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Streaming for XML

XML stream

<people>
<external>
<name>
< /name>
< /external>
<student>

< /student>
< /people>
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Query Answering in Streaming

input data output data
— — —
.. <people> < select > ( j@,{g;,’?;rg ) <transform> <> <ul>
people
externa/student\--- \
/N / \
name name - mail -
Paul  John j@mail.org John j@ma// org
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“Streamability”

Queries

@ gl: select all nodes labeled by a

» nothing to store
» almost nothing to compute (just a test)
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“Streamability”

Queries

@ gl: select all nodes labeled by a

» nothing to store
» almost nothing to compute (just a test)

@ g2: select all nodes if the last child of the root is labeled by b

> store the whole stream
> for these candidates, test whether they can be output

Schemas

Schema information might improve the streamability.
In g2, a schema could say that all last siblings are labeled by b.

— Streamable classes of query+schema?
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Streamable classes of query-+schema

We propose 2 streamable classes:
© query+schema with bounded delay
© query+schema with bounded concurrency
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Delay

Example

@ query = select students that have an id

student — (name,id?)
@ schema = name —  #PCDATA

<student> <name> John < /name>
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Delay

Example

@ query = select students that have an id

student — (name,id?)
@ schema = name —  #PCDATA

<student> <name> John < /name> <id>
0 1 2 3

W

Delay = number of tags between

© the tag where the candidate becomes complete

© the first tag where the candidate can be selected
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Bounded Delay

A query+schema (g, S) has a bounded delay iff 3k > 0 s.t.
V XML documents t,
V candidates 7 € nodes(t)",
7 € q(t) can be decided with delay < k.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 7 /28



Concurrency

Example

@ query = select students that have an id

student — (name, address, id?)
name — F#PCDATA

@ schema = .
address — line+
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Concurrency

Example

@ query = select students that have an id
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name — F#PCDATA

@ schema = .
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Concurrency

Example

@ query = select students that have an id

student — (name, address, id?)
name — F#PCDATA

@ schema = .
address — line+

...< student >< name > John< /name > < address > ... < /address > < id > ...
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Concurrency

Example

@ query = select students that have an id

student — (name, address, id?)
name — F#PCDATA

@ schema = .
address — line+

...< student >< name > John< /name > < address > ... < /address > < id > ...

— not bounded delay
— but bounded concurrency: only 1 student to be stored at a time

Concurrency

= maximal number of candidates to be stored simultaneously
= maximal number of simultaneous candidates s.t.
selection or failure cannot be decided
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Bounded Concurrency

A query+schema (g, S) has a bounded concurrency iff 3k > 0 s.t.
V valid XML documents t,
V tags e of t,
{7 € nodes(t)" | 7 € q(t) cannot be decided at e}| < k.
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Bounded Delay vs Bounded Concurrency

@ Bounded Concurrency % Bounded Delay
» cf example with: address — line+
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Bounded Delay vs Bounded Concurrency

@ Bounded Concurrency % Bounded Delay
» cf example with: address — line+

@ Bounded Delay # Bounded Concurrency

» because delay does not count partial tuples

In terms of space complexity:
@ k-Bounded Delay: full candidates can be removed after k tags

@ k-Bounded Concurrency: at most k candidates at a time
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Our goal

Decide bounded delay and concurrency in P-time for queries defined by
deterministic automata.

o F
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Our goal

Decide bounded delay and concurrency in P-time for queries defined by
deterministic automata.

Outline

@ on words

Q@ on trees
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Queries defined by Automata

Canonical words

W:|b|a|a|c|b|b|c|b|a|...

we define w x 7 € (¥ x B")*:

w7 =| boo | a10 | a00 | o1 | boo | boo | oo | oo | @00 | -
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Queries defined by Automata

Canonical words

we define w x 7 € (¥ x B")*:

w7 =| boo | a10 | a00 | o1 | boo | boo | oo | oo | @00 | -

Canonical language of a query g

Cang ={wx*7 | 7€ q(w)}

— we define g by the deterministic automaton recognizing Can,.
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Queries defined by Automata: Example

q = select (a, c) if ¢ is after a and immediately followed by ab
*00 *00 *00

aio Q Co1 400 boo
o= Ot
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Queries defined by Automata: Example

q = select (a, c) if ¢ is after a and immediately followed by ab
*00 *00 *00

a10 Q C1 a0 , boo @

N N /

For clarity, we omit the schema in the following.
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Query Automaton

*00

*00

o F
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Query Automaton

*00 *00 *00

a10 c1 /O a0 / N\ boo O
N N N

Make all states of the (det.) automaton accessible + co-accessible.
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Query Automaton

*00 *00 *00

a q a b
-2 (D)o A
Make all states of the (det.) automaton accessible + co-accessible.

All states have a type

= the bitvector indicating on which components selection has been done.
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Query Automaton

*00 *00 *00

Make all states of the (det.) automaton accessible + co-accessible.

All states have a type

= the bitvector indicating on which components selection has been done.

Safe states p
type(p) =1" A L(Alinit = {p}]) = (X x {0}")"
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Query Automaton

*00 *00 *00

Make all states of the (det.) automaton accessible + co-accessible.
All states have a type

= the bitvector indicating on which components selection has been done.

Safe states p
type(p) =1" A L(Alinit = {p}]) = (X x {0}")"

Idea: delay = longest path in unsafe states of type 1”
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Automaton capturing the Delay

From the automaton A recognizing Cang, we build D(A):
*00

*00 *00
a ; ; fo a b
—-f(OOz 10 (10) oL ) 0 ) B ) ke

© add state “ok”
© make it the only final state

© add transitions to it, from unsafe states of type 1”
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Automaton capturing the Delay

From the automaton A recognizing Cang, we build D(A):
*00 *00

@ add state “ok”
© make it the only final state

© add transitions to it, from unsafe states of type 1”

delay,(w, 7) = ambp(ay(w * T)

Theorem

Bounded delay for queries q and schemas S defined by dFAs A, B can be
decided in time O(|A| - |B|), and k-bounded delay in P-time.
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Comparison with Bounded Delay

Delay

| Concurrency
complete candidates | complete + partial candidates
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Comparison with Bounded Delay

Delay

Concurrency

complete candidates

complete + partial candidates

decide at position e
whether 7 € g(w)

decide at position e
whether 7 € g(w) or 7 ¢ g(w)
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Comparison with Bounded Delay

Delay ‘ Concurrency

complete candidates | complete + partial candidates
decide at position e decide at position e
whether 7 € g(w) | whether 7 € g(w) or 7 ¢ q(w)

but we use the same technique, i.e., we build C(A) s.t.

concurg(w, e) = ambc(a)(w * e)

Theorem

Bounded and k-bounded concurrency for queries and schemas defined by
canonical dFAs can be decided in P-time for any fixed k > 0.
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© Words

© Trees

@ Tree Automata
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Can we do the same for unranked trees?

» pos(w) — nodes(t)

v' define delay and concurrency for queries on trees
and

tags(t)

o F
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Can we do the same for unranked trees?

v define delay and concurrency for queries on trees
» pos(w) — nodes(t) and tags(t)
v’ define queries by tree automata A
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Can we do the same for unranked trees?

v define delay and concurrency for queries on trees
» pos(w) — nodes(t) and tags(t)
v’ define queries by tree automata A
v’ states of A have a unique type
> and they can be computed in P-time
x A does not have safe states for selection /failure
» we need O(24) to compute an equivalent automaton w/ safe states

we use another technique: recognizable relations between trees.

delay -
words = ambiguity of an automaton
concurrency
delay .
trees = valuedness of a rec. relation between trees
concurrency
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© Words

© Trees

@ Recognizable Relations
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Overlays

Overlays of trees

) (a.d)
a | / N\
N\, @ e = (b,|e) (¢, 1)
' (L)
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Overlays

Overlays of trees

J (a,d)
2 | / N\
b/ AN ® <|e = (be) (c,1)
‘ |
' (L.f)

® can be extended to k trees.
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Overlays

Overlays of trees

J (a,d)
2 | / N\
b/ AN ® <|e = (be) (c,1)
‘ |
' (L.f)

® can be extended to k trees.
Overlay of a relation R

Let R C Ty, X ... x Ty, be a relation over unranked trees.

0V|(R)={t1®...®tk ’ (tl,...,tk)ER}
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Recognizable Relations between Unranked Trees

Rg Tzl X ..o X Tzk
Definition
R is recognizable iff ovl(R) can be recognized by a tree automaton.
Which class of tree automata?
@ tree automata on ranked trees
» by encoding unranked — ranked
@ tree automata on unranked trees

» Stepwise Tree Automata, Streaming Tree Automata...

@ or any equivalent class.
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Defining Relations by FO-formulas
Closure properties

@ Recognizable relations are closed under Boolean operations, projection and
cylindrification.

@ All corresponding operations on tree automata can be performed in P-time
and preserve determinism except for projection.

These properties were known in the ranked case.

FO[R]

¢ o= R(Xi,.., Xa(m)) | 0Ad | =0 | 3XeTr. o

where ReR, Xi,...,Xpr) €V, andX €.
All formulas are supposed well-typed.

= If R is a set of rec. relations, then Ry(x, . x,) is also recognizable.
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Valuedness of Binary Recognizable Relations

Definition
Let RC Ts, x Ts,. Then val(R) = maxyery, [{t2 | (t1,t2) € R}
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Valuedness of Binary Recognizable Relations

Definition
Let RC Ts, x Ts,. Then val(R) = maxyery, [{t2 | (t1,t2) € R}

Theorem
For every automaton A recognizing R (i.e., L(A) = ovI(R)):

© val(R) < oo can be decided in P-time in |A|.
© wal(R) < k (for a fixed k) can be decided in NP-time in |A|.

This was obtained using results on finite valuedness of tree transducers by Seidl.
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Valuedness of Binary Recognizable Relations

Definition
Let RC Ts, x Ts,. Then val(R) = maxyery, [{t2 | (t1,t2) € R}

Theorem
For every automaton A recognizing R (i.e., L(A) = ovI(R)):
© val(R) < oo can be decided in P-time in |A|.
© wal(R) < k (for a fixed k) can be decided in NP-time in |A|.

This was obtained using results on finite valuedness of tree transducers by Seidl.

Goal
Define the relation De/ayf(Xt*T,Xe) such that

delayg = val(Delaqu)

and De/ay(;g is recognized by an automaton built in P-time.
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FO restrictions to remain in P-time

= {Rl, ey Rk} — R¢ with ¢ € FO[%]

AR,

P—time?
(AR,')R,'€§R t_"f’e

Some automata operations are not in P-time (determinization...).
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FO restrictions to remain in P-time

= {Rl, ey Rk} — R¢ with ¢ € FO[%R]

P—time?
(AR,')R,'€§R t_”f’e AR¢

Some automata operations are not in P-time (determinization...).
FOs[%]
= formulas of FO[R] where all quantifiers are existential and outermost.

R= {R]_, . Rk} — R¢ with ¢ € FO}[%]

P—time
— AR¢

(Ar:)Rien
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Defining Delay; in FO5[R]

Delayy (X¢, Xr, Xe) = 3X[ € Tx. S(X:) A Bef&Cang(Xe, X:, Xe)
A S(X{) AN Same(X;, X{,X.) A —Cang(X{,X:)

then we turn it into a binary relation 2De/ayf,(Xt*T,Xe).
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Defining Delay; in FO5[R]

Delayy (X¢, Xr, Xe) = 3X[ € Tx. S(X:) A Bef&Cang(Xe, X:, Xe)
A S(X{) AN Same(X;, X{,X.) A —Cang(X{,X:)

then we turn it into a binary relation 2De/ayf,(Xt*T,Xe).

Theorem (Main)

@ Bounded delay is decidable in P-time for n-ary queries and schemas in
unranked trees defined by det. tree automata, where n may be variable.
Bounded concurrency is decidable in P-time for fixed n.

@ For fixed k and n, k-bounded delay and concurrency are decidable in
NP-time.
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Conclusion

Applications

@ for query design

> progressively compute the delay
» indicate whether the concurrency is bounded

@ for query evaluation
> adapt data structures and algorithm to known memory needs

Future work

@ XPath queries

> by translation to (det.) tree automata
» by syntactic analysis
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