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AN APERIODICITY PROBLEM FOR MULTIWORDS

Véronique Bruyère1, Olivier Carton2,

Alexandre Decan1, Olivier Gauwin1 and Jef Wijsen1

Abstract. Multiwords are words in which a single symbol can be
replaced by a nonempty set of symbols. They extend the notion of
partial words. A word w is certain in a multiword M if it occurs
in every word that can be obtained by selecting one single symbol
among the symbols provided in each position of M . Motivated by
a problem on incomplete databases, we investigate a variant of the
pattern matching problem which is to decide whether a word w is
certain in a multiword M . We study the language CERTAIN(w) of
multiwords in which w is certain. We show that this regular language is
aperiodic for three large families of words. We also show its aperiodicity
in the case of partial words over an alphabet with at least three symbols.
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1. Introduction

Given a pattern w and a text t, the pattern matching problem is to find all the
occurrences of the word w in t. There exist efficient algorithms that solve this
problem, like the well-known Knuth-Morris-Pratt algorithm [1] and Boyer-Moore
algorithm [2] (see also Chapters 3 and 4 in [3]).

Several extensions of this problem have been studied. Instead of a single pattern
w, the Aho-Corasick algorithm efficiently finds in a text t all the occurrences of
words w taken from a finite set of words [4]. A more general problem is the regular
expression matching problem where the pattern is a set of words specified by a
regular expression (see for instance Chapter 7 in [3]).

Other extensions deal with the pattern matching problem by allowing don’t-care
symbols in the pattern w and/or in the text t. In this case, some positions in the
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2 Université Paris Diderot, LIAFA; e-mail: olivier.carton@liafa.jussieu.fr

c© EDP Sciences 1999



2 TITLE WILL BE SET BY THE PUBLISHER

pattern or in the text can contain a set of symbols, instead of a single symbol. A
word with don’t-care symbols represents a finite set of (classical) words obtained by
selecting a single symbol among the symbols provided in each don’t-care position.
Therefore, if w is a pattern with don’t-care symbols and t is a text, the problem
consists in finding all the occurrences of words represented by w in the text t.
When w is a pattern and t is a text with don’t-care symbols, we are interested
in finding the occurrences of w in t such that in each don’t-care position i, the
symbol at the corresponding position of w belongs to the set of symbols of t at
position i.

When don’t-care symbols are allowed, most of the existing exact methods for
pattern matching are useless or have to be adapted. One among the first works in
this framework has been presented by Fisher and Paterson in [5]. Without being
exhaustive, let us also mention the recent references [6–8].

The interest in words with don’t-care symbols is driven by applications in com-
putational biology, cryptanalysis, musicology, and other areas. The problem stud-
ied in this article is motivated by research in incomplete historical databases, as
described in [9]. It can be seen as a variant of pattern matching: given a pattern
w and a text t with don’t-care symbols, does w appear as a factor of each word z
represented by t? It is important to notice that we want to be sure that w appears
in each z, and not in some z.

Given a pattern w, the authors of [9] provide a deterministic finite automaton
A(w) recognizing the set CERTAIN(w) of all words t with don’t-care symbols such
that w is a factor of each word z represented by t. This automaton is a kind of
Knuth-Morris-Pratt automaton (see Chapter 9 of [10]), with a more sophisticated
use of the prefixes of w. They also prove that for a particular class of words
w, the regular set CERTAIN(w) is aperiodic, or equivalently [11, 12], first-order
expressible.

In this article, we study the set CERTAIN(w) and we partially solve the conjec-
ture proposed in [9] that CERTAIN(w) is aperiodic for every word w. We prove the
aperiodicity of CERTAIN(w) for three large families of words w including powers
of primitive words (for a power greater than or equal to 3) and powers of unbor-
dered words. We also show that, when restricted to partial words, CERTAIN(w)
is aperiodic for alphabets with at least 3 symbols.

In the literature, different terms have been used for words with don’t-care sym-
bols like indeterminate words [6], partial words, words with holes or jokers [13–15].
In each case, either the don’t-care symbol means any symbol of the alphabet, or
it has to be selected among a subset of the alphabet depending on its position
in the word. In this article, we follow the second approach and we use the term
multiword coined in [9]. The notion of partial word has been generalized in [16]
by the concept of relational word. In this article, the term partial word refers to
words where don’t-care positions represent the entire alphabet.

The remainder of this article is organized as follows. The next section intro-
duces terminology and notations and formalizes the problems we are interested
in. Section 3 proves the aperiodicity of the restriction of CERTAIN(w) to partial
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words, when the alphabet has at least 3 symbols. In Section 4, we introduce our
decomposition lemma, the main tool used in the technical treatment.

Section 5 contains our main results. It establishes the aperiodicity of CERTAIN(w)
for three large families of words w: powers of primitive words (with powers greater
than or equal to 3), powers of unbordered words, and so-called anchored words.
We end with a conclusion and some perspectives.

2. Preliminaries

2.1. Words

Let Σ = {a, b, c, . . .} be a finite alphabet of symbols. A word of length n ≥ 0 is a
total function w: {1, . . . , n} → Σ. As usual, we write such a word w1 · · ·wn where
wi = w(i) is the symbol at position i. The empty word, denoted by ǫ, has length 0.
The concatenation of words u and v is denoted by u · v or uv. If w = pq, then p is
called a prefix of w and q a suffix. A prefix (or suffix) of w that is distinct from w
is called proper. We say that a word w is a factor of v, denoted by v  w, if there
exist words p and q such that v = pwq. We denote as usual by Σ∗ the set of all
words over Σ, and Σ+ = Σ∗ \ {ǫ}. A word w is called unbordered if no nonempty
proper suffix of w is a prefix of w. A word w ∈ Σ+ is primitive if w = vk implies
k = 1.

2.2. Multiwords

We define the powerset alphabet as Σ̂ = 2Σ\{∅}. A multiword M = A1A2 · · ·An

is a finite word over the powerset alphabet Σ̂, i.e. Ai ⊆ Σ and Ai 6= ∅ for all i.
Given a multiword M = A1A2 · · ·An, we define the set of words represented by

M :
words(M) := {a1a2 · · ·an | ∀i ∈ {1, . . . , n} : ai ∈ Ai}.

Let w be a word. We say that a word w is certain in M , denoted M certain w, if
w is a factor of every word in words(M). Given a word w ∈ Σ+, we are interested

in the language CERTAIN(w) ⊆ Σ̂∗ defined as follows:

CERTAIN(w) := {M ∈ Σ̂∗ |M certain w}

Example 2.1. The following multiwordM contains two symbols with values {a, b}
and {c, d}. Curly braces are omitted for symbols that are singletons; for example,
{a} is written as a.

So, for M = abdabca{a, b}bdab{c, d}abcab, we have:

words(M) = { abdabcaabdabcabcab,

abdabcaabdabdabcab,

abdabcabbdabcabcab,

abdabcabbdabdabcab }.
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Hence,M certain abdabcab because abdabcab is a factor (underlined for readability)
of each word in words(M). So we have M ∈ CERTAIN(abdabcab).

2.3. Partial Words

A partial word is a multiwordM = A1A2 · · ·An where, for each i, either Ai = Σ,
or Ai = {a} with a ∈ Σ. The term “partial” refers to the fact that a partial word
of length n over Σ can be considered as a partial function w : {1, . . . , n} → Σ,
where positions i with undefined w(i) correspond to the previous case Ai = Σ [13].
In the context of partial words, it is common to use notation 3 to identify cases
Ai = Σ.

Example 2.2. Let Σ = {a, b, c}. The partial word M3 = a{a, b, c}b{a, b, c}c is
also denoted a3b3c following notation in [13]. The set of possible words of M3

is:

words(M3) = {aabac, aabbc, aabcc, abbac, abbbc, abbcc, acbac, acbbc, acbcc}

Let CERTAIN3(w) be the restriction of CERTAIN(w) to partial words:

CERTAIN3(w) = {M | M is a partial word and M certain w}

2.4. Aperiodicity

In this article, our main motivation is to prove the first-order definability of
CERTAIN(w), for every word w. An intermediate objective is to prove it for
CERTAIN3(w).

It has been shown in [9] that CERTAIN(w) is regular, by exhibiting an automa-
ton recognizing this language. As the language CERTAIN3(w) is the intersection
of CERTAIN(w) with the (regular) set of partial words, CERTAIN3(w) is also reg-
ular. Hence the first-order definability of CERTAIN(w) and CERTAIN3(w) reduces
to their aperiodicity [11,12]. A monoid M is aperiodic if there exists an integer n
such that sn+1 = sn for any s ∈ M [17]. By extension, a language L is aperiodic
if its syntactic monoid M(L) is aperiodic. The syntactic monoid M(L) is equal to
Σ∗/∼L where the syntactic congruence ∼L is defined by

u ∼L u′ ⇐⇒ ∀p, q ∈ Σ∗ (puq ∈ L ⇐⇒ pu′q ∈ L).

It follows that a language is aperiodic if there exists an integer k such that

∀p, u, q ∈ Σ∗ (pukq ∈ L ⇐⇒ puk+1q ∈ L). (1)

The question whether CERTAIN(w) is aperiodic for all w ∈ Σ+ has already been
raised in [9]. With our formalism, CERTAIN(w) is aperiodic if there exists k > 0

such that for all P,U,Q ∈ Σ̂∗,

PUkQ certain w ⇐⇒ PUk+1Q certain w.
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In [9], the aperiodicity of CERTAIN(w) has been proved for a particular family
of words w, namely the words au (resp. ua) where a ∈ Σ and u ∈ (Σ \ {a})∗.
In Section 5, we extend this result to three (much larger) classes of words w,
namely, the class of powers of primitive words (with powers greater than or equal
to 3) (Theorem 5.1), the class of powers of unbordered words (Theorem 5.5),
and the class of so-called anchored words (Theorem 5.7). In Section 3, we prove
aperiodicity of CERTAIN3(w) for partial words over an alphabet with at least 3
symbols (Theorem 3.2).

We introduce the following lemma, which allows to restrict the proof of aperi-
odicity to only one implication instead of an equivalence as in (1).

Lemma 2.3. A regular language L is aperiodic if and only if there exists an
integer n such that for any integer k ≥ n

∀p, u, q ∈ Σ∗ (pukq ∈ L =⇒ puk+1q ∈ L).

Proof. The condition is obviously necessary. To prove that the condition is suf-
ficient, we use the classical result that for any finite monoid M , there exists an
integer n such that for any s ∈M , sn is an idempotent, that is s2n = sn [17].

By this result applied to the syntactic monoid of L, there exists an integer m
such that

∀p, u, q ∈ Σ∗ (pumq ∈ L ⇐⇒ pu2mq ∈ L).

Let k ≥ max(n,m), and let i, j be integers such that k = i ·m+ j with 0 ≤ j < m.
We have

puk+1q ∈ L =⇒ puk+2q ∈ L =⇒ . . . =⇒ pu2k−jq ∈ L =⇒ pukq ∈ L

since pu2k−jq ∈ L ⇔ p(ui)2mujq ∈ L ⇔ p(ui)mujq ∈ L ⇔ pukq ∈ L. �

3. Aperiodicity of CERTAIN3(w)

We start with the case of partial words. We show in this section that the set
CERTAIN3(w) is aperiodic for alphabets of size greater than or equal to 3. Note
that, for an alphabet of smaller size, the notions of multiwords and partial words
coincide.

We begin with an interesting lemma dealing with multiwords M containing a
symbol Ai with at least three values.

Lemma 3.1. Let M = A1A2 · · ·An ∈ Σ̂∗ be a multiword, and w ∈ Σ+ a word.
Let i ∈ {1, . . . , n} such that |Ai| ≥ 3. Then, M ∈ CERTAIN(w) if and only if
A1A2 · · ·Ai−1 ∈ CERTAIN(w) or Ai+1 · · ·An ∈ CERTAIN(w).

Proof. We only need to prove the necessary condition. As |Ai| ≥ 3, let a, b, c be
three distinct symbols in Ai. AssumeM ∈ CERTAIN(w), A1 · · ·Ai−1 /∈ CERTAIN(w)
and Ai+1 · · ·An /∈ CERTAIN(w).
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Let m ∈ words(A1 · · ·Ai−1) and m′ ∈ words(Ai+1 · · ·An) such that neither m
nor m′ contains w as a factor. By hypothesis, w is a factor of mam′,mbm′,mcm′.
Therefore there exist words u, v, x, y such that w = uavbxcy and:

• u is a suffix of m and vbxcy is a prefix of m′;
• uav is a suffix of m and xcy is a prefix of m′; and
• uavbx is a suffix of m and y is a prefix of m′.

Graphically,

← m → ← m′ →
· · ·u a vbxcy · · ·

· · ·uav b xcy · · ·
· · ·uavbx c y · · ·

Let k = |u|+ 1 + |x|+ 1. If we start reading the first line in the array above, and
switch to the second one after m, we observe that the k-th symbol of w must be
c. Let j = |y|+ 1 + |v|+ 1. Then, if we start reading the third line from the end
of w, and switch to the second one after reading m′, we note that the j-th last
symbol of w must be a. Since k+ j = |w|+1, the k-th symbol equals the j-th last
symbol, hence a = c, a contradiction. This concludes the proof. �

Theorem 3.2. If |Σ| ≥ 3, then CERTAIN3(w) is aperiodic for each w ∈ Σ+.

Proof. We prove aperiodicity by using Lemma 2.3. Let k > |w|. Let P,U,Q be par-
tial words. Assume PUkQ certain w. For contradiction, suppose PUk+1Q 1certain w.
Therefore U 6= ǫ, and two cases occur:

• U is composed only of singleton symbols. Then words(U) is exactly {u}
for some u. As PUk+1Q 1certain w, there exist some p ∈ words(P ), q ∈
words(Q) such that puk+1q 1 w.
Since pukq ∈ words(PUkQ) and PUkQ certain w, it follows pukq  w. As
|uk| > |w| (because k > |w| and |u| > 0), we have puk

 w or ukq  w, a
contradiction with puk+1q 1 w.
• U contains at least one symbol that is not a singleton. In this case, we
have PUkQ = PM13M2Q with M1,M2 partial words and symbol 3 is Σ
(with size ≥ 3). By Lemma 3.1, either PM1 certain w or M2Q certain w.
Assume PM1 certain w (the other case is symmetrical). Clearly, for every
partial word M ′, we have PM1M

′
certain w. Let M ′ be the partial word

such that PM1M
′ = PUk+1Q. Then, PUk+1Q certain w, a contradiction.

�

4. Decomposition Lemma

Our main aperiodicity results are stated and proved in Section 5. In each case,
aperiodicity is established by using Lemma 2.3, ad absurdum, in combination with
a decomposition lemma. Section 4 is devoted to this lemma which is our main
technical tool.
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m
x y

π π+|U |+1|U |

Figure 1.

ℓ-decomposition (x, y) of w
at position π.

m
a b a a b a b

π π+|U |+1|U |

Figure 2.

Two maximal
ℓ-decompositions.

Lemma 4.1 (Decomposition Lemma). Let w ∈ Σ+ be a word, and k ≥ 1. Let

P,U,Q ∈ Σ̂∗ be multiwords such that P Uk Q certain w. Let p ∈ words(P ),
q ∈ words(Q) and u ∈ words(Uk+1). If m = puq does not contain w as a factor,
then for every position π in m such that |P | ≤ π ≤ |PUk|, there exist x, y ∈ Σ+

such that:

(1) w = xy;
(2) x is a nonempty suffix of m1 · · ·mπ; and
(3) y is a nonempty prefix of mπ+|U|+1 · · ·m|m|.

In other words, this lemma states that, for every position π of m (under the
hypotheses), there exist a prefix x of w ending at position π and a suffix y of w
beginning at position π + |U |+ 1, such that xy = w. This situation is depicted in
Figure 1.

The pair (x, y) mentioned in Lemma 4.1 is called an ℓ-decomposition of w at
position π (or simply an ℓ-decomposition at position π, if w is clear from the
context), and also an r-decomposition of w at position π+ |U |+1.1 A position π is
left-maximal if mπ+1 6= mπ+1+|U|. Any ℓ-decomposition (x, y) at a left-maximal
position is called maximal. A position π is right-maximal if mπ−1 6= mπ−1−|U|.
Any r -decomposition (x, y) at a right-maximal position is called maximal. Finally,
a witness is a maximal ℓ-decomposition of w at a left-maximal position, or a
maximal r -decomposition of w at a right-maximal position. The rationale for
calling decompositions maximal comes from the following obvious observations:

• If (x, y) is an ℓ-decomposition of w at a left-maximal position π, then
xmπ+1 is not a prefix of w. Intuitively, x cannot be extended to the right.
• If (x, y) is an r -decomposition of w at a right-maximal position π, then
mπ−1y is not a suffix of w. Intuitively, y cannot be extended to the left.

Consider for instance the case w = abab. Figure 2 shows two ℓ-decompositions
(a, bab) and (aba, b) at a position π of a word m. Both ℓ-decompositions are
maximal, since none of them can be extended to position π + 1. Hence π is a
left-maximal position, with witnesses (a, bab) and (aba, b).

1Notice that in the ℓ-decomposition, x ends at position π, and in the r-decomposition, y

begins at position π + |U |+ 1 (See Figure 1).
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Proof of Lemma 4.1. Let π be a position in m such that |P | ≤ π ≤ |PUk|. We
can assume m = pv1uv2q with |pv1| = π and |u| = |U |. Let m′ = pv1v2q. From
PUkQ certain w and m′ ∈ words(PUkQ), we have m′

 w. The situation is:

m =

1w
︷ ︸︸ ︷
pv1uv2q m′ =

1w
︷︸︸︷
pv1

1w
︷︸︸︷
v2q︸ ︷︷ ︸

w

But m 1 w implies pv1 1 w and v2q 1 w, so it must be the case that pv1 ends
with some nonempty prefix x of w, that v2q starts with some nonempty suffix y
of w, and that w = xy. �

The following lemma shows that every ℓ-decomposition can be extended to the
right, until a maximal ℓ-decomposition is reached.

Lemma 4.2. Let w, k, P, U,Q,m and π be defined as in Lemma 4.1. Let (x, y) be
an ℓ-decomposition of w at position π. There exists a left-maximal position π + j
such that 0 ≤ j < |y| and with a witness (x′, y′) where x′ = xmπ+1 · · ·mπ+j.

Symmetrically, if (x, y) is an r-decomposition at position π, then there exists
a right-maximal position π − j such that 0 ≤ j < |x| and with a witness (x′, y′)
where y′ = mπ−j · · ·mπ−1y.

Proof. Suppose for contradiction that for all j satisfying 0 ≤ j < |y|, the position
π + j is not left-maximal. We show that under these conditions, w is a factor
of m, which is impossible. Let a be the first symbol of y, and y′ be such that
y = ay′. As π is not left-maximal, x can be extended to x′ = xa, and (x′, y′) is an
ℓ-decomposition of w at position π + 1.

We can repeat this step from π + 1 to π + 2, and so on, |y| times. Thus, x can
be extended symbol by symbol, until w appears as factor. �

Remark 4.3. In the remainder of the paper, we will apply Lemma 4.1 at several
positions π “far enough from extremities”, without explicitly checking the condi-
tion |P | ≤ π ≤ |PUk|. In fact, all our proofs are local, in that they work on a
region of the word m, which length only depends on |w| and |U |. Let us check
that we can always find such a region, where Lemma 4.1 can be applied.

We can define such a region as an interval between a leftmost position π1 and a
rightmost position π2. As mentioned above, the width of the region only depends
on |w| and |U |, that is π2 = π1 + i|w| + j|U | for some i, j ≥ 0 depending on the
proof we consider. For each proof, i and j are fixed, and for every w ∈ Σ+, we have
to find k such that for all P,U,Q, there is a position π1 for which |P | ≤ π1 and
π1+i·|w|+j ·|U | ≤ |PUk|. This is equivalent to |P | ≤ π1 ≤ |P |+(k−j)·|U |−i·|w|.
As |U | ≥ 1 (the case |U | = 0 being trivial), it is sufficient that |P | ≤ π1 ≤
|P |+ (k − j)− i · |w|. We can choose k ≥ j + i · |w|, so that for every P,U,Q, we
can find a position π (and hence an interval of positions) where Lemma 4.1 can
be applied.
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|v| − 1

r s

x a
v

Figure 3. Two
v-factorizations.

v

s b
r

r r r r′

r s a

Figure 4. x
has period r.

5. Aperiodicity of CERTAIN(w)

We now present three large families of words w for which we prove the ape-
riodicity of CERTAIN(w). The three proofs are based on two main arguments.
The first one is the Decomposition Lemma, and the second one uses a notion of
“synchronization”, that differs for each family, and restricts the way parts of w
can overlap. The aperiodicity proof for the first family is quite long and technical.
The two other proofs are much easier.

5.1. Powers of primitive words

The first family contains powers (≥ 3) of a primitive word. This is an interesting
family since it is well known [18] that every word is a power (≥ 1) of a primitive
word.

Theorem 5.1. If w = vhv′ where v is primitive, h ≥ 3, and v′ is a proper prefix
of v, then CERTAIN(w) is aperiodic.

Note that this family includes some primitive words2, as for instance (ab)3a.
Before proving this theorem, we introduce some terminology [18]. A word w is a
conjugate of a word w′ if w = uv and w′ = vu for some nonempty words u, v. It is
folklore that all conjugates of a primitive word are primitive. We say that a word
x has period r if r 6= ǫ and x = rir′ with i ≥ 1 and r′ is a proper prefix of r. If
v is a primitive word, a v-factorization of a word x is a factorization of the form
x = r · vi · s where i ≥ 0, and r (resp. s) is a proper suffix (resp. prefix) of v.
A word x may have several v-factorizations. The following lemma shows that the
v-factorization is unique when x is large enough.

Lemma 5.2. Let v be a primitive word. If x has a v-factorization, and |x| ≥ |v|−1,
then x has only one v-factorization.

Proof. We first consider the case where |x| = |v|−1. Assume for contradiction that
x has two distinct v-factorizations. We can assume that these two v-factorizations
are rs and ǫx (where ǫ is the empty word): this can be obtained w.l.o.g. by
considering the suitable conjugate of v.

2It can also be shown that this family does not contain squares of primitive words.
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≥ |v| − 1

x
y

Figure 5. Synchronization of words x and y.

Hence the situation looks like in Figure 3, with r a proper nonempty suffix of
v, s a proper prefix of v, and xa = v where a is a symbol. In particular, s is prefix
of x. Let b be the symbol such that sb is a proper prefix of v. We will show in the
following that x has period r and also period sb. Then, as |x| = |r| + |sb| − 1, we
can apply Fine and Wilf’s theorem [18, 19], to obtain that r and sb are powers of
the same word. Hence v = (sb)r is not primitive, which is a contradiction.

Let us prove that x has period r. Figure 4 illustrates the situation. As x = rs,
it is sufficient to prove that either s is a proper prefix of r, or s has period r.
If |s| < |r|, then because of the two v-factorizations, s is a proper prefix of r.
If |s| ≥ |r|, r is now a prefix of s. Let rj be the prefix of s, with j ≥ 1 being
maximal. The word rj+1 is a prefix of rs. But s is also a prefix of rs (consider the
two v-factorizations). Hence, either s has period r, or rj+1 is a prefix of s. The
latter is impossible by definition of j, so s has period r.

Now we prove that sb is a period of x. The proof follows the same line. As
v = (sb)r, we only have to show that either r is a proper prefix of sb, or r has
period sb. Then we just have to consider two cases |r| < |sb| and |r| ≥ |sb| as we
did before.

We now consider the case where |x| ≥ |v| + 1. Note that if x has two distinct
v-factorizations, then x has a factor x′ of length |x| − 1 with two distinct v-
factorizations. This is impossible according to the preceding arguments. This
concludes the proof.

�

Let v be a primitive word. If two words x and y have a v-factorization, and
have a common factor of length |v| − 1, then the preceding lemma implies that
their v-factorizations are identical on this common factor, as depicted in Figure 5.
In this case, we say that x and y are synchronized (according to v).

We now proceed to the proof of Theorem 5.1. This proof relies on Lemma 2.3. It
is established by contradiction in a way to use the Decomposition Lemma. Other
lemmas are also necessary to complete the proof.

Proof of Theorem 5.1. Let w ∈ Σ+ be a word such that w = vhv′ where v is prim-
itive, h ≥ 3, and v′ is a proper prefix of v. We prove Theorem 5.1 by contradiction,
using Lemma 2.3.

Let k be sufficiently large (see Remark 4.3), and let P,U,Q ∈ Σ̂∗ be multiwords
such that PUkQ certain w. Let p ∈ words(P ), q ∈ words(Q) and u ∈ words(Uk+1).
Assume for contradiction that m = puq does not contain w as a factor. Therefore
|U | > 0 and Lemma 4.1 can be applied. We start the proof with two lemmas



TITLE WILL BE SET BY THE PUBLISHER 11

m

π |U |x y

π+1
|U |

x′
y′

Figure 6. Decompositions in the proof of Lemma 5.3, case |x| < |v|

based on these hypotheses. The following lemma can be paraphrased as follows.
Consider a left-maximal position π with witness (x, y). Then, consider any ℓ-
decomposition (x′, y′) at the next position π + 1. The lemma implies that x and
x′ cannot overlap much; in particular, the length of each common factor must be
less than |v| − 1.

Lemma 5.3. Let π be a left-maximal position with witness (x, y). Let (x′, y′) be
an ℓ-decomposition at position π + 1. Then for all common factors f of x and x′

(resp. of y and y′), |f | < |v| − 1.

Proof. The words x and x′ are proper prefixes of w, while y and y′ are proper
suffixes of w, so these four words have a v-factorization. Assume that x and x′

share a common factor f with |f | ≥ |v| − 1. Then, by Lemma 5.2, they are
synchronized. Hence x can be extended to a larger prefix of w (using x′), which
contradicts the premise that π is left-maximal. Assume now, that y and y′ have
a common factor f with |f | ≥ |v| − 1. By Lemma 5.2, they are synchronized, as
illustrated in Figure 6. The shift of |U | is the same in both decompositions, so x
can be extended to a longer prefix of w by one symbol, which is impossible. �

The second lemma shows that a maximal ℓ-decomposition (x, y) is such that x
is large compared to y. In particular, the length of x is always more than twice
the length of y. Symmetrically for a maximal r -decomposition.

Lemma 5.4. If π is a left-maximal position with witness (x, y), then |x| > |w|−|v|
and |y| < |v|. Symmetrically, if π is right-maximal with witness (x, y), then |x| <
|v| and |y| > |w| − |v|.

Proof. We only prove the first part of the lemma (the proof of the second part is
symmetrical). Suppose for contradiction that |x| ≤ |w| − |v|. We distinguish two
cases: |v| ≤ |x| and |x| < |v|.

• Case |v| ≤ |x| ≤ |w| − |v|. We have |y| ≥ |v|, because w = xy. Let (x′, y′)
be an ℓ-decomposition at position π+1. As w = x′y′ and |w| ≥ 3|v|, x, x′

or y, y′ have a common factor f such that |f | ≥ |v| − 1. This is impossible
according to Lemma 5.3.
• Case |x| < |v|. Now we have |y| > |w| − |v|. As w = vhv′ with h ≥ 3, we
get |y| > 2|v|. Let us consider an ℓ-decomposition (x′, y′) at position π+1.
Lemma 5.3 tells us that |y′| < |v|, and thus |x′| > |w| − |v|. According
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m

π π+|U |

x y

π+j
π+1

x′′ y′

y′′x′

π+j+1

x̂ ŷ

Figure 7. Decompositions in the proof of Lemma 5.4.

to Lemma 4.2 applied to x′ at position π + 1, there exists a left-maximal
position π + j such that 1 ≤ j ≤ |y′| with witness (x′′, y′′), x′ being a
prefix of x′′. Now consider an ℓ-decomposition (x̂, ŷ) at position π+ j+1.
The situation is illustrated in Figure 7. Recall that |x′| > |w| − |v| and
|y| > |w| − |v|. As |x′′| ≥ |x′|, we have |x′′| > 2|v|. Applying Lemma 5.3
at position π + j, we get |x̂| < |v| and thus |ŷ| > |w| − |v|. We also have
j + 1 ≤ |y′|+ 1 ≤ |v| by Lemma 4.2. So ŷ and y have a common factor f
with |f | > |w| − 2|v| > |v|. By Lemma 5.2, they are synchronized. Again,
two cases can occur:

– y and ŷ end at the same position. In this case, x and x̂ have x as
common prefix. Hence, x̂ extends x to the right, yielding a larger
prefix of w. This contradicts the premise that π is left-maximal.

– y and ŷ do not end at the same position. As |x̂| < |v|, we know that
ŷ ends after y. Moreover, y and ŷ are synchronized, so ŷ is obtained

from y by a shift of |v|i positions in m, for some i ≥ 1. Let ṽ be the
conjugate of v ending with v′ (recall that w = vhv′). The word yṽ
appears as factor of m. However, |x| < |v|, so |yṽ| > |w|, and thus w
is a factor of m. This is impossible.

This concludes the proof of Lemma 5.4. �

We now use the preceding lemmas to complete the proof of Theorem 5.1. By
Lemma 4.2, we can assume a left-maximal position π with witness (x, y). By
Lemma 5.4, we have |x| > |w|−|v| and |y| < |v|. Let (x′, y′) be an ℓ-decomposition
at position π + 1. According to Lemma 5.3, |x′| < |v|. Using Lemma 4.2, we can
extend x′ until a left-maximal position π′ with witness (x′′, y′′), where x′ is a prefix
of x′′. We know by Lemma 5.4 that |x′′| > |w| − |v| and |y′′| < |v|. In the sequel,
we consider the positions π, π − |v|, α, β and γ, as illustrated in Figure 8:

• α is the position where x′ starts, i.e. x′ = mα · · ·mπ+1;
• β = α+ |v|;
• γ = π−|v|+|y|+1 is the position ofm corresponding to the (|w|−|v|+1)-th
position in x.
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m

π

π−|v| π′

π+1

α βγ

π+|U |

v

x

x′′x′

y

y′

Figure 8. Decompositions in the proof of Theorem 5.1, repre-
sented in terms of v.

· · · · · ·

ππ−|v| β

γ

x
x′′

ŷy

Figure 9.

Case |ŷ| < β − γ.

· · · · · ·

ππ−|v|

α

β

γ

x
x′′

ŷfirst step
second step

Figure 10.

Case |ŷ| ≥ β − γ.

As 1 ≤ |y| < |v|, we know that

π − |v|+ 2 ≤ γ < π + 1.

From the definition of α and the fact that |x′| < |v|, we have

π − |v|+ 2 < α ≤ π + 1.

Let (x̂, ŷ) be an r -decomposition at position γ. We distinguish two cases, and
show that both of them lead to a contradiction.

• Case |ŷ| < β− γ (i.e. ŷ ends before position β− 1). Then γ is not a right-
maximal position. Indeed, |ŷ| < β − γ < 2|v| because β = α + |v| and
α − γ < |v|. However, according to Lemma 5.4, if γ was a right-maximal
position, we would have |ŷ| > |w| − |v| ≥ 2|v|. Hence, by Lemma 4.2,
there exists a right-maximal position δ < γ with witness (x, y) such that
ŷ is a suffix of y. This configuration is illustrated in Figure 9. According
to Lemma 5.4, |y| > |w| − |v|. Let us analyze the length of the common
factor f of x and y. We cannot have |f | < |v| − 1, because in that case
y would start after position π − |v| + 1. As y ends before position β − 1,
this would imply that |y| < 2|v|, a contradiction with |y| > |w| − |v|. So
Lemma 5.2 can be applied, showing that x and y are synchronized. As
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y is a suffix of w, and considering the definition of γ, y ends after π and
allows to extend x, in contradiction with the definition of π.
• Case |ŷ| ≥ β−γ (i.e. ŷ ends at or after position β− 1). We will show that
the word mπ−|v|+2 · · ·mπ has two distinct v-factorizations, which consti-
tute a contradiction with Lemma 5.2 (as its length is |v| − 1). The first
v-factorization comes from x. The second one will be built by extending
x′ to the left. These two v-factorizations are distinct because π is a left-
maximal position with witness (x, y), so x cannot be extended. In the
remainder of the proof, we show how to build the second v-factorization
from x′. We proceed in two steps, as described in Figure 10.

– First step. Let z be the common factor between y and y′ (we have
|z| = |y| − 1). From the definition of γ, z appears between positions
π − |v|+ 2 and γ − 1 (with its two v-factorizations as suffix of y and
prefix of y′): mπ−|v|+2 · · ·mγ−1 = z.

– Second step. In order to complete the second v-factorization (from
position γ to position π), we have to get the suffix of v between
positions γ and α − 1. If α ≤ γ, the second v-factorization has been
completed during the first step. So let us consider that γ < α. As
|ŷ| ≥ β − γ (this corresponds to the second case), x′′ and ŷ have a
common factor of length greater than |v| − 1, so by Lemma 5.2 they
are synchronized. Hence ŷ enables to extend x′′ to the left until γ,
and we obtain the second v-factorization.

This concludes the proof of Theorem 5.1. �

5.2. Powers of unbordered words

The second family of wordsw for which we prove the aperiodicity of CERTAIN(w)
is composed of every power of an unbordered word. Notice that it contains the
words w = au (resp. w = ua) with a ∈ Σ and u ∈ (Σ \ {a})∗, for which the
aperiodicity of CERTAIN(w) was proved in [9].

Since every unbordered word is primitive, Theorem 5.1 applies to unbordered
words. However, while Theorem 5.1 requires powers greater than or equal to 3,
the following theorem admits any power. This second family of words w is incom-
parable (under set inclusion) with the first one: (ab)3a belongs to the first family
but not to the second one, while ab is unbordered and does not belong to the first
family. Of course, there exist words outside both families, like aba.

Theorem 5.5. If w = vh with v an unbordered word and h ≥ 1, then CERTAIN(w)
is aperiodic.

Proof. The proof is by contradiction, using Lemma 2.3. Let k be sufficiently large
(see Remark 4.3). Let P , U , Q be multiwords such that PUkQ certain w. Assume
towards a contradiction that m = puq with p ∈ words(P ), u ∈ words(Uk+1), and
q ∈ words(Q) such that m 1 w. Hence the Decomposition Lemma can be applied.
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m

π1

π2 π3

x1
r2

x3

Figure 11. Proof
of Lemma 5.6.

m

π1

π3

π2

π3 − |r3|+ 1

r3

p

r1

r2

Figure 12. Proof
of Theorem 5.5.

Lemma 5.6. There exist a position π in m and an ℓ-decomposition (x, y) at
position π such that |x| ≥ |v|.

Proof. Assume for contradiction that for every position π in m and every ℓ-
decomposition (x, y) at π, |x| < |v|. For each position π1, far enough from the
borders of m (see Remark 4.3), there exists an ℓ-decomposition (x1, y1) at position
π1 by Lemma 4.1. We choose such position π1 and ℓ-decomposition (x1, y1) with x1

of maximal length. By our contradiction hypothesis, |x1| < |v|. Let (x2, y2) be an
r -decomposition at position π2 = π1−|x1|+1, and consider r2 such that y2 ∈ r2v

∗

with 0 < |r2| ≤ |v|. Thus, r2 is a (not necessarily proper) nonempty suffix of v.
The situation is depicted in Figure 11. As v is unbordered, it must be the case
that |r2| > |x1|. Let (x3, y3) be an ℓ-decomposition at position π3 = π2 + |r2| − 1.
By our (contradiction) hypothesis, |x3| < |v|. As v is unbordered, it must be the
case that |x3| > |r2|. As |r2| > |x1|, we have a contradiction with the choice of
ℓ-decomposition (x1, y1) at position π1 with x1 of maximal length. �

By Lemma 5.6, we can assume a position π1 in m and a prefix x1 of w that
ends at position π1, and such that |x1| ≥ |v|. If w = vh with h = 1, it follows
that x1 = w and thus m  w which is impossible. When h ≥ 2, we show in the
next paragraph that x1mπ1+1 is a prefix of w. Then, by repeated application of
the same reasoning, we obtain m  w, again a contradiction.

We can assume j ≥ 1 such that x1 = vjr1 with 0 ≤ |r1| < |v|. Let (x2, y2) be
an r -decomposition at position π2 = π1 − |r1| + 1 where y2 ∈ r2v

∗ for some r2
satisfying 0 < |r2| ≤ |v|. Since v is unbordered it must be the case that |r2| > |r1|.
We distinguish two cases:

• Case |r2| = |v|. Obviously, x1mπ1+1 is a prefix of w.
• Case |r2| < |v|. Let (x3, y3) be an ℓ-decomposition at position π3 =
π2 + |r2| − 1. Let x3 ∈ v∗r3 for some r3 satisfying 0 < |r3| ≤ |v|. As v is
unbordered, |r3| > |r2|. It follows that the word p = mπ3−|r3|+1 · · ·mπ2−1

must be a nonempty proper prefix of v (see Figure 12). Since v is unbor-
dered, p cannot be a suffix of v. Since x1 = vjr1 is a suffix of m1 · · ·mπ1

with j ≥ 1, we have that vj is a suffix of m1 · · ·mπ2−1. Then, p is a suffix
of v, a contradiction. We conclude that this case cannot occur.

�
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m

π

π + 1

x y

x′ y′

Figure 13. Case
j ≥ 1 in the proof of
Lemma 5.8

πx

s ava

π′ y′

ava t
m

Figure 14. Case
x′

 ava in the proof
of Theorem 5.7.

5.3. Anchored words

Given a symbol a ∈ Σ, the last family contains words w in which two a-labelled
positions are used as anchors in the following way.

Theorem 5.7. Let w = savat with a ∈ Σ, v, s, t ∈ Σ∗ such that:

(1) v does not contain a;
(2) ava occurs only once in w;
(3) If s 6= ǫ, no nonempty prefix of w is a suffix of ava;
(4) If t 6= ǫ, no nonempty suffix of w is a prefix of ava.

Then CERTAIN(w) is aperiodic.

Such a word w is called anchored with ava as an anchor. This will be highlighted
in the proof. For example, w = b2abab2 is an anchored word with aba as an anchor;
w = aba is also an anchored word.

Let us compare anchored words with our two first families. First, anchored
words are primitive words3 and then cannot be a power of another word, moreover
they do not belong to the first family4. Second, anchored words and unbordered
words are incomparable under set inclusion: b2abab2 is anchored and bordered,
while ab is unbordered and not anchored. The intersection of anchored and un-
bordered words is not empty since abab2 is both unbordered and anchored. Third,
the family of anchored words covers an important fraction of words. For instance,
over the alphabet {a, b, c}, up to length 14, over a total of 7.174.452 words, the
sizes of the three families are 450 for powers of primitive words, 3.999.906 for pow-
ers of unbordered words and 6.449.349 for anchored words. Finally, some words
do not belong to any of the three families, as for instance (aba)2.

Proof of Theorem 5.7. The proof is again by contradiction, using Lemma 2.3. Let
k be large enough (see Remark 4.3) and let P,U,Q be multiwords such that
PUkQ certain w. Assume that there exist p ∈ words(P ), u ∈ words(Uk+1), q ∈

3Indeed, if w is anchored but not primitive, w = uh for some h > 1. The anchor ava cannot
appear in u by condition (2) , so there exists i, 0 ≤ i ≤ |v|, such that av1 · · · vi is a suffix of u
and vi+1 · · · v|v|a a prefix of u: this contradicts conditions (3) and (4).

4If w = uhu′ with u primitive, h ≥ 3 and u′ a proper prefix of u, then an anchor ava cannot
appear in u nor u2 by condition (2), and can neither appear in uu′ (it would appear in u2).
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words(Q) such that m = puq does not contain w as a factor. Therefore Lemma 4.1
can be applied.

Lemma 5.8. There exist a position π in m and an ℓ-decomposition (x, y) at
position π such that either x  ava or y  ava.

Proof. Assume the contrary, i.e. for all π (far enough from the borders of w, see
Remark 4.3) and all ℓ-decompositions (x, y) at position π, we have x 1 ava and
y 1 ava. By Lemma 4.2, we can assume position π is left-maximal and its witness
(x, y) is such that x = sav1 · · · vi and y = vi+1 · · · vnat where n = |v|. Again, by
our assumption, there is an ℓ-decomposition (x′, y′) at position π + 1 such that
x′ = sav1 · · · vj and y′ = vj+1 · · · vnat for some j. If j ≥ 1, one of sav1 · · · vi or
sav1 · · · vj−1 must be a suffix of the other (see x, x′ on Figure 13).

We recall that v does not contain the symbol a (by condition (1) of Theo-
rem 5.7). It follows that these two words are equal, and therefore (x, y) is not a
maximal ℓ-decomposition, a contradiction. So j = 0. Assume i < |v|. Consid-
ering y, the (|v| − i)-th symbol of y′ must be the symbol a, a contradiction as
y′ = vat.

Thus, j = 0, i = |v| and x = sav, y = at, x′ = sa and y′ = vat. Since
mπ+1 = a = mπ+|U|+1, it follows that the ℓ-decomposition (x, y) is not maximal,
a contradiction. �

By Lemma 5.8, there exist a position π in m and an ℓ-decomposition (x, y) at
position π satisfying x  ava or y  ava. Suppose x  ava (the other case is
symmetrical). By condition (2) of Theorem 5.7, sava is prefix of x. It follows
that t 6= ǫ, otherwise m  w which is impossible. We define π′ = π − |x|+ |s|+ 1
(see Figure 14). By Lemma 4.1, there is an r -decomposition (x′, y′) at position
π′. By construction, either ava is a proper prefix of y′ or y′ is prefix of ava.
Condition (4) implies that only the first case can happen. By condition (2), we
must have y′ = avat. Recall that sava is prefix of x. It follows that w is factor of
m (see Figure 14), a contradiction. �

6. Conclusions and perspectives

Motivated by a problem in incomplete database histories, we studied the first-
order definability (or aperiodicity) of CERTAIN(w). Aperiodicity was easy to show
for partial words defined relative to an alphabet with at least three symbols. Some-
what surprisingly, aperiodicity proofs turn out to be much harder for multiwords,
where uncertain positions can contain exactly two symbols. Using different tech-
niques, we obtained first-order definability for three large classes of words w:

• words of the form vh · v′ with v primitive, h ≥ 3, and v′ a proper prefix
of v;
• words of the from vh with v unbordered and h ≥ 1; and
• anchored words as defined by Theorem 5.7.

Our proofs are based on synchronization properties of such words, and these tech-
niques do not extend to arbitrary words. It is an open conjecture that CERTAIN(w)
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is first-order definable for any word w. This conjecture has been checked experi-
mentally on a large set of words w.
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