGP, routing policies
are very important because they enable ASes to
enforce their business relationships by controlling
route redistribution and route selection. This in
turns influences how the traffic flows in the Inter-
net. ASes are motivated to control traffic flow
as carrying traffic internally is costly and they
are billed differently by the different neighbor-
ing ASes, with whom they have a business rela-
tionship, for sending traffic through them. This
billing often relies on the amount of traffic sent
to the neighboring AS. For example, an organiza-
tion A can buy transit service from an Internet
provider. In addition, it may connect to another
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organization B for the sole purpose of exchanging
information destined to that organization. BGP
policies enable organization A to prevent traffic
between the Internet provider and its peering or-
ganization B to transit through its network. Net-
work operators may wish to implement a wide va-
riety of policies ranging from limiting the adver-
tisement of some prefixes, to preferring sending
traffic to some cheaper neighboring ASes, to in-
fluencing the route selection in distant ASes, and
to stop a DDoS attack, to name a few.

The configuration of BGP policies is complex
and often source of errors [MWAO02, FB05|. The
implementation of a single policy is distributed
among filters defined on multiple routers, each
configured differently. Usually, some action takes
place at the entrance of the AS and a different set
of actions takes place at the exit of the AS. Due
to this distribution, it is not easy to build a high
level view of the BGP policies solely based on the
router configuration files. Furthermore, the con-
figuration languages provided by the router ven-
dors are very low level. Each vendor provides a
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different syntax. Translation from one language
to another is complex as the expressiveness of the
languages varies greatly. Even using a single lan-
guage, it is possible to implement a single high
level policy in multiple ways. Several attempts
have been made at providing tools to manipu-
late or generate correct BGP policy configurations
[CGGT04, Int97, BEM 105, VH09).

In this paper, we investigate the semantic of
BGP routing filters. We aim to determine if two
BGP routing filters have the same semantic. That
is, if given the same set of incoming routes, the
two filters will generate the same set of outgoing
routes. The solution to this problem is impor-
tant as it is the first step to being able to de-
tect routing filters configuration mistakes before
committing a configuration change and thus pre-
vent unnecessary traffic disruptions. It enables
to push much further the work started by Grif-
fin et al |[GJRO3|, Feamster et al [FB05|, by Le
et al [LLWT09] and more recently by Perouli et
al [PGM™12|. Identifying if two policies have the
same effect enables network operators to check the
correctness of routing filter configurations with re-
gard to the high level policies they aim to enforce.
Additionally, such a solution is useful for refactor-
ing old BGP routing filter configurations upon a
change of network equipment, the acquisition of
another network, a configuration clean up or the
development /deployment of a configuration tool.

The first idea that comes in mind to test if
two routing policies have the same semantic is
the following one: to enumerate all the possi-
ble routes (up to a certain size) and to test if
the two given policies generate the same output
routes. In this paper we propose to rely on tree
automata theory [CDGT07], a powerful mathe-
matical tool well-known for its applications in
XML processing |[Hos10|, and program verifica-
tion [FGVTTO04]. We model routes as trees, and
routing policies as tree automata. We use the
tree automata theory to decide whether two rout-
ing policies have the same semantics, that is, are
equivalent total functions. Therefore contrarily to
the previous algorithm which works at the level of
routes and tests route after route for the equiva-
lence of policies, we test for equivalence directly

at the level of the policies.

The paper is organized as follows. In Section 2,
we briefly describe how the BGP routing proto-
col works and how it implements routing policies
with routing filters. We then formally define the
semantics of routing filters, as total functions op-
erating on routes.

In Section 3, we explain how to model a route
as a tree. We recall the notion of tree automa-
ton, present some of their useful properties, and
illustrate with some pedagogical examples. We
then show progressively how routing filters can
be modeled as tree automata. We start with fil-
ter predicates used in routing filters to test if a
filter can be applied to a route. Such predicates
can easily and naturally be modeled by tree au-
tomata.

In Section 5, we focus on filter actions. An
action is used in a filter to generate a modified
output route from a given input route. We show
that filter actions can also be modeled with tree
automata. To this end, we show that an action
can be seen as a binary tree relation and how to
model this relation as a tree automaton. This
model is again easy and natural. We also show
that a routing filter can be modeled as a tree au-
tomaton, and that the equivalence of two filters
reduces to the equivalence of their related tree au-
tomata. Testing the equivalence of two tree au-
tomata is a classical operation in tree automata
theory.

In Section 6, we propose a prototype imple-
menting this approach. We demonstrate the
equivalence test on example Cisco I0S route-
maps then we discuss additional routing filter ver-
ifications that could be provided by our tool in the
long-term.

In Section 7, we describe multiple cases where
our approach could be applied by network opera-
tors to perform sanity checks when deploying or
updating routing filters distributed on multiple
routers. We show the benefits of reasoning at the
level of filters rather than at the level of routes.

In Section 8, we describe several experiments
we performed with the prototype implementation.
We present, performance measurements as well as
a study of the algorithmic complexity. Several



optimizations are brought to the prototype im-
plementation to reduce its time and space com-
plexity. Those optimizations are described in Sec-
tion 9. The experimental results are very promis-
ing. They show the efficiency of our approach and
the interest of using the tree automata theory in
the context of routing filters.

2. BGP Routing Policies

The Internet is an interconnection of several
independent networks called Autonomous Sys-
tems (AS), each being uniquely identified by an
AS number (ASN). The Border Gateway Protocol
(BGP) is the de facto standard protocol used for
routing among ASes.

To compute paths across the Internet, BGP
routers need to exchange routing information.
The basic unit of routing information in BGP is
a route and its purpose is to announce the reach-
ability of a remote destination. Although BGP
can be used to advertise the reachability of sev-
eral kinds of address families [BRCKO00], in this
paper we focus on IPv4 addresses. For this ad-
dress family, destinations are announced in the
prefix form. An IP prefix, expressed as a couple
(address / prefix length) represents a set of con-
tiguous IP addresses that share a common prefix.
An example is 192.168.128.0/17 which repre-
sents the set of addresses that share their 17 most
significant bits with 192.168.128.0. In a route,
we call DST_PREFIX the attribute that contains the
destination prefix.

A BGP route associates a destination prefix
DST_PREFIX with several path attributes. The
most important path attributes are described in
the following paragraphs.

e AS_PATH: records the ASNs of the ASes tra-
versed by the route, ordered from the clos-
est to the nearest. The AS_PATH attribute is
used for loop detection as well as for ranking
routes.

e LOCAL_PREF: used to give a route a prefer-
ence that has a meaning local to the AS. The
LOCAL_PREF attribute has a default value in

every network. In the remaining of this pa-
per, this default value is assumed to be 100.

e NEXT_HOP: identifies the router to which
packets must be sent in order to follow this
route.

e MULTI_EXIT_DISC (Or MED): used by a neigh-
bor AS to suggest which route should be pre-
ferred.

e COMMUNITIES [CTL96| : used to tag the
route as being part of a group of routes that
must undergo the same treatment. Each tag,
named a community value, has a semantic
that is usually local to an AS or to an AS
and its direct neighbors. Some community
values are defined with a global semantic by
the standard.

Each attribute has a specific type which man-
dates how the attribute values are encoded in a
route. The type of the above attributes are listed
in Table 1.

Other attributes are defined by the BGP stan-
dard. We do not list them in Table 1 as they
cannot be used in routing filters. Those at-
tributes are ORIGINATOR_ID, CLUSTER_LIST used
in conjunction with route-reflectors |BCCO06|,
ATOMIC_AGGREGATE and AGGREGATOR used for
route aggregation purposes. Moreover, the def-
inition of sets (AS_SET) in the AS_PATH is also
ignored as it is being deprecated by the IETF
|[KS11]. The attributes listed in this paragraph
are ignored in the remaining of this paper. How-
ever, should those attribute appear in routing fil-
ters in the future, our model could easily be ex-
tended to support them.

2.1. Routing Filters

An essential feature of the BGP protocol is the
ability for any router to filter routes received from
or sent to neighbors. To filter a route has two
different meanings: it can mean either to reject
the route or to accept it after its attributes have
possibly been modified. Filtering routes has sev-
eral applications [CRO05] from enforcing routing
policies (rejecting routes that do not agree with



Attribute | Type |

DST_PREFIX Sequence of up to 32 bits
(IPv4)

AS_PATH Sequence of 16-/32-bits
unsigned integers

LOCAL_PREF Unsigned integer (32-bits)

NEXT_HOP IPv4 address

MULTI_EXIT_DISC | Unsigned integer (32 bits)

COMMUNITIES Set of 32-bits unsigned in-
tegers

Table 1: Type of BGP path attributes.

business relationships among domains) to traffic
engineering (influence how BGP selects the best
route towards a specific destination by changing
the route’s attributes).

Routing filters in BGP are defined on every sin-
gle router on a per-session basis. That means that
a router can act differently on a route towards
the same destination but received from or sent
to different neighbors. Routing filters are usually
defined by the network operator using the equip-
ment’s configuration language. This language is
vendor specific; the BGP specification [RLHO6]
does not specify routing filters. The two most
known configuration languages are used on the
routing platforms from Cisco Systems and Ju-
niper Networks, but other vendors provide their
own language as well.

Generally speaking, a routing filter can be de-
scribed using the following formalism. A rout-
ing filter F' is composed of a sequence of n rules
(Ry,..., R,) that are applied one after the other.
Each rule R = (P, A) is composed of two parts: a
predicate P and an action A. The predicate de-
termines if the action applies to a route or not.
A predicate is a Boolean combination of atomic
predicates where each tests a single attribute of
the route. The action is a sequence of atomic ac-
tions where each modifies a single attribute of the
route. The action is applied to the route when the
predicate matches the route.

An atomic predicate tests a single path at-
tribute. Table 2 shows the most common atomic
predicates. Note that configuration languages al-

low the expression of more complex predicates
such as regular expressions on AS_PATH or the def-
inition of sets of community values using regular
expressions. These predicates are syntactic sug-
ars for more complex combinations of the above
atomic predicates.

An atomic action modifies a single path at-
tribute. Table 3 shows the most common atomic
actions. Special actions can be used in a filter
to accept or reject a route. When such action is
used, the filter processing stops and the remaining
filter rules are not applied.

Algorithm 1 summarizes how a filter is applied
to a route. The algorithm returns a modified
version of the route and a mode that indicates
if the route was accepted (acc) or rejected (rej)
by the filter. The algorithm applies each rule in
sequence. For each rule, the algorithm tests if
the predicate matches or not. If the predicate
matches, the algorithm applies the atomic actions
in sequence. Each action modifies the route. If
special accept() or reject() action is encountered,
the algorithm finishes immediately and the cur-
rent, version of the modified route, along with the
route’s mode are returned.

Algorithm 1 Applies a filter to a route

mod__route <— route
for all rule in rules(filter) do
if predicate(rule)(mod_route) then
for all action in actions(rule) do
if action = accept then
return (mod_route,acc)
else if action = reject then
return (mod_route, rej)
else
mod__route < action(mod _route)
end if
end for
end if
end for
return (mod_route,acc)

We show in Figure 1 a short BGP routing filter
expressed in the syntax of Cisco IOS along with an
example Java code that expresses the same filter
in our prototype tool.



Name

Predicate

Description |

Community membership

comm__in(x)

True iff the community value x belongs to the
COMMUNITIES attribute.

Path membership

path_in(x)

True iff the ASN z belongs to the AS_PATH attribute.

Path origin

path_ ori(x)

True iff the ASN z appears at the last position in the
AS_PATH. The last ASN in the AS_PATH identifies the
AS which originated the route.

Path neighbor

path_nei(x)

True iff the ASN x appears at the first position in the
AS_PATH. The first ASN in the AS_PATH identifies the
neighbor AS from which the route was received.

Path subsequence

True iff the sequence of ASNs, s, is included as is in
the AS_PATH attribute.

Next-hop equality nh_is(z) True iff the NEXT_HOP equals the IP address z.
Next-hop inclusion nh_in(x) True iff the NEXT_HOP is included in the IP prefix x.
Destination equality dst_is(x) True iff DST_PREFIX is equal to the IP prefix x.
Destination inclusion dst_in(x) True iff DST_PREFIX is included into the IP prefix x.

Table 2: List of the most common atomic predicates.

Name

Action

Description |

Absolute preference

pref _set(x)

Set LOCAL_PREF value to x.

Relative preference

pref add(z)

Add z to the LOCAL_PREF value. If the new value
is larger than 232 —1, the LOCAL_PREF value is set
to 232 — 1.

pref _sub(x)

Subtract z from the LOCAL_PREF value. If the
new value is smaller than 0, the LOCAL_PREF
value is set to O .

Path prepending

path_ prepend(z)

Add the ASN = at the beginning of the AS_PATH.

Community membership

comm__add(x)

Add a community value x to the COMMUNITIES. If
x is already part of the COMMUNITIES, this action
has no effect.

comm__remove(x)

Remove a community wvalue x from the
COMMUNITIES. If the community value x is not
part of the COMMUNITIES, this action has no ef-
fect.

comm, _clear()

Empty the COMMUNITIES.

Next-hop update nh_ set(x) Set NEXT_HOP value to [P address x.
Absolute MED med_set(x) Set the MULTI_EXIT_DISC value to value z.
Acceptance accept() Accept the route.

Rejection reject() Reject the route.

a test for the equivalence of two routing filters.

2.2. Problem Statement

Table 3: List of the most common atomic actions.

Let R be the set of possible routes. A routing

The main objective of this paper is to provide
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ip as—path access—list 1 permit 10

ip as—path access—list 2 deny 10
ip community—list 1 permit 20

route —map RM1 permit 10
match as—path 1
set community 20 additive
set local—preference 200

route —map RM2 permit 20
match as—path 2
match community 1
set community none

List <IFilterRule> rules = new ArrayList <FilterRule >();

final IPredicate inPath = new PathIn(10);

final List<IAction> actionsl = new ArrayList<IAction >();
actionsl.add (new ComAdd(20));

actionsl.add (new Accept ());

rules.add (new FilterRule (inPath, actionsl));

final IPredicate notInPath = new PredicateNot(inPath);

final IPredicate inComm = new CommlIn(20);

final List<IAction> actions2 = new ArrayList<IAction >();

actions2.add (new ClearCommunities ());

actions2.add (new Accept ());

rules.add (new FilterRule (new PredicateAnd(notInPath, inComm),
actions2));

final List<IAction> actions3 = new ArrayList<IAction >();
actions3.add (new Reject ());

rules.add (new FilterRule(null, actions3));

Filter myFilter = new Filter (rules);

Figure 1: Cisco IOS route-map and Java code for constructing the corresponding filter.

filter F' as defined in Section 2.1 can be seen as a
total function associating with each route r € R
another route " € R, together with a mode in
{acc, rej} that indicates if the route is accepted or
rejected by the filter.

Equivalence. Two routing filters F} and Fj are
equivalent if and only if, for all routes, their re-
sults are equal, i.e. F} = F, iff F} and F; define
the same function. Two routes are equal if all
their attributes are equal.

The above definition of the equivalence of rout-
ing filters leads to a straightforward, naive test
algorithm: enumerate all routes in R, apply the
filters to each route and compare the results. If no
route was found for which the filters have different
results, then the test succeeds. Otherwise, a coun-
terexample is found and the test fails. The com-
plexity of this algorithm mainly depends on the
size of R. Testing the equivalence of routing fil-
ters with the above naive algorithm is clearly not
practical. We provide a comparison between our
approach and the naive algorithm in Section 8.2.

In this paper, we aim at providing a novel
method for testing the equivalence directly at the
level of filters rather than at the level of routes.
To achieve this objective, we model

1. routes with trees. A tree is just a mean of
encoding the values of all the attributes of a

route.

2. predicates with tree automata. A tree
automaton that models a predicate recog-
nizes only the trees corresponding to routes
satisfying the predicate.

3. actions/filters with tree relation au-
tomata. Actions and filters are binary rela-
tions that map a route to its image. Hence,
we model actions and filters with automata
that recognize a binary tree relation, that is
a set of pairs of trees (a tree and its image by
the relation).

The equivalence of routing filters can there-
fore be reduced to testing the equivalence of au-
tomata, a standard operation in Automata The-
ory [HU79.

It is important to note that with the proposed
automata approach, a routing filter is modeled by
an automaton as a relation (that maps routes to
routes), and routing filters are tested to be equiv-
alent via relations encoded as automata. The pro-
posed test is thus not done at the level of routes
but rather at the level of relations.

Other Problems. Let us mention some other re-
lated problems. When two routing filters F} and
F5 have been declared as not being equivalent,
we could be interested to have a witness of non-
equivalence, that is, a route leading to two differ-



ent results by F} and F,. More generally, it could
be interesting to know the set of all (instead of
one) witnesses of non-equivalence of two filters.

Another interesting problem is to be able to
test whether or not a subset of routes satisfying
a given property (for instance, routes including
community 1) is transformed by a filter into a
subset of routes satisfying another property (for
instance, routes with local-pref value 150).

We will see in this paper that these problems
can also been solved using Automata Theory, fol-
lowing the same approach as for the equivalence
test of two filters.

3. Tree Automata

In this section, we provide the tree automata
background required to fully understand the pa-
per. We first explain what is a tree and how it
can be used to encode a complex structure. Sec-
ond, we recall the notion of tree automaton and
illustrate it with examples. We also make a par-
allel between tree automata and more classical
word automata. Third, we introduce two tree
automata properties that are important for our
model, namely determinism and completion. We
illustrate these properties with examples. Finally,
we explain Boolean operations on tree automata.
Those operations are required to model Boolean
operations on filter predicates. These operations
are also at the heart of the classical automata
equivalence test.

3.1. Trees

We consider ranked trees, i.e. trees where the
number of children of a node is fixed by its la-
bel. Ranked trees are useful for encoding com-
plex, structured data such as a route composed of
multiple attributes.

Let alphabet X be the finite set of labels that
can appear in a tree. Let also ar be a function
mapping each label @ € X to a positive integer
ar(a) called its arity. The value ar(a) gives the
number of children of a node with label a. For
convenience, we write X,, for the set of labels of
arity n: ¥, = {a € ¥ | ar(a) = n}. A node
labeled by a € ¥ is called an a-node.

We note a(ty,...,t,) the tree rooted at a with
n subtrees t; to t,,. The set Tsx of trees over % is
the least set containing all finite trees a(ty, ..., t,)
where a € ¥, and ¢t; € Ty forall 1 < ¢ < n.
Note that children of a node are ordered. A tree
language is a subset of Ty.

Let us illustrate these definitions. Consider the
alphabet ¥2*d = {a, b, ¢, d} where ar(a) = ar(b) =
2, ar(¢c) = 1 and ar(d) = 0. In other words,
yabed — fg, b}, X3bed = {c} and X3 = {d}.
The tree a(d) does not belong to Tsanea, because
ar(a) = 2, so the root node should have two chil-
dren. The tree t = b(a(d, c(a(d,d))), d) belongs to
Tsabea. It is depicted in Figure 2.

b
VRN
a d
VRN
d c

RN
d d

Figure 2: A tree t € Tyabea.

3.2. Tree Automata

In this section, we recall the notion of tree au-
tomaton and illustrate it with the previous exam-
ple of alphabet ¥2"°d. The role of a tree automa-
ton is to recognize trees with a given structure.

Tree Automaton. A tree automaton A over X is a
tuple (Q, F, X, ) where () is a finite set of states,
F C @ is a set of final states, and ¢ is a set of
transitions of the form (qi,...,¢,) - ¢ with a €
>,and q,q,...,q, € Q. The number of states is
denoted by |@Q| and the number of transitions by
|8]. The size | A| of A is equal to |Q)].

Run. A run of a tree automaton A on a tree ¢ is
a function p mapping a state of A to each node of
t, such that for every node 7 of ¢, if 7 is labeled
by a € ¥, then (p(m1),...,p(m,)) = p(7) € 6
where 7; is the i*" child of node 7.

Intuitively, a tree automaton operates in a
bottom-up manner on a tree: it assigns a state



to each leaf, and then to each internal node, ac-
cording to the states assigned to its children. A
run p is accepting if the root 7 of the tree is as-
signed to a final state, i.e. p(m) € F. A tree
t € Ty is accepted by the tree automaton A if
there is an accepting run among all runs of A4 on
this tree.

Recognizable Language. The language of A is the
set of trees accepted by A, and is written L(A).
We say that A recognizes L(A). A tree language
L C Tyx is recognizable if there exists a tree au-
tomaton A recognizing it.

Equivalence. Two tree automata are equivalent if
they recognize the same language.

3.3. Example

To illustrate the concept of a tree automaton,
let us take a simple example. Consider the alpha-
bet X3¢ = {a, b, c}. The arity function is defined
as ar(a) = ar(b) = 2, ar(c) = 0.

Suppose we want to build an automaton that
recognizes the language L,. composed of trees
over the alphabet 2" that have at least one
branch where an a-node is parent of a c-node.

We propose the tree automaton A,
(Q, F,¥2¢ §) with Q = {qc, Gae; q1}. State q. is
assigned to a c-node. State g, is assigned to a
node 7 if and only if it belongs to a branch that
contains an a-node parent of a c-node. State ¢,
is assigned in every other case. There is a single
final state; F' = {q,.}. The transitions in § are as
follows:

)= q
b b b
(qm qc) — qiL (qc> qac) — Gac (qc> qJ_) — qi1
b b b
(Gacs 4c) = Gac (Qacs Gac) = Gac  (Qaes 41) = Gae
b b b
(q1,qc) = a1 (q1+%ac) = Qae (qu,q1) = qu

(%es Que) ~ Gac
(Qac» Gac) = Gac
(QJ_, qac) — Gac

(Ger @e) ~ Gac
(Qac> Ge) = Gac

(41, 4e) = Qae (q1,q0) = qu

A b-node is assigned state ¢, if and only if at
least one of its child nodes was assigned q,.. In
every other case a b-node is assigned state ¢, .

An a-node is assigned state g, if and only if at
least one of its child nodes was assigned q,. or g..
If all child nodes are assigned ¢, , then state ¢, is
assigned to the a-node.

Figure 3 shows a run of A,. on two different
trees. The run in Figure 3a is non-accepting as
the tree does not contain an a-node parent of a
c-node. The state assigned to the root node, ¢, is
not a final state. The run in Figure 3b is accept-
ing. Indeed, this tree belongs to the language of
the automaton, £(A,).

b qac
/N
an_ CQC aQac
/N /N
ng_ bQJ_ A qac € qc
/ A\ /N /N
€q €4 €qc €Qqc € g €qe

(a) Non-accepting run (b) Accepting run

Figure 3: Two runs of A,c.

3.4. Relation to Word Automata

Tree automata are related to more classical
word automata. Tree structures subsume words,
that is every word can be considered as a tree.
For example, a word ayas - - - a, can be considered
as a tree a,(a,_1(...ai(nil))), so that a word is
mapped to a branch. We consider that each word
label has arity 1 when used in the tree alphabet.
A special label nil of arity 0 is also added to the
tree alphabet. Note that the ordering of labels in
the tree is reversed compared to that of the word.
This is due to the bottom-up processing of tree
automata.

Such mapping also holds at the automata level.
A word automaton over ¥ is a tuple (Q, I, F, ¥, 9),
where () is a finite set of states, I, F' C () are sets
of initial (resp. final) states, and ¢§ is a set of
transitions of the form ¢ — ¢. A run starts in
an initial state and applies a series of transitions
corresponding to labels of the input word. A word
is accepted if a run ends in a final state. We refer
the reader to [HU79] for more details.



Figure 4: Word automaton recognizing (a|b)*c.

It is also interesting to note that word automata
have the same expressiveness as reqular expres-
stons: every regular expression can be translated
to a word automaton recognizing the same words,
and vice-versa. For instance the regular expres-
sion (a|b)*c can be translated to the word automa-
ton in Figure 4 such that Q = {qo,¢1}, qo (resp.
¢1) is the unique initial (resp. final) state, and the

.. a b c
transitions are gy — qo, o — qo, and go — ¢;.

3.5. Tree Automata Properties

Some operations on tree automata that are use-
ful in this paper, can be realized much more effi-
ciently when the tree automata satisfy some prop-
erties: determinism and completeness.

Determinism. A tree automaton A is determinis-
tic if it has no pair of distinct transitions with
the same left-hand side. Formally, whenever
(i, qn) = q € 6and (q,...,q,) = ¢ €6,
we must have ¢ = ¢'.

Hence, a deterministic tree automaton has at
most one run per tree. Every tree automaton can
be determinized, i.e., one can build an equivalent
deterministic tree automaton [CDGT07]. How-
ever, the determinization procedure is exponen-
tial in time, and yields automata of exponential
size.

Completeness. Given a language £ C Ty, a tree
automaton A is L-complete if there is at least
one run of A on every t € L. Therefore, if A
is deterministic and L-complete, there is exactly
one run of A on every t € L.

An automaton A is complete if there is at
least one transition for every left-hand side
(q1,---,qn) — where ar(a) = n. If an automaton
is complete, it is also Ty-complete.

Every tree automaton can easily be turned into
an equivalent complete automaton by adding a
(non-final) sink state ¢* and transitions going
to it (q1,...,qn) — q*, for every left-hand side
(q1,...,qn) = missing in 6. We name this oper-
ation completion.

3.6. Example Revisited

The automaton A,. defined in Section 3.3 is
deterministic as there is a single transition for
each left-hand side. The automaton is also com-
plete as there is a transition for every possible
left-hand side. In this section, we provide a non-
deterministic automaton A, that recognizes the
same language L,. as A,.. Recall that L, is the
set of trees over X2°¢ that have at least one branch
where an a-node is parent of a c-node.

To build such an automaton, let us first imagine
that the automaton can guess a branch of the tree
where the a-node is parent of a c-node, and then
check it. Let us call this branch . Note that the
action of guessing the branch is a pure vision of
the mind. The automaton is really an algebraic
object and there is no reason to ask how it can
guess the branch.

A run of the automaton A} assigns state ¢, to
every node that is not on 8. On (3, the automaton
uses states ¢. and q,. to memorize that it has seen
respectively a c-node or an a-node above a c-node.

State g, is the unique final state. The transi-
tions of the automaton are as follows:

b b b
(qJ_a qJ_) — q1 (QJ_a Qac) — (ac (qaca qJ_) — (ac
(QJ_a QJ_) i> q1 (qc> qJ_) i> Gac (QJ_a QC) i> Qac
(QJ_u Qac> — Gac (Qacu QJ_) — (ac

If the automaton guessed the wrong branch,
then there is a b-node above a c-leaf which has
been assigned to g.. As no transition exists for
this case, there cannot be a corresponding run for
this guess.

Figure 5 shows an accepting run of A7 on the
same tree as in Figure 3b. The branch [ that



has been guessed by the automaton is shown with
thick lines. Every node outside the branch is
mapped to state ¢, . Note that there are two other
accepting runs of A, for this tree as there are two
other branches that contain an a-node parent of
a c-node.

b qac
%,

¢ qL a Gac

N\

aQac ¢ qL
/ %

c qL c qc

Figure 5: A run of A/_.

The automaton A/  is non-deterministic. This
can be observed from the transitions labeled with
c. There is one for the leafin the § branch and the
other one for the leaves outside the branch. As a
consequence, if a tree has more than one branch
that satisfies the property checked by A’ , then
there can be multiple accepting runs for this tree.
The automaton A is L,.-complete as there is at
least one run for every ¢ in £,.. However, A,
is not complete as there is no transition for some

left-hand sides, like for the case (g, q.) — .

3.7. Operations on Tree Automata

Recognizable tree languages enjoy closure un-
der all standard Boolean operations. The com-
plement of a tree language T C Ty is the tree
language Ty \ T, i.e. the set of all trees that are
not in 7. The intersection and union of two tree
languages T, T, C Ty are respectively T1N7T5 and
T1 U TQ.

Theorem 3.1. Recognizable tree languages are
closed under complementation, intersection and
UnIon.

In other terms, given automata A;
(Q17F17 Z,(Sl) and AQ = (QQ,FQ, 2752), one can
always find automata A, A, and Aj recogniz-
ing respectively Ty \ L(Ay), L(A;) NL(Az), and
L(A;) UL(As). This result is folklore [CDGT07],
we only give some insights.
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Intersection and union can be obtained by com-
puting the synchronized product of two automata
A; and A,. This construction is in time O(|d,] -
|02]) and yields automata of size O(|A;| - |As]).
Complementation is obtained by determinizing
the automaton, completing it (so that each tree
has exactly one run on it), and then swapping its
final states with its non-final states. The comple-
mentation procedure is exponential in time and
the obtained automaton has a size exponential in
the size of the original automaton.

When the initial automata are deterministic
and complete, better complexities occur for the
complementation operation, as indicated in the
next proposition. In this proposition, we consider
the more general situation of automata that are
deterministic and L£-complete. Given a tree au-
tomaton A, we use notation L(A), = L(A)NL
to restrict the language of A to L.

Proposition 3.2. Let A; and Ay be two au-
tomata that are deterministic and L-complete.
Then one can construct automata A%, A, and
A% that are again deterministic and L-complete,
and such that L(A}))z = £\ L(A1)z, L(AY) ;e =
L(.Al)‘g N L(.AQ)‘L, and L(.Ag)‘g = I—(Al)w U
L(As)z respectively. Moreover A} can be con-
structed in time O(|.Ay|) and with the same size
as A, and AL, AL can be constructed in time

O(|01] - |02]) and with size O(|A;] - | Asl).

Let us give some insights about this result. As
each given automaton A;, i = 1,2, is determin-
istic and L-complete, there exists a unique run
for each tree ¢t € L£. This run is either accepting
or rejecting depending on whether ¢ belongs to
L(A;)|z or not. Therefore, an automaton A} such
that L(Af)z = L\L(A1)|¢ is simply obtained from
A; by swapping its final states with its non-final
states. The resulting automaton is deterministic
and L-complete. For the intersection and union
operations, we use the synchronized product (as
mentioned above) of the automata 4; and As to
get automata A, and Aj respectively. The an-
nounced complexities follow.

In this proposition, it is stated that the automa-
ton for the intersection and the union operations
is built in time O(|d1| - |92]). In fact it can be



built in time O(|A;|" - | A2|" - |Z|) where k is the
maximal arity of the alphabet Y.

Thanks to Theorem 3.1, it can be checked
whether two tree automata A; and A, are equiv-
alent. Indeed, it suffices to check that L(A;) C
L(As), and conversely. The former inclusion is
equivalent to L(A;) N (Ts \ L(Ag)) = 0. Empti-
ness of tree automata is decidable, so we get
[CDGT07]:

Theorem 3.3. Equivalence of tree automata is
decidable.

This test is in exponential time if automata are
non-deterministic [CDG*07], and in polynomial
time otherwise [CGLNO09].

4. Modeling Routes and Predicates
4.1. Model of a Route

We recall from Section 2 that a route is com-
posed of the attributes DST_PREFIX, AS_PATH,
LOCAL_PREF, NEXT_HQOP, MULTI_EXIT_DISC,
COMMUNITIES and of a status indicating if the
route is still modifiable or definitely accepted or
rejected by the routing filter.

A route can be modeled as a tree as shown in
Figure 6. This tree has a root labeled by label
route of arity 5. This node is the parent of five
branches: the first four branches model some at-
tributes and the last one models the status. It is
easy to support additional attributes in the tree
model of a route by adding new branches under
the root node.

The branches shown in Figure 6 correspond
to the next four attributes: a sequence of in-
teger values (AS_PATH), a set of integer values
(COMMUNITIES), a single integer (LOCAL_PREF)
and a bitstring (DST_PREFIX). For clarity reasons,
we choose to not present the MULTI_EXIT_DISC
and NEXT_HOP in the paper as the type and the
actions that can be applied to these attributes are

! We just need to store the transitions in a data struc-
ture where transitions using a given symbol of ¥ are re-
trieved in constant time. Then we loop over all symbols of
the alphabet ¥ and consider pairs of transitions in d; X o
using each symbol.
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route
T
0 50 100 10 mod
\ \ \ \
1 10 pref 20
I I I
1 20 40
\ \ \
dest 30 com
\
path

Figure 6: Tree modeling a route.

similar to that of LOCAL_PREF and DST_PREFIX
respectively.

The structure of the five branches is described
in the following paragraphs along with their spe-
cific alphabet of labels of arity 1.

e dest branch: models the destination prefix
(DST_PREFIX) written in binary, using alpha-
bet Y9t = {0, 1}. The most significant bit is
at the bottom. For example, the route mod-
eled on Figure 6 has the 192.0.0.0/3 destina-
tion prefix. The branch is ended by leaf dest.
This leaf label is required as a tree automaton
proceeds bottom-up and needs to identify on
which branch it is working.

path branch: models the sequence of ASNs
(AS_PATH) such that the first ASN is at the
bottom of the branch and the last ASN is at
the top of the branch. This inverse order al-
lows an easy modeling of the action of path
prepending (see Section 5.2). The branch
uses alphabet ¥P2th = [0, 2!6 —1] whose labels
represent 16-bit ASNs. The branch is ended
with leaf path.

pref branch: models the local preference
(LOCAL_PREF). It uses a label of alphabet
yPef = (0,232 — 1]. The branch is ended with

leaf pref.

com branch: models the set of community
values (COMMUNITIES) as a sorted sequence
with the least number at the top of the



branch. This branch uses >™

whose labels represent communities.
branch is ended with leaf com.

= [0,2%2 — 1]
The

status branch: indicates the status of the
route: either mod (modifiable), acc (ac-
cepted), or rej (rejected).

The underlying alphabet ¥® used to describe
routes as trees is thus decomposed as follows:
DM {route}, X} PR PR 0,
275 — Yy dest U y path U 3 pref U Zcom7 and ZZ)Q —
{dest, path, pref, com, mod, acc, rej}.

Although the alphabet ¥® as defined at this
stage is quite large, in Section 9.2, we show that
only parts of the alphabets Ydest, yprath ypref and
> ™ are to be considered, depending on the rout-
ing filters submitted for equivalence. This obser-
vation will be important for performance reasons.

4.2. The Language of Routes

The set R of trees modeling routes is recognized
by the following tree automaton Az with a unique
final state gy and the transitions

LS aq, (q)5aq, icxde

2. () 2% g0, (go) & o, i € TP

3.0 %% 45, () B qp i€ TP

4. () =% @, (q4) SN Qa,i, 1€ XM
(a;) ~ qui, 4,7 € T°™ with j > i
05 @ 0%5a 0
(1, G2, @y, Qais G5) > qf, i € XM,

(qla qz, q37 44, %) —> qf-

In this automaton, transitions 1 describe the dest
branch as any sequence of bits ended by leaf dest.
To limit its size, this automaton does not check
that the dest branch has length at most 32. We
show in Section 4.4 that this has no impact on
the filters equivalence test. Transitions 2 describe
the path branch as any sequence of labels in ¥Pt"
ended by leaf path. Transitions 3 describe the
pref branch as one label in Y followed by leaf
pref. Transitions 4 describe the com branch as
an ordered sequence of labels in 2™ ended by
leaf com. The label j just read is stored in the
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current state gs; in order to be compared with
the label ¢ read just after j, and the transition
is applied if 7 > 4. Transitions 5 describe the
three modes, mod, acc, rej, of the route. Finally
transitions 6 are applied at the root of the tree if
the structure of each branch has been respected
(when COMMUNITIES is a non-empty set in the first
case, and when it is empty in the second case).

Notice that automaton Agx is deterministic, but
non-complete. Moreover, it has a finite number of
states, as states gy, are restricted to ¢ € X°™. Its
number of states can be large as the number of
transitions required to check the ordering in the
com branch is quadratic in the size of the com
alphabet. If |X°™| = n, there are @ +n+1
transitions of type 4.

Quasi-Routes. In order to work with smaller and
simpler tree automata for atomic predicates and
atomic actions and thus for routing filters, we
consider quasi-routes instead of routes. A quasi-
route is a tree with a root labeled by route,
five branches of arbitrary length labeled by el-
ements in YR = xdest y ypath y ypref (j ycom
and ended by leaves labeled by elements in
{dest, path, pref, com, mod, acc, rej}.  The deter-
ministic automaton Ag,.siz with one final state
gr and the following transitions exactly accepts
all quasi-routes:

d h ref
L ()= q, () 2 o, () —p——> 20, ()= qo,
mod acc
0 — o, () —q., () =, 4o,
2. (qO) i) qo, 7 c 2713,

t
(40, 90, 905 90, G0) —— qf-

In the next sections, we describe the automata
modeling the atomic predicates and the atomic
actions such that each predicate operates on a
quasi-route instead of a route, and each action
modifies a quasi-route instead of a route. Propo-
sition 3.2 from Section 3.7 is an important prop-
erty that we will use with £ = R, when model-
ing predicates. We show in Section 5.5 where the
automata A, A" are constructed for the two filters
F, F’ how these automata are restricted to routes
before testing for equivalence.

This approach which consists in working with
quasi-routes instead of routes, and restricting to



routes at the very last step, leads to small tree
automata and thus to a more efficient algorithm.
Additional optimizations are detailed in Section 9.

4.3. Filters seen as Tree Automata

We recall that a routing filter F' is composed
of a sequence of rules (Ry,...R,). Each rule
R = (P, A) is composed of a predicate P which is
a Boolean combination of atomic predicates, and
of an action A which is a sequence of atomic ac-
tions. The problem studied in this article is the
equivalence of two routing filters. We translate
this problem to an equivalence test between two
tree automata (one for each filter).

|F = (R, = (P1 A Py; Ay),

ety

(2)

= (P5; Ag, A3))
1)i (3) i(3
(4)i

(S)i

A

’F/— R/_

R’zz...,Rgz..

5]

Figure 7: General approach for modeling.

The main ideas of our approach are depicted
in Figure 7 and briefly described in the following
paragraphs (the next sections detail the construc-
tions). The numbers between parentheses that
appear in Figure 7 refer to the list items below.

1. Each atomic predicate appearing in the pred-
icate of a rule is modeled by a tree automaton
that accepts quasi-routes (seen as trees t) sat-
isfying the atomic predicate (see Section 4.4).

. By Proposition 3.2, each Boolean combina-
tion of atomic predicates can be modeled by
a tree automaton (see Section 4.5).

Each atomic action appearing in the action of
a rule is modeled by a tree automaton that
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accepts the pairs of quasi-routes (¢,t') such
that ¢’ is the image of ¢ by the atomic action
(see Section 5.2).

. Each sequence of atomic actions, is modeled
by an automaton obtained by composition of
the automata of the atomic actions (see Sec-
tion 5.3).

. Each rule R = (P, A) is also modeled by a
tree automaton that accepts pairs of quasi-
routes (t,t') as follows: if ¢ satisfies predi-
cate P, then t’ is the image of ¢ by action
A, otherwise ' = t. This automaton can
be constructed from the automata for P and
A thanks to the composition operation (see
Section 5.4).

. Finally, a routing filter F' = (Ry,..., R,),
is modeled by a tree automaton obtained by
composing the automata of rules R;. The re-
sulting automaton is also composed with an
automaton A;; that only accepts routes.

. Two filters F, F' are equivalent if their corre-
sponding automata are equivalent (see The-
orem 3.3 and Section 5.5).

4.4. Model of an Atomic Predicate

The most important atomic predicates used in
routing filters have been described in Table 2. We
show in this section that each of those atomic
predicates can be modeled by a tree automa-
ton. As mentioned in Section 4.2, we make an
atomic predicate automaton simpler by consider-
ing quasi-routes instead of routes. To this end, to
model atomic predicate P, we build an automata
Ap whose language is such that L(Ap)r = {t €
R | tsatisfies P}. This automata can be ob-
tained by using the same transitions as in Ag,qsir,
except for the branch concerned with predicate P.
Moreover, we aim at building tree automata that
are deterministic and R-complete.

Path Membership. Let us consider in more details
the atomic predicate P, = path_in(x) of path
membership, which tests whether an ASN = be-
longs to the AS_PATH attribute of a route. The
following tree automaton Ay, accepts all quasi-
routes with a path branch that contains label z.
The transitions are the following ones:



N i

o)
Figure 8: Word automaton recognizing words containing
x.

: R
1€ Xy

L 0w 0550 0=
0 —» w 050 02
(q0) 5 q, 1 € X,

2. 02 g (Goe) 5 g
(¢-) —> (s 1 € XTI 1,

(¢x) = qu, i € IF
3. (40y 4u» Q0s 405 G0) — g,

(40> G-a> G0 G0 G0) > 1.

In this automaton, transitions 2 use two states,
Qz, - to remember if x has been seen or not on
the second branch of the tree. Transitions 1 allow
the same transitions as in automaton A,z for
the other branches. Transitions 3 indicate that
the final state ¢t is reached in the case x has been
seen, otherwise the non-final state ¢, is reached.

As already mentioned in Section 3.4, tree struc-
tures subsume words, and tree automata subsume
word automata. In the previous automaton, tran-
sitions 2 act like in the word automaton B de-
picted in Figure 8. This automaton uses alphabet
Y R it is deterministic and complete. A word over
¥ R is accepted by B if and only if it contains label
x.

We can check that automaton A, is deter-
ministic and R-complete. Indeed, for any route
t there is exactly one run that assigns gt (resp.
q1) to the root when ¢ satisfies (resp. does not
satisfy) predicate Ppy,. In the sequel we require
this property for each tree automaton associated
with an atomic predicate. This is necessary to
get a correct modeling of rules (see Section 5.5)
and to optimize the modeling of predicates (see
Section 9.3).

Remaining Atomic Predicates. Let us now con-
sider the other atomic predicates P. For predi-
cate of community membership, the treatment of

14

TR
1€ X

Figure 9: Word automaton recognizing words starting with
x.

the second branch by A, is simply transposed to
the fourth branch. For predicate of path neigh-
bor, the approach is similar as with automaton
Aom, except that automaton B is modified in or-
der to check that x is the first label of the word,
as indicated in Figure 9.

The approach is similar for predicates of path
origin, path subsequence, destination equality,
and destination inclusion. For the two last pred-
icates, dst_is(x) and dst_in(z), the DST_PREFIX
and the IP prefix x are supposed to be written in
binary and of length at most 32. We recall (see
Section 3.2) that the automaton Agr accepts the
set R of trees modeling routes such that the dest
branch is any sequence of bits ended by leaf dest,
even those longer than 32. This lack of constraint
of Ax on the dest branch is not a problem. Indeed
the automaton for predicate dst_is(x) recognizes
all routes with dest branch equal to x. The jus-
tification for predicate dst in(z) is divided into
two cases. First, for routes where the dest branch
is limited to 32 bits, the automaton for predicate
dst_in(x) checks that x is a prefix of the branch.
Second, a route with a longer dest branch is ac-
cepted if and only if it is accepted with its dest
branch limited to the first 32 bits.

Regular Ezpressions. More generally the ap-
proach described in this section also holds for
atomic predicates expressed by a regular expres-
sion. Given a regular expression imposing a
condition on a branch of a route, this expres-
sion can be translated to a word automaton
(Q,{qinit}, F, X, 9) that is deterministic and com-
plete [HU79]. Suppose that the predicate is con-
cerned with the path branch and ¥ = ¥}, then
the corresponding tree automaton has the next



transitions:

L0 0w 0=
0% 60 050 0 a
(40) = qo, i € TF,
2. () E Goni,
(p) = q, with transition p N qin 0,
3. (40,4, %0, %o, o) ——> q7, with g € F,
(40: . do: do: d0) === q1, with q & F.
Therefore, each atomic predicate P can be

modeled by a tree automaton Ap working on
quasi-routes, such that L(Ap)r = {t € R |
t satisfies P}. Moreover this automaton is deter-
ministic and R-complete.

4.5. Model of a Predicate

A predicate P is a Boolean combination of
atomic predicates P;, 1 < 7 < n. We showed
in Section 4.4 how to build a deterministic and
R-complete tree automaton A; for every atomic
predicate P;. In this section, we show that it is
possible to build an automaton that models P,
the Boolean combination of atomic predicates P;,
thanks to Proposition 3.2.

Let P, and P, be two predicates, and A; and
Aj their respective deterministic and R-complete
automata. Notice that

{t e R | tsatisfies =P}
R —{t €R | tsatisfies P}
R —L(A)r

and?

{t e R | tsatisfies (P, A Py)}

{t e R | t satisfies P}
N{t € R | t satisfies P,}
(L(A) N L(A)) R

Therefore, by Proposition 3.2, one can build a de-
terministic and R-complete automaton for =P,
Pl/\Pg,andPl\/PQ.

More generally, by repeating this process, one
can construct a deterministic and R-complete au-
tomaton Ap modeling a predicate P that is a
Boolean combination of atomic predicates P;, 1 <
1< n.

2A similar equality holds for the disjunction of the two
predicates.
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Figure 10: Example of overlay.

5. Tree Relations, Actions and Filters

Up to now, we used tree automata to describe
routes satisfying a predicate. In routing filters,
rules are made of predicates and actions. An ac-
tion consists in transforming each route ¢; to an-
other route t,. Hence, we can consider an action
(resp. a filter) as a binary relation R C Ty x Ty
containing such pairs (¢, ).

5.1. Binary Tree Relations

In this section, we explain how tree automata
can recognize such binary relations, not just tree
languages. This is based on an operation mapping
each pair (¢1,%;) to a new tree.

The overlay of two trees t1,t5 € Ty is the tree
t;1 ® to. This tree is obtained by overlapping t;
and %o, in the following top-down way, as illus-
trated in Figure 10. Intuitively, labels of t; ® ¢y
are pairs of labels of ¢; and t,, and a fresh la-
bel ¢ is used to fill the gaps. If roots of ¢; and
ty are labelled by a and b respectively, then the
root of t; ® ty is labelled by (a,b). The arities
of a and b may differ, and in this case we use la-
bel ¢. Let us name ay,...,a, the children of the
a-root in ¢y, and by, ..., b, the children of the 0-
root in ¢y, and let us assume that n > p. Then
(a,b) have n children equal, from left to right,
to (ai,b1),...,(ap,by), (apt1,9), ..., (an,©). The
process is then repeated inductively on these chil-
dren. We write X, for the corresponding alpha-
bet: it contains all labels (a,b) € £ x ¥ with
arity max{ar(a),ar(b)}, and also all labels (a, )
and (o,a), for a € ¥, with arity ar(a). We refer
the reader to [CDG™07] for a formal definition.

A binary tree relation R over ¥ is a subset of
Ty xTx, i.e. aset of pairs (tq,t3) with t1,t, € Ty.
We say that R is recognizable if the tree language
{ti ®ty | (t1,t2) € R} is recognizable.



5.2. Modeling Atomic Actions

The most important atomic actions used in
routing filters have been described in Table 3. We
show that each atomic action A, seen as a binary
relation, is recognizable. In other words, there
exists a tree automaton that accepts the overlays
of routes t ® ¢’ such that ¢ is transformed into ¢/
by the action, i.e., (t,t') € A. Among the atomic
actions described in Table 3, we consider the ac-
tions of absolute preference, relative preference,
path prepending, community membership, route
acceptance, and route rejection.

We recall that a route ¢ is modeled as a tree such
that the last branch indicates the status of the
route: mod, acc or rej. An atomic action should
leave unchanged any route that has a status equal
to acc or rej.

In order to have small automata for atomic ac-
tions, we are going to construct them on quasi-
routes instead of routes, as we did for predicates
in Sections 4.4 and 4.5. However, contrarily to
predicates, these automata are non-deterministic
in order to guess in a bottom-up manner if the
quasi-route has to be modified or not (depending
on the status). This simplifies the automata to
build, and we will see that, in our context, de-
terminism is not required for testing equivalence
efficiently.

Relative Preference. We begin with the atomic
action pref add(z) that adds a value x to the
LOCAL_PREF, such that the new value is set to
¢ = 2% —1 when it is larger than c. In the remain-
ing of the discussion, we will consider an action
as a tree relation. Let A,, be a tree relation that
transforms ¢ in ¢’ according to pref add(x). The
two trees have the same shape and no label ¢ is
needed for the overlay ¢ ® t'. The corresponding
automaton Ay, has one final state ¢y and the fol-
lowing transitions:

1 () (dest dest) o, () (path,path) %,
() EEE, g, (), g,
(C_Io) , i€ Xf,

2. () (—>qm0d,

05 g, ()2 g,
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f,pref
3. () D g,
(ql) M q+z, { S Zpref’i + S c,
(q1) G, Qiz, 1€ XPF i 42> ¢,
(route,route)
4. ((JO7QO7Q+x7QO7Qmod) qf,

) (route,route)

(90, G0 90, G0 Grix qs-

Transitions 1 are used by the automaton A,, to
check the identity relation on the dest, path and
com branches. The identity is also checked for the
pref branch in case the status of the route is acc or
rej. Notice that a single state qq is enough to check
identity as the automaton works on quasi-routes.

Transitions 2 memorize in state gmoa (resp. ¢rx)
whether the status of trees ¢,¢' is mod (resp. acc,
rej).

Transitions 3 apply the action of relative pref-
erence with states ¢; and ¢,,. Note that non-
determinism appears as there are two transitions

with left-hand side () PP . gither the iden-
tity relation is checked on the pref branch with
transitions 1, or the action of relative preference
is performed with transitions 3.

Finally, depending on the status, transitions 4
lead to the final state gy, either with the action
A, performed on the third branch, or with the
identity relation on this branch.

Automaton A,, deals with quasi-routes instead
of routes. Let R ® R be the set {t® ¢ | t,t' €
R}. Then we have L(Ap)rer = {t®t | t,t' €
R and (t,t') € A}

Community Membership. Let us now proceed
with the atomic action comm_ add(z) that adds a
community value x to the sorted sequence of com-
munities. If z is already present, it is not added.
Let A, be a tree relation that transforms ¢ in
t" according to comm_ add(x). If x is not in the
com branch of ¢, then ¢ and ¢’ have the same shape
except on the com branch: the com branch of ¢
has one additional community (z) that has been
correctly inserted in the com branch of ¢.

The corresponding automaton Ay, is similar to
the previous automaton A,,. It has one final state
¢y and the following transitions:

(dest,dest) (path,path)
0 () ———

1.

qo, qo,



Figure 11: Transitions 3 of automaton A, recognizing relation Ay,.
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(route,route)
(90, 05 905 90, Grix)

qr,
ay-

Transitions 1 check the identity relation on the
dest, path and pref branches. Transitions 2 mem-
orize if the status of the route is mod or acc/re;.
Transitions 3 check the correct insertion of x
in the com branch if the status of ¢,¢' is mod.
Non-determinism appears on the level of the com
branch, depending on the current status.

Transitions 3 need some explanations. They
are illustrated in Figure 11. State ¢,s indicates
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that = has been inserted. There are three cases
of insertion: (1) z is larger than all labels and
it is inserted at the bottom of the branch. This
corresponds to the middle path in Figure 11; (2)
x is not the largest value and it is properly in-
serted (state ¢;; remembers the last seen value

7). This corresponds to the top path; (3) x is al-

ready present and is therefore not inserted. This
corresponds to the bottom path.

As for automaton A, we have L(Acm)rer =
{t®t | t,t' € R and (t,t') € A}

Route Acceptance. We now consider the atomic
action accept(). Let A,, be a tree relation that
transforms ¢ in ¢’ according to accept(). Except
for the status, the corresponding automaton A,,
checks for identity between ¢ and t'. In case of
mod status for ¢, it checks for acc status for ¢. In
case of acc or rej status for ¢, it checks that the
status is left unchanged for . Automaton A,, has
one final state ¢; and the following transitions:

1 () dest ,dest) o () (path,path) o
() pref pref) o, () (com,com) o,
(qO) qo0, (S Z

mod ,acc)

2. () q1, o

() accacc . () (rej,rej) a,



) (route,route)

3. (40,90, 90, 90, N1 qs-

Remaining Atomic Actions. The approach is sim-
ilar for the other atomic actions. Thus, each
atomic action A can be modeled by a (non-
deterministic) tree automaton 4, working on
quasi-routes, such that L(Aa)rer = {t ® ' |
t,t" € R and (t,t') € A}.

5.3. Modeling Actions

An action A is a sequence (Ai,...,A,) of
atomic actions, for each of which we can build an
automaton A4, as explained above. In the sequel
we abuse notations by writing (¢,¢') € A whenever
action A transforms route ¢ to the route ¢’

In this section, we show how to compute an
automaton Ay for A from the automata Ay,, by
using the composition operation denoted o. We
start by composing Ay, and Ayu,, which gives us
the automaton Aj, then compose A}, with Ay,,
and so on until we compose A/, with Ay, , which
gives us A4 = A/ . In other words:

‘AA = (((AAI © AA2) © AAs) 0:-+0 AAn)

Let us detail how a composition of actions
should operate. Given two actions A, A" and their
related automata A4 and Ay, the trees t ® ¢/
accepted by A4 o Ay must be those for which
there exists a tree ¢” such that t ® ¢” is accepted
by A4 and t” ® t’ is accepted by Au. The con-
struction of A4 o A4 works as follows. States of
A0 Ay are pairs (¢, q') with ¢ (resp. ¢) state of
A4 (resp Aas). For labels of arity 1, a transition

((p,p) tab), (q,q') is a transition of A4 o Au if

and only if there is a label ¢ and:

(a,0)

e a transition (p) —> ¢ in A4 and

(c,b)

e a transition (p') —> ¢ in Au.

The construction is similar for labels of other ar-
ity.

Due to the possibly different shapes of the trees
involved in the composition, the previous proce-
dure is incomplete. Let us explain on an example.
Consider for instance the actions A and A’ that
respectively insert 20 and 40 in the com branch.
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Figure 12: Composition in com branch.

Let us assume that we start with a route with
only 10 in the com branch, i.e. 10(com). This
branch is transformed into 10(20(com)) by A, and
then into 10(20(40(com))) by A’. Figure 12a and
12b depict the corresponding two overlays. If we
compose the automata A, and Ay as described
above, we should obtain the automaton A4 o Au
that accepts the overlay of Figure 12c. This is

not the case: in Figure 12c, we can observe that
(0,com)

a transition () — (q,¢’) is needed. According
to the construction process described above, this
transition is part of A4 0.A 4 if there exists a label

¢ such that transition () o9, q exists in A, and

(c,com)

transition () — ¢’ exists in A4/. A transition

() (0,com)
0~

q exists in Ay, but the counterpart

Lo, g does not exist in A4.

To avoid the problem illustrated by this exam-
ple, before constructing the automaton A4 o A4
as explained above, we first slightly modify® au-
tomata A, and Au, so that they accept trees
with an arbitrary number of labels (¢,¢) at the
bottom of branches path and com. We say that we
o-fill these automata. In this way, the branches
path and com (the length of which may vary with
the applied actions) now have the same shape
thanks to the added labels (¢,¢), and can thus
be properly composed.

3This modification is rather simple, and detailed in the
proof of Theorem 5.1.



After the construction of the automaton A4 o
A/, we must again slightly modify it such that it
accepts trees with no label (¢, ¢) at the bottom of
branches path and com. We say that we o-clean
this automaton. In this way, the language of the
resulting automaton, restricted to R ® R, is equal
to {t®t | ' € Rand (t,t") € A, (") €
A’ for some t” € R}.

To summarize, the full composition procedure
of two automata Ay, Ax is done in three steps:
first we o-fill these automata, then we construct
As o Ay, and finally we o-clean the constructed
automaton. We again denote by o this operation
of full composition.

Hence, given an action A = (Ay,..., A,), and
automata A4, for each atomic action A;, we con-
struct the automaton Ay = ((Aa, 0 Ag,) 0 -0
Aa,) such that L(Aa))jrer = {t®1 | 1 €
R and (t,t') € A}.

5.4. Modeling Rules

A routing filter F' is a sequence of rules, and a
rule R = (P, A) is composed of a predicate P and
an action A. We have explained in the previous
sections how to build a tree automaton Ap (resp.
Ay) for predicate P (resp. action A). We recall
that L(Ap)jr = {t € R | tsatisfies P}, and
L(AA)rer = {t®t" | t,¢' € Rand (¢,1') € A}.
In this section, we show how to build an automa-
ton for rule R from the automata Ap and Ajy4.
This procedure is illustrated in Figure 13. When
restricted to routes, Ar must accept exactly all
t ®t' such that ¢’ is the image of t by A if ¢ satis-
fies P, and t' = t otherwise. This corresponds to
the language

L(.AR)‘R@R = { t®t | t, t' € R and
((t satisfies P and (t,t') € A) or
(t does not satisfy P and t =1t'))}

We use the composition operation (presented in
the previous section), however with some care
since Ap accepts trees and A, accepts overlays
of trees.

As Ap does not recognize a tree relation, the
idea is to turn Ap into an automaton Bp rec-
ognizing a relation that “marks” a tree ¢ when

/ccepted

t
\nof accepted [ t t/ }
Ap Ay
| |
v A\
Bp Ba
t t/
t
t t
Ar

Figure 13: Composing predicate P with action A.

it does not satisfy P, and lets ¢ unmarked oth-
erwise. Marking ¢ consists in replacing its root
label route with a new label route, and is de-
noted by ¢. Let R’ be the set RU{t | t € R}.
The language of the needed automaton Bp is such
that L(Bp)rers = {t ® 1t | t satisfies P} U {t ®
t | ¢ does not satisfy P}. This approach is illus-
trated in Figure 13.

Similarly, we derive automaton B4 from au-
tomaton A4 such that B, recognizes a relation
that turns a marked tree into a unmarked tree,
and turns an unmarked tree into a tree trans-
formed by action A. Formally, L(Ba)rer =
{t®t | t € R}u{t®t’ | t,t' € R and (t,t') € A}.

Finally we compute Bp o B4. By definition of
the composition and thanks to the trees ¢, the
resulting automaton Ag accepts overlays ¢t ® ¢’ of
trees (when restricted to R ® R) such that either
t satisfies P and thus is transformed in ¢’ by A,
or t does not satisfy P and thus is left unchanged
by A.

Let us now explain in more details how to
compute automata Bp and By. Suppose that
Ap = (Q, F,X* 6). Recall that Ap is determin-
istic and R-complete (see Sections 4.4 and 4.5).
Then we build Bp = (@, {qs}, X® x £*,4§') with

a,a)

¢ 0% ged, () Sqed,
o () gy, if(p) Sqes,



(route,route)

o (p17p27p37p47p5) qr c 6/, if
T .
(1, P2, D3, P4, P5) ——> q € § with g € F,
(p1, D2, D3, D1, D5) {toute route), qr € ¢, if
(P1, D2s D3, P, Ds) % q € 6 with g & F.

This construction works because, given a route ¢,
there is exactly one run for ¢ in Ap, and this run
is accepting if and only if ¢ satisfies P. Thus,
the labels of transitions in Ap are duplicated in
transitions of Bp except for label route which is
replaced by (route, route) (resp. (route,route)) if
the run is (resp. is not) accepting.

Concerning action A, we construct By from A4
by adding to the latter automaton two new states
go and ¢y such that g is final, and the following
transitions?:

(dest dest) (path,path)
L(O)—q (—q,
(pref pref) (com,com)
00—, ()—q,
(mod mod) (acc,acc) (rej,rej)
0——q0 00— 0 R 4o,
2. (q ) _—_> do (&S Z?)
(route,route)
(90, 90, 90, G0, 90) a-
5.5. Modeling Filters
A routing filter F'is a sequence (Ry,..., R,) of

rules, for each of which we can build an automaton
Ap, as explained above. In the sequel we write
(t,t') € F when F transforms route ¢ into route
t'. A tree automaton Ap for F' is simply obtained
by composing the automata Ag,, ..., Ar,. Recall
that this automaton treats quasi-routes instead of
routes, and that L(Ap)jrer = {t®t | t, 1 €
R and (t,t') € F}.

It remains to explain how to test the equiv-
alence of two filters. In this aim, it is neces-
sary to modify automaton Ag into Br such that
automaton Bp now treats routes (and no longer
quasi-routes). Thanks to the composition opera-
tion, it is easy to construct Bp such that L(Br) =
L(Ap)rer. We construct a tree automaton Aj;g
such that L(A;q) = {t®t | t € R}. This automa-
ton is easily built from automaton Ax recognizing

4These transitions are similar to the transitions of au-
tomaton Ag,qsir accepting quasi-routes (see Section 4.2).
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the set of routes (defined in Section 4.2). Then we
have BF = -Az'd e} .AF.

Given two filters F, F’ and their correspond-
ing automata By, By, testing if F, [’ are equiva-
lent amounts to test if the automata Br, Bp: are
equivalent. This test is decidable in exponential
time (see Theorem 3.3). However this exponential
blow-up can be avoided in our context because the
relations involved in filters are functional. Indeed,
every action inside a filter transforms each route
into a unique route.

Theorem 5.1. Let F' and F' be two filters. Let
Br and Bg: be their respective automata with
Op, 0 their sets of transitions. Then it can be
decided in time O(|0p| - |0p|) whether F and F’
are equivalent.

Moreover, in case of non equivalence, a tree t is
constructed such that (t,t1) € F, (t,t2) € F', with

t # b,

The proof of this theorem is given in Sec-
tion 9.3. Notice that this result also holds for any
pair of tree relations (instead of filters) as long as
they are total functions. Notice also that com-
plexity O(|0F| - |dp|) in the previous theorem can
be replaced by O(|Bg|*-| B |- |Z|) where k is the
maximal arity of ¥ (see Footnote 1).

5.6. Summary

Let us recall the whole process to model routing
filters and its related test of equivalence by tree
automata.

e Recall that a routing filter /' is a sequence of
rules, and a rule R = (P, A) is composed of
a predicate P and an action A.

Given a filter F', a corresponding automaton
Arp is constructed by induction on the struc-
ture of the filter. For efficiency reasons, all
the intermediate automata as well as Ar op-
erate on quasi-routes instead of routes in a
way to limit the size of automata.

For each atomic predicate and each atomic
action, we have constructed a corresponding
tree automaton (accepting trees in the first
case and overlays of two trees in the second



case). For an atomic predicate P, the re-
lated automaton Ap is deterministic and R-
complete. In this way, for any route ¢ there
exists exactly one run that assigns a final
(resp. non final) state to the root of ¢ if ¢
satisfies (resp. does not satisfy) P. The prop-
erty is imposed to Ap for efficiency reasons.
For an atomic relation A, the related au-
tomaton A, is in general non-deterministic.
Moreover for each route ¢, there is exactly one
route t' such that t ® t' is accepted by Au,
i.e. (t,t') € A (the relation is functional).

Each predicate P is a Boolean combination
of atomic predicates P;, 1 < ¢ < n. The asso-
ciated automaton Ap can be built from the
automata Ap, thanks to Theorem 3.1. As
each Ap, is deterministic and R-complete,
the exponential blow-up that could appear at
each complementation operation is avoided
(see Proposition 3.2)

The composition operation o on two au-
tomata (on overlays of trees) is used at sev-
eral places of the process: when dealing with
(1) sequences of atomic actions, (2) rules, (3)
sequences of rules, and (4) when limiting an
automaton Ap for a filter ' to work only for
routes. For technical reasons due to symbol
o used in the overlay of trees, the two au-
tomata are first o-filled, then composed, and
finally ¢-cleaned.

Each action is a sequence (Aj,...,A,) of
atomic actions. The automaton A4 for A is
built from the automata A4, 1 <i < n, as
((Aa, 0A4,)0---0Ay,). Arule R= (P, A)
is composed of a predicate P and an action
A. The automata Ap and A4 are modified in
such a way that their composition results in
an automaton Ap that accepts overlays t ®t/
of trees (when restricted to R ® R) where ei-
ther t satisfies P and thus is transformed in
t" by A, or t does not satisfy P and is left
unchanged by A. Each filter F'is a sequence
(Ry,...,R,) of rules. The automaton Ag for
F'is built from the automata Ag,, 1 <1i <n,
as ((Agr, o Ag,) 0---0Ag,).
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e Given two filters F,F’, before testing
whether they are equivalent, the automata
Ar and Ap are modified into By and B
respectively in a way to treat routes, in-
stead of quasi-routes. They are then tested
for automata equivalence (see Theorem 3.3).
The exponential blow-up of this test can be
avoided in our context because the relations
involved in filters are functional (see Theo-
rem 5.1).

6. Prototype

We have implemented a prototype in Java, pub-
licly available® under the GPLv2 licence. It im-
plements all predicates and actions as presented
in Section 2.2. Filters implementation is based on
the model presented in this paper. The construc-
tion of the automata follows the inductive process
described in the preceding sections, including the
optimizations given in Section 9. Tree automata
objects and standard operations are implemented
inside a separate library, also publicly available.

We used a homemade parser to convert Cisco
IOS configuration files into Java source code
(see Figure 1 for an example). The parser
only processes route-maps, ip prefix-list, ip
community-list and ip as-path access-list
clauses. Route-map match clauses are translated
into a boolean combination of atomic predicates.
Route-map set clauses are translated into se-
quences of atomic actions. Each route-map state-
ment is converted to a single rule. Multiple route-
map statements with the same identifier form a
filter.

6.1. Example Run

To illustrate the operation of our prototype,
this section shows how the equivalence of two
Cisco IOS route-maps is tested. The two route-
maps F1 and F2 are shown in Figure 14. No-
tice that even if they seem very similar, there is a
slight difference.

If we provide those two route-maps to our tool,
it will parse them, and produce Java code to build

Shttps://github.com/bquoitin/eqrou



prefix—list
prefix—1list
prefix—list
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ip community—list 1 permit 1:1

!

route —map F1 deny 10
match community 1

!

route—map F1 permit 20
match ip address prefix—list 1
set local—preference 100
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— =
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4
ip community—list 1 permit 1:1
!
route—map F2 deny 10
match community 1
!
route—map F2 permit 20
match ip address prefix—list 1
set local—preference 100

Figure 14: Example IOS route-maps tested for equivalence.

the corresponding automata. Those automata are
then tested for equivalence. Here, the filters are
not equivalent as reported by the tool. The equiv-
alence test took 340ms on a Intel Core 2 Duo pro-
cessor running at 2.8 GHz. The complete run took
about 6 seconds, including parsing, generation of
java code, compilation and execution.

As the filters are not equivalent, the tool pro-
duces a route that is a witness of non-equivalence.
In this case, the route produced is (DST_PREFIX :
128.1.0.0/16,AS_PATH  :  {},LOCAL_PREF
100, COMMUNITIES : {}). Its image by F1
is (DST_PREFIX 128.1.0.0/16, AS_PATH
{}, LOCAL_PREF := 100, COMMUNITIES = {}) and
the route is accepted. The image of this route
by F2 is the same but the route is rejected. This
output is a good hint to track the cause of the
difference between the two filters.

A route with the same attributes is accepted
by F1 and rejected by F2. We need to check
the predicates used in the permit clause of our
route-maps. Here the culprit is the second ip
prefix-1list statement where the permitted pre-
fixes are different in F1 and F2. Manually finding
the reason why two routes are handled differently
by two filters can still be difficult. In the future,
the tool could be used to automatically pinpoint
the rules responsible for accepting or rejecting a
route.

6.2. Extensibility of the Approach

We have showed earlier how to model by au-
tomata the classical atomic predicates and actions
used in routing filters. New atomic predicates can
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easily be incorporated, provided that they can be
encoded by automata. This is true for instance for
atomic predicates expressed by a regular expres-
sion as explained in Section 4.4. Similarly, new
atomic actions can also be easily incorporated un-
der the same hypothesis.

6.3. Beyond Equivalence

In the previous sections, we have explained how
to test the equivalence of two filters using tools
from tree automata theory. Some other related
problems can also be tested with the same ap-
proach. We here list some of these problems and
provide a rough idea how to solve them.

Witnesses of non-Universality. When two filters
have been modeled by two automata, they are
tested for equivalence by testing the equivalence
of their related automata thanks to Theorem 5.1.
When the filters are declared non-equivalent, it is
useful to have a route that is a witness of such
an non-equivalence, and more generally to have
all the witnesses of non-equivalence. In the proof
of Theorem 5.1 given in Section 9, we show how
to construct one tree (witness) that has different
images by the two filters when they are not equiv-
alent. As a matter of fact, the proof can easily
provide a tree automaton that exactly accepts all
the routes that have different images by the two
filters. Such an automaton modeling all the wit-
nesses of non-universality can then be used to un-
derstand why the two filters are not equivalent.
This will be explained in the next paragraph.




Behavior of a Filter under some Properties. An-
other interesting problem is to test whether or not
a subset of routes satisfying a certain property is
transformed by a filter into a subset of routes sat-
isfying another property. For instance, we would
like to test if the set of routes having commu-
nity 1234 and destination included in 62.17/16 is
transformed by a given filter so as to have local-
preference 150 and a new community 5678. Such
a problem can be solved using automata theory
provided the two properties respectively imposed
to the input routes and the output routes can
be modeled by tree automata (this is the case of
the previous example). Using standard automata
properties such as in Section 3, it is possible to
suitably combine the automaton modeling the fil-
ter with the two automata modeling the proper-
ties in a way to solve this problem.

Notice that such questions can also be asked
(and similarly solved) about the set of witnesses
of non-universality of two filters. Indeed we have
explained above that this set of witnesses can be
modeled by a tree automaton. We can thus have
a better understanding of this set of routes by
testing some properties (modeled by automata)
on it. This method could help debug errors in
filters.

7. Applications

In this section, we propose three applications
of the equivalence test of two filters, illustrated
by some examples. We start by motivating the
need for an equivalence test as is, then move on to
show some other, more complex, applications. We
end with a longer-term application consisting of
the composition and testing of distributed routing
filters.

7.1. Redundant BGP Sessions in Multi- Vendor
Networks

A common practice used by network opera-
tors to increase the robustness of their interdo-
main connectivity is to exchange routing infor-
mation with neighbor AS over multiple redun-
dant sessions. These often end on distinct physi-
cal routers. They may even terminate on routers
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from different vendors to decrease the risk of both
routers being simultaneously affected by a com-
mon bug.

In such configurations, the routing filters de-
ployed on both eBGP sessions are usually the
same. However, checking that both routing fil-
ters are equivalent, up to now, was not a trivial
task. Using equipment from different vendors also
means writing routing filters using different con-
figuration languages. Moreover, even in an en-
vironment where a single vendor is in use, con-
figuration languages might differ among different
versions of the vendor’s operating system. Our
approach provides a universal representation of
the filters, a means to check their equivalence and
to further reason about them.

In order to assess how often parallel sessions
are deployed and how often routers from multi-
ple vendors are in use, we analysed the configu-
ration of all the routers in a large, modern, ISP
network®. First, we determined for every neighbor
AS x the number of different local routers peering
with z. We observed that although 58% of AS are
connected through a single session, the remaining
42% are connected using at least 2 sessions, as
illustrated in Figure 15. This ISP has a neigh-
bor AS that connects at as much as 9 different
locations.

0.6

0.5

0.4

0.3

0.2

Fraction of neighbor AS

0.1

6 7 8 9
Number of locations

10

Figure 15: Number of peering locations for each neighbor
AS in a large ISP.

In addition to this, 27% of the neighbor AS
peer with routers that do not understand a single
common configuration language. Those routers

5We cannot disclose the name of this ISP.



are either from different router vendors or from
the same vendor but using versions of the operat-
ing system with different configuration languages
(e.g. 10S versus IOS XR).

A network operator could use our tool to per-
form routing filters sanity check in the environ-
ment just described. For example, when new ses-
sions are added or the business agreement and the
routing policies with a neighbor AS change, the
tool could be used to ensure the changes are de-
ployed in the same way for all the sessions with
that AS. Such verification could be done nightly.

7.2. Verifying Routing Filters

Today, network operators have no tool to check
if a BGP routing filter works as intended. This
cannot be done just by looking at the policy. Poli-
cies are often long and the semantic of the config-
uration languages is complex. Moreover, routers
in a large network are not configured by a sin-
gle person and different operators may configure
a router differently to perform the same task.

Network operators will usually rely on the
router operating system to check if a filter accepts,
rejects or modifies a route as intended. This is
typically done by injecting carefully crafted routes
into a router (virtualized or in the lab) through
a test session on which the filter applies and ob-
serve if the outcome of the route matches the in-
tention. It should be noted that this approach
is not practical if all routes are tested individu-
ally, as in the naive approach we described in Sec-
tion 2.2. Instead of performing an exhaustive test,
the network operator picks a few sample routes
and limit its test to those routes, with the risk of
missing corner cases of the filter that would cause
an untested route to be mishandled.

As explained in Section 6.3, it is possible using
our automata approach to verify if the image of
one set of routes by a filter satisfies some prop-
erty, provided this property can be expressed by
an automaton. As an example, a network opera-
tor could want to check that all the routes with
a destination prefix in some set will be rejected
by the filter, or it could want to check that some
communities have been added by the filter.
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As this is a mid-term goal, our tool does not
yet support the test of such properties. We plan
to support this in the near future. It is likely
to require some optimizations such as described
in Section 9 to be practical. One can imagine
that those properties could be expressed using
languages similar to those provided by the router
vendors. Moreover, the most usual properties
could be pre-defined and available as libraries.

7.3. Composition of Distributed Routing Filters

Another possible application of our framework
is the verification of a distributed routing filter. In
a transit network, a route received through a ses-
sion with a provider is typically redistributed to
every customer. Most BGP sessions have inbound
and outbound filters. This means a route going
from one provider to a customer is processed by
two different filters, defined on different routers,
possibly using different languages : it is first pro-
cessed by the inbound filter on the session with
the provider and later by the outbound filter on
the session with the customer.

The tree automata approach allows the inbound
and outbound filters to be composed, resulting in
a single automaton. Reasoning can then happen
on this automaton: the verification of routing fil-
ters as described in Section 7.2 can be applied on
it. For example, it would then be possible to check
that a route transiting from a provider to a cus-
tomer is marked with some community. It could
also be used to verify that distributed routing fil-
ters correctly prevent some routes to be leaked
from one session to another. For example, a route
received from a provider is typically tagged with
a special community value by the inbound filter.
The outbound filter on a session with another
provider should prevent a route tagged with this
community value to be redistributed to another
provider.

Composition of routing filters can also be used
to check that the preference of a route (or a set
of routes) always decreases, a property that is im-
portant for BGP to converge to a stable solution
|Gril0]. This is important in the case of a con-
federation of ASs or when policies are applied on
iBGP sessions [CBV10].



Checking the equivalence of routing filters is a
key feature in being able to validate a network
configuration, its changes and maintain the net-
work in good operational shape.

8. Evaluation

8.1. Ezperiments

We used the prototype described in Section 6
to perform several experiments. Their results are
presented in this section. Our experiments show
the link between filter size, tree automaton size
and running-time of the equivalence test. All tests
were performed on a computer running Linux 3.2
with an Intel Core2 Duo CPU and 4GB of RAM.
We used Java 1.6 through OpenJDK (IcedTea6).

Instances. We tested our algorithm on five fami-
lies of filters. The first family of filters, called cisco
in our figures, has been generated from the BGP
routing filters defined in the Cisco [OS configu-
ration of a router from a large European transit
network. The configuration contained 48 route-
maps each of them describing a single filter. We
focused on 12 filters supported by a prior version
of our tool (the current version supports 45 fil-
ters). Each of them has then been tested against
its subfilters, where the n-th subfilter is obtained
from the original one by keeping its first n rules.
Usually, such filters are not equivalent to their
subfilters, except for the full subfilter containing
all rules of the original filter. This way we get
both equivalent and non-equivalent pairs of fil-
ters.

The remaining four families were built by hand.
Family eq com is the set of filters with n rules
containing only action comm_add(1). Increas-
ing values of n yielded filters of increasing sizes.
Family eq path_com is the same as eq com, but
each rule also contains a predicate path_in(1).
Family path _com is composed of filters with ith
rule made of a predicate path_in(i) and an action
comm__ add(i). Finally, family path com_acc is
similar to path_ com, except that the action is the
composition of comm_add(i) with accept(). For
each family, we generated 10 modified versions
of each filter by performing a random permuta-
tion of its rules. We then tested the equivalence
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between a filter and its modified versions. Each
equivalence test was positive, except for the fam-
ily path__com_ acc.

Results. We show the results of our experiments
in figures 16 to 19. Note that the y axis is in log-
arithmic scale for all figures in this section. Note
also that positive instances, i.e. those for which
equivalence holds, are denoted by +, and negative
instances by x.

Figure 16 shows how the size of the resulting
automaton varies with the filter size. We recall
that the size |A| of an automaton A4 is the number
of its states. Concerning the filters, the size | F| of
a filter F' is the sum of the sizes of its rules. The
size |R| of arule R = (P, A) is defined as |P|+|A|
where |P| is the number of atomic predicates of
P and |A| is the number of atomic actions of A.
In Figure 16, there is a point for each filter in
the families described earlier in the section as well
as for the shuffled versions. We observe a linear
alignment of the points, showing that the size of
the automaton is exponential in the size of the
filter, as proved in Section 8.2.
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Figure 16: Size of automata.

Figure 17 shows how the time to build the au-
tomaton also follows this complexity, as described
in Section 8.2. We can observe that for very small
filters, automata are built in a few milliseconds.
It takes about one second for a filter of size 16.
As we will see, this is negligible compared to the
time needed for testing equivalence.
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Figure 17: Time for building automata.

Figure 18 shows how the execution time of the
equivalence test varies with the product of the au-
tomata sizes. Note that the x axis is shown on a
logarithmic scale. The figure suggests that there
is a linear relationship (in logarithmic scale) be-
tween the product of the automata sizes and the
running time of the algorithm, denoting a polyno-
mial relationship between these quantities (with-
out logarithmic scale). We state formally in The-
orem 5.1 that testing the equivalence of two filters
F and F'is in time O(|Br|*-|Bp/|*-|Z|) when the
input is the two automata By and B, and k =5
is the maximal arity of ¥.”

The overall complexity of testing equivalence
between two filters F' and F” is thus a single ex-
ponential in the size of the filters, more precisely
O(p°IFIHIF'D . |Z|) for a fixed p as explained in
Section 8.2. Our experiments confirm this com-
plexity, as depicted in Figure 19.

We note that real-world filters, like those ob-
tained from the Cisco configuration file, are gene-
rally more efficiently processed by our algorithm
than the synthetic filters. One explanation for
this behaviour is the existence of an accept() or
reject() action in every rule of the cisco filters that
prevent further processing of the routes. More-
over, equivalence is generally faster on negative in-
stances, as explained in the proof of Theorem 5.1.

"The alphabet ¥ is either ¥ or its reduction as ex-
plained in Section 9.2.
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Figure 19: Testing equivalence from filters.

We also tried to compare our efficient equiv-
alence test proposed in Theorem 5.1 with the
usual equivalence test based on Boolean opera-
tions on tree automata (see Theorem 3.3). For
very small filters made of only one rule with one
action, our algorithm takes 1 millisecond, while
the usual equivalence test based on Boolean op-
erations takes 28 minutes.

8.2. Complexity

In this section, we compare the complexity of
our algorithm with the complexity of a naive al-
gorithm.

Complezity of our algorithm. Let us evaluate the
complexity of our algorithm. Consider the con-



stant p, defined as the maximal size among all
atomic predicate and action automata sizes. Let
us show that the automaton constructed for a fil-
ter F has size O(p/fl) and can be constructed in
time O(p°"'l-|X|), and that testing the equivalence
of two filters F, F’ is done in time

O(p*IFHIED %))

by our algorithm.

First, when constructing the automaton Ap for
a predicate P from the automata for the atomic
predicates of P, we are able to avoid the expo-
nential blow-up due to the complementation of
non-deterministic automata (see Theorem 3.1 and
Proposition 3.2). Therefore the most costly op-
erations are the union and intersection based on
the synchronized product of two automata. In
Proposition 3.2, it is stated that the automaton
for the intersection and the union operations is
built in time O(|dy] - |d2|), or equivalently in time
O(|A1]° - | A]® - [Z]) (see Footnote 1).

The worst case for automaton
is  when the shape of P is P
(P, o1 P5) 0y P3) o3 on—1 P,) where
each P, is an atomic predicate and each o; is
either V or A. In this case, the size of Ap is
in O(p/!) and the time to construct it in is
O(((P°)? + (%) + -+ + (p°)") - |]), which is in
O 71 |x]).

Second, when constructing the automaton A4
for an action A from the automata for the atomic
actions of A, the needed composition operation
also requires some product of two automata (see
Section 5.3). This results in a complexity O(pl4)
for the size of A4 and O(p° 4l - |Z|) for the time
to build it (with an argument similar to predicate
P).

Third, the composition operation is also used
for a rule and for a sequence of rules. Therefore
for one rule R = (P, A), we get for automaton
Agr a size in O(pPH4) = O(p!fl) and a time
complexity to construct it in O((p°!Fl + pAl +
pPUPHADY.|Z]) which is in O(p°/Fl-|X|). For a filter
F =(Ry,...,R,), we get an automaton B of size
O(p'Fly in time O((X7_ pPlFil 4 5on pP(Fal+HiD)Y.
1X|) = O(p°F1. |Z|), yielding the announced com-
plexities.

Ap
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Finally, given two automata for two filters
F. I’ we can avoid a second exponential blow-up
and test in time O(p°IFI1F7') . |T|) whether these
filters are equivalent (see Theorems 3.3 and 5.1).

Complexity of a naive algorithm. A naive algo-
rithm to test the equivalence of two filters F, F’
consists in enumerating all the possible routes (up
to a certain size) and to test if F, F’ modify them
into the same routes.

Let us evaluate the complexity of this algo-
rithm. We make the hypothesis that during the
application of a filter to a given route, constant
time O(1) is consumed by each atomic predicate
(resp. action) of this filter. Therefore testing if
two filters F, F’ modify a given route into the
same route can be performed in O(|F| + |F"|).
It remains to evaluate the total number of tested
routes. We recall that such a route has four at-
tributes: the DST_PREFIX of length bounded by
lgest (When written in binary), the LOCAL_PREF
composed of one label, the AS_PATH of length
bounded by [ ,:n and the COMMUNITIES of length
bounded by lom (recall that the set COMMUNITIES
is represented as a sorted sequence). The max-
imum prefix length l4es: equals 32 bits for [Pv4.
The length of the AS_PATH and COMMUNITIES is
limited by the maximum size of a BGP mes-
sage which is 4096 bytes. This constrains® lpath
to remain below 2048 and [, below 1024. We
will use these bounds in our next complexity
computations. We can also remember the sta-
tus (accepted, rejected) of the route as given
by one label. Concerning the possible values of
LOCAL_PREF, and of the elements of AS_PATH and
COMMUNITIES, we suppose that they are bounded
by Coref = 237 (32-bit value), cparh = 2'% (16-bit
ASN) and ceom = 232 (32-bit values) respectively.
Therefore, the total number of routes n,ouzes 18
bounded by the product ngest - 7path * pref - Tcom *Mistat
of the numbers of attributes of each kind (includ-
ing the status), such that

l .
® Ndest — sz:es(; 2t = 21de5t+1 - 17

8This is a rough approximation as the message header,
the destination prefix and other path attributes further
limit these lengths.



lpath +1
path

/(CPath - 1)7

_ Noleath i
Mpath = Zz':o Cpath =¢
Npref = Cpref,

S

® Neom = (") which can be bounded by
cleom®! /(Ceom — 1)
o and ng.r = 2.

It follows that the complexity of the naive al-
gorithm is in

O(nroutesaF‘ + |F,|>>

: : lyest+1  lpath ! .
With 70,pypes i O(2 - 2'dest  Conth * Cpref * ceem). With

the bounds given above, the quantity inside the O
notation for n,.u.es is bounded by the huge num-
ber 266 . 22,

Let us compare this complexity with our exper-
imental results. For our largest instance with size
|F| 4+ |F'| = 34, our algorithm takes (in the pes-
simistic case) about 2'° seconds (see Figure 19).
To be competitive, the naive algorithm has to
treat 2% - 22" routes in 210 seconds, i.e. 256 . 22"
routes per second, which is far beyond what is
possible. So our algorithm remains more efficient
for reasonable filter sizes.

Note that our algorithm integrates the opti-
mizations described in Section 9. The naive algo-
rithm could also benefit from the reduction of the
alphabets as described in Section 9.2. With this
optimization, by inspecting the instance of size
|F'| 4+ |F'| = 34, the previous constants Cpath, Coref
and ceom decrease to the values 2, 1,4 respectively,
and Nyouses is now bounded by 23* - 22 Never-
theless, the naive algorithm has to still treat the
huge number of 224 22 routes per second, to be
competitive with our algorithm.

Moreover, the algorithm proposed in this pa-
per is less dependent to changes in route mod-
els. For instance if we plan to implement [Pv6
routes instead of [Pv4 ones, the DST_PREFIX can
contain 128-bit addresses instead of 32-bit ones.
This will not change the way automata are built in
our framework, but automata for dst is(x) and
dst _in(x) may grow by a linear factor, as the IP
prefix x grows. On the opposite, the number of
routes to be considered by the naive algorithm
increases a lot, by a factor 2128-32 = 2%
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It should also be noted that adding a new at-
tribute to the route model, that is, an additional
branch to the trees, would multiply the complex-
ity by a factor p.

9. Optimizations

In this section, we propose several optimiza-
tions to get a more efficient algorithm for testing
the equivalence of routing filters.

9.1. Preprocessing Actions

When considering an action A = (Ay,..., 4,),
two trivial optimizations can be applied to reduce
the number n of atomic actions, while keeping an
action equivalent to A.

The first one is obtained by removing all atomic
actions following an atomic action accept() (resp.
reject()). Indeed, if A; = accept(), then all atomic
actions A; with j > ¢ will not modify any route,
as all of them will be in acc status. Hence A is
equivalent to (Aq, ..., A;).

The second optimization applies to the pref
branch. Three atomic actions relate to this
branch: absolute preference pref set(x), and rela-
tive preference pref add(x) and pref sub(z) (see
Table 3). Assume that A; = pref set(a). Then
all atomic actions A; of absolute and relative pref-
erence with j < ¢ can be removed, as their ef-
fects will be replaced by the effect of pref set(a).
Hence, one can remove all relative and absolute
preference atomic actions preceding the last ab-
solute preference atomic action.

9.2. Reducing Alphabet Size

In this section, we show that it is possible to
optimize the proposed modeling of routing filters,
by reducing the sizes of the built tree automata,
especially by reducing the sizes of their underlying
alphabet X%,

Let F' and F” be two routing filters that we want
to test for equivalence. We show below that we
can restrict routes to consider to those having only
labels appearing in atomic predicates and actions
of F and F’ (with some refinement in the path
branch).



Consider for instance the com branch. The
atomic predicates possibly used by F and F’
are community membership (see comm_in(z)
in Table 2) and the atomic actions are
community membership and clear communi-
ties (see comm_add(x), comm_remove(z) and
comm__ clear() in Table 3). Let us denote by
2" the set of labels a in X°™ such that
a appears in an atomic predicate/action of
F or F', as comm_in(a), comm_add(a), or
comm__remove(a).

If @ is a community of route ¢ such that a ¢
2™ then there is no need to store it in the com
branch of t. Indeed, all atomic predicates and ac-
tions relative to the com branch behave the same
on t and on the route ¢ without a. Therefore,
for all routes ¢, we only store their communities
a € XM in the com branch. Moreover the alpha-
bet used by the automata on the com branch is
reduced to ™ (instead of X°™m).

The same kind of argument can be repeated
for the path branch. In this case, we define
by P the set of labels a in X such that
a appears in an atomic predicate/action of F
or F', as path_in(a), path_ori(a), path_nei(a),
path_sub(s) with a a label in word s, and
path_prepend(a). We also add to Zﬁath a new la-
bel denoted by x. This label is used at the place
of each a € TP\ ¥P" in the path branch. Con-
trarily to the com branch, we cannot forget any
symbol not in ¥?*™" | due to predicate path_ sub(s).
Let us illustrate this with an example. As-
sume that F' uses predicate P = path_sub(ab),
and route ¢t has a path branch b(c(d(a(path))))
with ¢,d & TP If we forget ¢, d, then the
path branch is replaced by b(a(path)) (instead of
b(x(x(a(path))))). Predicate P is then satisfied,
which is not correct. In this way, the alphabet
used by the automata on the path branch is re-
duced to ¥

Similarly, on the dest branch, if no predicate
dst_is(x) or dst_in(x) appears in F' nor F’, we
can take Y gt = ().,

On the pref branch, we can also avoid to con-
sider the whole range [0,23% — 1] for alphabet
yPef  Indeed, when entering a routing filter,
LOCAL_PREF is set to a fixed value for all incom-
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ing routes. Recall that the default for this value is
100. Moreover, each action has a unique effect on
the value of LOCAL_PREF: given an input value, it
generates a unique possible output value. Hence,
for each filter rule R; = (P;, A;), each input value
p of LOCAL_PREF can yield two output values: p
if predicate P; is false, and the result of applying
A; on p otherwise. This gives at most 2" values
to consider, for a filter with n rules, therefore re-
ducing the size of ¥Pf when n is small.

9.3. Efficient Automata Operations

In this section, we come back to the automata
operations used for testing equivalence of filters.
In Theorems 3.1 and 3.3, the prohibitive (expo-
nential) operation is the complementation of a
non-deterministic automaton A. In our context,
instead of using these two theorems, we were able
to use the more efficient counterparts given by
Proposition 3.2 and Theorem 5.1.

Boolean Combination of Atomic Predicates.
Proposition 3.2 shows how to avoid an exponen-
tial blow-up by working with automata that are
deterministic and £-complete. This approach has
been applied to model predicates with tree au-
tomata (with £ =TR).

Equivalence Test of Routing Filters. As stated in
Theorem 5.1, a second exponential blow-up has
been avoided for the equivalence test of two tree
automata, due to the functionality of filters. We
here give the proof of this theorem.

Proof of Theorem 5.1. Let L be the set of trees
t1 ® ty such that

Jt, (t.ty) € F,(t, 1) € F' and ty # t,.

The relations F' and F’ are total functions on
the set R of routes: for every ¢t € R, there is
a unique t' such that (¢,t') € F (resp. F”). Thus
we have that £ = () if and only if F' and F’ are
equivalent.

From the definition of Br and B/, we have £ =
{t1®t2 | dt e R, t® it € L(BF)At®t2 €
L(Bg) Aty # to}. Let 0p and dp the respective
sets of transitions of Br and Br.. We now build



an automaton A recognizing £ in time O(|dp| -
|0p/|) and of size O(|Bp| - |Bp/|). As emptiness
of tree automata is decidable in linear time, and
a counterexample is constructed in case of non
emptiness [CDGT07], this will prove the result.’

The way we construct automaton A is in the
same vein as for the composition operation (see
Section 5.3).

First we o-fill Bp, i.e. we transform Bp to B}
such that Bp accepts a tree ¢ if and only if B}, ac-
cepts it with an arbitrary number of labels (o, ¢)
at the bottom of branches path and com. This
procedure needs one more state ¢,, and the fol-
lowing transitions:
0>

L o

(0,0)
o (QO)&>QO10

e (¢) DIN q, for each transition () tab), q in
Br with a,b € {path,com,o}.

We proceed similarly for Bg.

Then we build A from B} and Bj,. For each
run of B} on ¢t ®t; and each run of B%, on t ® ts,
with the same ¢, A has a run on ¢; ® 5. A state
of A is thus a pair (q1, g2), (resp. (qi1,¢2).) where
¢ (resp. ¢2) is the state of the corresponding run
of BY (resp. B%.), and v (resp. L) indicates
whether ¢; = ¢ (resp. t; # t3). The final states
of A are pairs (qi1,¢q2), such that each ¢ (resp.
¢2) is a final state in B%. (resp. B%/). Let us illus-
trate transitions for labels of arity 1. Assume for
instance that:

(a7b

(P1) —)> ¢ and (pz) m q2

are transitions in B, and Bj, respectively. Then,
if b = ¢, we add the transition:

(b,c)
((p1,p2)v) — (@1, @2)v

9More precisely, the counterexample would give t; ® to
instead of ¢, but the algorithm can easily be adapted to
identify t.

0Given label (a,b) with arity 0, (a,b); is a fresh label
with arity 1.

while, if b # ¢, we add the transition:

(bye)
((plap2)~/> — (Qh Q2)J_

In both cases, we also propagate a previously de-
tected difference:

((p1,p2) 1) M (01,q2) 1

Hence we only have to consider pairs of transi-
tions, and the overall procedure (including the o-
filling of the automata) runs in time O(|0g|- |05/|)
and yields an automaton A of size O(|Bg| - |Br|).

Notice that A does not exactly recognizes L
since the automata Br and By have been o-filled.
It could be ¢-cleaned as explained in Section 5.3.

However in this context, this is not necessary, be-
cause L(A) =0 iff £ = 0. O

Remark that the worst-case complexity of The-
orem 5.1 can be avoided when equivalence fails.
Indeed, the rule generation can be limited to ac-
cessible states, starting from leaf-rules. Hence,
once a state (qi,qq)1 is generated, with ¢; (resp.
¢2) a final state of Bp (resp. Bps), we know that
filters are not equivalent.

We show in Figure 20 the code corresponding to
this equivalence test. When filters are not equiv-
alent, it generates a route (i.e. a tree) which is
accepted by one filter but not by the other. It is
part of the class FilterAutomaton, and takes a
second FilterAutomaton as input, and a boolean
indicating whether a counterexample should be
built in case of non-equivalence.

We give a brief description of subrou-
tines.  Function reachedStatesAtLeaves re-
turns the set of pairs (qi,q2), (of Java type
EquivalenceState, where v is a Boolean) that
can be built from symbols of arity 0. These
pairs initiate the saturation process. Function
equivalenceStateForRules takes one rule of
each automaton, and possibly returns a new pair
(¢1,G2)v, as described in the proof. This adds new
pairs to saturate. Function filterStatel (resp.
filterState2) returns ¢; (resp. ¢2) when applied
on pair (¢, ¢2),. Function provesNonEquiv tests
whether a witness of non-equivalence has been
found, i.e. whether the pair (¢, ¢2), on which it is
called is such that ¢; and ¢, are final and v = L.



private ITerm<LabelPair> synthesizeSeparationTerm (FilterAutomaton otherFilter , boolean computeSepTerm ){
// the separation term is built by associating a term to each
// equivalence term
[Term<LabelPair > sepTerm = null;
Map<EquivalenceState ,ITerm<LabelPair>> sepMap =
new HashMap<EquivalenceState ,ITerm<LabelPair >>();
// first add diamond rules
final FilterAutomaton automatonl = this.addDiamondRules ();
final FilterAutomaton automaton2 = otherFilter.addDiamondRules ();
// then look for a counterezample to equivalence
Set<EquivalenceState > agenda = new HashSet<EquivalenceState >();
boolean equivalent = true;
Set<EquivalenceState > reachedStates =
reachedStatesAtLeaves (automatonl, automaton2, computeSepTerm , sepMap );
agenda .addAll(reachedStates );
while (equivalent && !agenda.isEmpty()) {
final EquivalenceState state = agenda.iterator ().next();
agenda .remove(state );
for (IRule<LabelPair ,FilterState > rulel
automatonl.getRulesUsingLeftState (state.filterStatel ())) {
for (IRule<LabelPair ,FilterState > rule2
automaton2.getRulesUsingLeftState (state . filterState2 ())) {
final EquivalenceState equivState =
equivalenceStateForRules (rulel , rule2, automatonl, automaton2, reachedStates ,
computeSepTerm , sepMap );
if (equivState != null) {
reachedStates .add (equivState);
agenda .add (equivState );
if (equivState.differs()) {
equivalent = !equivState.provesNonEquiv(automatonl, automaton2);
if (computeSepTerm && !equivalent) {
sepTerm = sepMap.get (equivState);
}

}

if (lequivalent && !computeSepTerm) {
// a dummy non—null term
sepTerm = new Term<LabelPair >(
this.getAlphabet (),
new ArrayList<ITerm<LabelPair >>(),
ActionAlphabet .REJREJ);
}

return sepTerm;

Figure 20: Java code for the equivalence test, returning a counterexample to equivalence when it exists, and null
otherwise.
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10. Conclusion

In this paper, we have investigated the semantic
of BGP routing filters, with the aim of determin-
ing whether two given filters are equivalent or not.
We have shown how this problem could be solved
using tree automata theory. Our approach was as
follows: routes were modeled as trees, and rout-
ing filters as tree automata. Testing the equiva-
lence of two filters was then reduced to testing if
their corresponding tree automata are equivalent.
This is a classical operation in tree automata the-
ory. Using this approach has the additional ben-
efit that when two filters are not equivalent, the
test generates a counterexample.

We have implemented our model in a fully-
functional prototype. This tool takes as input
BGP routing filters expressed in the Cisco [0S
configuration language, generates corresponding
tree automata and tests their equivalence. To
make the tool of practical use, we had to enhance
it with several optimizations. Most optimizations
were brought to the model so as to reduce the size
of automata and the running time of the equiva-
lence test. The first optimization avoids an expo-
nential blow-up at the level of predicates used in
filters, by translating them into deterministic au-
tomata. The second optimization avoids another
exponential blow-up by taking into account that
routing filters are total functions. With a third
optimization, we have tried to reduce the size of
the constructed automata by using quasi-routes
instead of routes and by limiting the ranges of
values (ASNs, community values...) to be consid-
ered.

We used our prototype tool to conduct several
experiments to assess the practical feasibility of
our approach. We performed these experiments
on two different datasets. The first dataset was
composed of routing filters coming from routers
of a large European transit network. The second
dataset contained synthetic filters that we gener-
ated to stress-test the scalability of our approach.
The experimental results are promising. They
show the efficiency of our approach and the inter-
est of using tree automata theory in the context
of routing filters.

32

Beyond equivalence, our modelisation allows to
check properties of filters. Tree automata en-
joy great expressiveness. We could check linear
branches against regular expressions (for IP ad-
dresses for instance), but also express non-local
properties, like: Do all accepted routes contain at
least 3 communities in the com-branch, each time
the pref-value is greater than 1507 In this paper
we only used a restricted part of tree automata
theory. Many other innovative applications could
arise from a deeper use of this theory.
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