
Bounded Delay and Concurrency
for Earliest Query Answering

Olivier Gauwin Joachim Niehren Sophie Tison

INRIA Lille, Mostrare

LATA 2009

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 1 / 28

Streaming for XML

XML stream corresponding tree

<people>
people•

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 2 / 28

Streaming for XML

XML stream corresponding tree

<people>
<external> people

external•

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 2 / 28

Streaming for XML

XML stream corresponding tree

<people>
<external>

<name>

people

external

name•

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 2 / 28

Streaming for XML

XML stream corresponding tree

<people>
<external>

<name>
. . .

people

external

name

. . .

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 2 / 28

Streaming for XML

XML stream corresponding tree

<people>
<external>

<name>
. . .

< /name>

people

external

name

. . .

•

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 2 / 28

Streaming for XML

XML stream corresponding tree

<people>
<external>

<name>
. . .

< /name>
< /external>

<student>
...

</student>
</people>

people

external

name

. . .

student

name

John

... mail

j@mail.org

...

•

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 2 / 28

Query Answering in Streaming

input data

. . .<people>

−→

select . . .

„

John,

j@mail .org

«

. . .

−→

transform

output data

. . .

−→

people

external

name

Paul

student

name

John

... mail

j@mail.org

...

−→

ul

li

b

John

i

j@mail.org

...

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 3 / 28

“Streamability”

Queries

q1: select all nodes labeled by a
◮ nothing to store
◮ almost nothing to compute (just a test)

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 4 / 28

“Streamability”

Queries

q1: select all nodes labeled by a
◮ nothing to store
◮ almost nothing to compute (just a test)

q2: select all nodes if the last child of the root is labeled by b
◮ store the whole stream
◮ for these candidates, test whether they can be output

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 4 / 28

“Streamability”

Queries

q1: select all nodes labeled by a
◮ nothing to store
◮ almost nothing to compute (just a test)

q2: select all nodes if the last child of the root is labeled by b
◮ store the whole stream
◮ for these candidates, test whether they can be output

Schemas

Schema information might improve the streamability.
In q2, a schema could say that all last siblings are labeled by b.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 4 / 28

“Streamability”

Queries

q1: select all nodes labeled by a
◮ nothing to store
◮ almost nothing to compute (just a test)

q2: select all nodes if the last child of the root is labeled by b
◮ store the whole stream
◮ for these candidates, test whether they can be output

Schemas

Schema information might improve the streamability.
In q2, a schema could say that all last siblings are labeled by b.

→ Streamable classes of query+schema?

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 4 / 28

Streamable classes of query+schema

We propose 2 streamable classes:

1 query+schema with bounded delay

2 query+schema with bounded concurrency

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 5 / 28

Delay

Example

query = select students that have an id

schema =

student → (name, id?)
name → #pcdata

...

... <student > <name > John </name >

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 6 / 28

Delay

Example

query = select students that have an id

schema =

student → (name, id?)
name → #pcdata

...

... <student > <name > John </name > < id > ...

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 6 / 28

Delay

Example

query = select students that have an id

schema =

student → (name, id?)
name → #pcdata

...

... <student > <name > John </name > < id > ...
0 1 2 3

delay=3

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 6 / 28

Delay

Example

query = select students that have an id

schema =

student → (name, id?)
name → #pcdata

...

... <student > <name > John </name > < id > ...
0 1 2 3

delay=3

Delay = number of tags between

1 the tag where the candidate becomes complete

2 the first tag where the candidate can be selected

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 6 / 28

Bounded Delay

A query+schema (q, S) has a bounded delay iff ∃k ≥ 0 s.t.
∀ XML documents t,
∀ candidates τ ∈ nodes(t)n,
τ ∈ q(t) can be decided with delay ≤ k .

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 7 / 28

Concurrency

Example

query = select students that have an id

schema =

student → (name, address, id?)
name → #pcdata

address → line+
...

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 8 / 28

Concurrency

Example

query = select students that have an id

schema =

student → (name, address, id?)
name → #pcdata

address → line+
...

...<student ><name >John</name ><address >...</address >< id >...

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 8 / 28

Concurrency

Example

query = select students that have an id

schema =

student → (name, address, id?)
name → #pcdata

address → line+
...

...<student ><name >John</name ><address >...</address >< id >...
0 1 2 3 i-1 i

delay=i

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 8 / 28

Concurrency

Example

query = select students that have an id

schema =

student → (name, address, id?)
name → #pcdata

address → line+
...

...<student ><name >John</name ><address >...</address >< id >...

→ not bounded delay

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 8 / 28

Concurrency

Example

query = select students that have an id

schema =

student → (name, address, id?)
name → #pcdata

address → line+
...

...<student ><name >John</name ><address >...</address >< id >...

→ not bounded delay
→ but bounded concurrency: only 1 student to be stored at a time

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 8 / 28

Concurrency

Example

query = select students that have an id

schema =

student → (name, address, id?)
name → #pcdata

address → line+
...

...<student ><name >John</name ><address >...</address >< id >...

→ not bounded delay
→ but bounded concurrency: only 1 student to be stored at a time

Concurrency

= maximal number of candidates to be stored simultaneously
= maximal number of simultaneous candidates s.t.

selection or failure cannot be decided
Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 8 / 28

Bounded Concurrency

A query+schema (q, S) has a bounded concurrency iff ∃k ≥ 0 s.t.
∀ valid XML documents t,
∀ tags e of t,
|{τ ∈ nodes(t)n | τ ∈ q(t) cannot be decided at e}| ≤ k .

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 9 / 28

Bounded Delay vs Bounded Concurrency

Bounded Concurrency 6⇒ Bounded Delay
◮ cf example with: address → line+

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 10 / 28

Bounded Delay vs Bounded Concurrency

Bounded Concurrency 6⇒ Bounded Delay
◮ cf example with: address → line+

Bounded Delay 6⇒ Bounded Concurrency
◮ because delay does not count partial tuples

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 10 / 28

Bounded Delay vs Bounded Concurrency

Bounded Concurrency 6⇒ Bounded Delay
◮ cf example with: address → line+

Bounded Delay 6⇒ Bounded Concurrency
◮ because delay does not count partial tuples

In terms of space complexity:

k-Bounded Delay: full candidates can be removed after k tags

k-Bounded Concurrency: at most k candidates at a time

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 10 / 28

Our goal

Decide bounded delay and concurrency in P-time for queries defined by
deterministic automata.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 11 / 28

Our goal

Decide bounded delay and concurrency in P-time for queries defined by
deterministic automata.

Outline

1 on words

2 on trees

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 11 / 28

1 Words
Bounded Delay
Bounded Concurrency

2 Trees
Tree Automata
Recognizable Relations

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 12 / 28

Queries defined by Automata

Canonical words

τ = (,)

w = b a a c b b c b a ...

we define w ∗ τ ∈ (Σ × B
n)∗:

w ∗ τ = b00 a10 a00 c01 b00 b00 c00 b00 a00 ...

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 13 / 28

Queries defined by Automata

Canonical words

τ = (,)

w = b a a c b b c b a ...

we define w ∗ τ ∈ (Σ × B
n)∗:

w ∗ τ = b00 a10 a00 c01 b00 b00 c00 b00 a00 ...

Canonical language of a query q

Canq = {w ∗ τ | τ ∈ q(w)}

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 13 / 28

Queries defined by Automata

Canonical words

τ = (,)

w = b a a c b b c b a ...

we define w ∗ τ ∈ (Σ × B
n)∗:

w ∗ τ = b00 a10 a00 c01 b00 b00 c00 b00 a00 ...

Canonical language of a query q

Canq = {w ∗ τ | τ ∈ q(w)}

→ we define q by the deterministic automaton recognizing Canq.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 13 / 28

Queries defined by Automata: Example

q = select (a, c) if c is after a and immediately followed by ab

∗00

a10

∗00

c01 a00 b00

∗00

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 14 / 28

Queries defined by Automata: Example

q = select (a, c) if c is after a and immediately followed by ab

∗00

a10

∗00

c01 a00 b00

∗00

For clarity, we omit the schema in the following.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 14 / 28

Query Automaton

∗00

a10

∗00

c01 a00 b00

∗00

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 15 / 28

Query Automaton

∗00

a10

∗00

c01 a00 b00

∗00

Make all states of the (det.) automaton accessible + co-accessible.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 15 / 28

Query Automaton

∗00

a10

∗00

c01 a00 b00

∗00

00 10 11 11 11

Make all states of the (det.) automaton accessible + co-accessible.

All states have a type

= the bitvector indicating on which components selection has been done.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 15 / 28

Query Automaton

∗00

a10

∗00

c01 a00 b00

∗00

00 10 11 11 11
safe

Make all states of the (det.) automaton accessible + co-accessible.

All states have a type

= the bitvector indicating on which components selection has been done.

Safe states p

type(p) = 1n ∧ L(A[init = {p}]) = (Σ × {0}n)∗

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 15 / 28

Query Automaton

∗00

a10

∗00

c01 a00 b00

∗00

00 10 11 11 11
safe

Make all states of the (det.) automaton accessible + co-accessible.

All states have a type

= the bitvector indicating on which components selection has been done.

Safe states p

type(p) = 1n ∧ L(A[init = {p}]) = (Σ × {0}n)∗

Idea: delay = longest path in unsafe states of type 1n

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 15 / 28

Automaton capturing the Delay

From the automaton A recognizing Canq, we build D(A):

00 10 11 11 11

∗00

a10

∗00

c01 a00 b00

∗00

safe

ok

ǫ
ǫ

1 add state “ok”

2 make it the only final state

3 add transitions to it, from unsafe states of type 1n

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 16 / 28

Automaton capturing the Delay

From the automaton A recognizing Canq, we build D(A):

00 10 11 11 11

∗00

a10

∗00

c01 a00 b00

∗00

safe

ok

ǫ
ǫ

1 add state “ok”

2 make it the only final state

3 add transitions to it, from unsafe states of type 1n

delayq(w , τ) = ambD(A)(w ∗ τ)

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 16 / 28

Automaton capturing the Delay

From the automaton A recognizing Canq, we build D(A):

00 10 11 11 11

∗00

a10

∗00

c01 a00 b00

∗00

safe

ok

ǫ
ǫ

1 add state “ok”

2 make it the only final state

3 add transitions to it, from unsafe states of type 1n

delayq(w , τ) = ambD(A)(w ∗ τ)

Theorem

Bounded delay for queries q and schemas S defined by dFAs A, B can be
decided in time O(|A| · |B|), and k-bounded delay in P-time.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 16 / 28

1 Words
Bounded Delay
Bounded Concurrency

2 Trees
Tree Automata
Recognizable Relations

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 17 / 28

Comparison with Bounded Delay

Delay Concurrency

complete candidates complete + partial candidates

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 18 / 28

Comparison with Bounded Delay

Delay Concurrency

complete candidates complete + partial candidates

decide at position e decide at position e
whether τ ∈ q(w) whether τ ∈ q(w) or τ /∈ q(w)

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 18 / 28

Comparison with Bounded Delay

Delay Concurrency

complete candidates complete + partial candidates

decide at position e decide at position e
whether τ ∈ q(w) whether τ ∈ q(w) or τ /∈ q(w)

but we use the same technique, i.e., we build C (A) s.t.

concurq(w , e) = ambC(A)(w ∗ e)

Theorem

Bounded and k-bounded concurrency for queries and schemas defined by
canonical dFAs can be decided in P-time for any fixed k ≥ 0.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 18 / 28

1 Words
Bounded Delay
Bounded Concurrency

2 Trees
Tree Automata
Recognizable Relations

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 19 / 28

Can we do the same for unranked trees?

X define delay and concurrency for queries on trees
◮ pos(w) → nodes(t) and tags(t)

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 20 / 28

Can we do the same for unranked trees?

X define delay and concurrency for queries on trees
◮ pos(w) → nodes(t) and tags(t)

X define queries by tree automata A

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 20 / 28

Can we do the same for unranked trees?

X define delay and concurrency for queries on trees
◮ pos(w) → nodes(t) and tags(t)

X define queries by tree automata A

X states of A have a unique type
◮ and they can be computed in P-time

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 20 / 28

Can we do the same for unranked trees?

X define delay and concurrency for queries on trees
◮ pos(w) → nodes(t) and tags(t)

X define queries by tree automata A

X states of A have a unique type
◮ and they can be computed in P-time

x A does not have safe states for selection/failure
◮ we need O(2|A|) to compute an equivalent automaton w/ safe states

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 20 / 28

Can we do the same for unranked trees?

X define delay and concurrency for queries on trees
◮ pos(w) → nodes(t) and tags(t)

X define queries by tree automata A

X states of A have a unique type
◮ and they can be computed in P-time

x A does not have safe states for selection/failure
◮ we need O(2|A|) to compute an equivalent automaton w/ safe states

we use another technique: recognizable relations between trees.

words
delay
concurrency

}

= ambiguity of an automaton

trees
delay
concurrency

}

= valuedness of a rec. relation between trees

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 20 / 28

1 Words
Bounded Delay
Bounded Concurrency

2 Trees
Tree Automata
Recognizable Relations

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 21 / 28

Overlays

Overlays of trees

a

b c
⊛

d

e

f

=

(a, d)

(b, e)

(⊥, f)

(c ,⊥)

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 22 / 28

Overlays

Overlays of trees

a

b c
⊛

d

e

f

=

(a, d)

(b, e)

(⊥, f)

(c ,⊥)

⊛ can be extended to k trees.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 22 / 28

Overlays

Overlays of trees

a

b c
⊛

d

e

f

=

(a, d)

(b, e)

(⊥, f)

(c ,⊥)

⊛ can be extended to k trees.

Overlay of a relation R

Let R ⊆ TΣ1 × ... × TΣk
be a relation over unranked trees.

ovl(R) = {t1 ⊛ . . . ⊛ tk | (t1, . . . , tk) ∈ R}

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 22 / 28

Overlays

Overlays of trees

a

b c
⊛

d

e

f

=

(a, d)

(b, e)

(⊥, f)

(c ,⊥)

⊛ can be extended to k trees.

Overlay of a relation R

Let R ⊆ TΣ1 × ... × TΣk
be a relation over unranked trees.

ovl(R) = {t1 ⊛ . . . ⊛ tk | (t1, . . . , tk) ∈ R} ⊆ TΣ1×...×Σk

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 22 / 28

Recognizable Relations between Unranked Trees

R ⊆ TΣ1 × ... × TΣk

Definition

R is recognizable iff ovl(R) can be recognized by a tree automaton.

Which class of tree automata?

tree automata on ranked trees

◮ by encoding unranked → ranked

tree automata on unranked trees

◮ Stepwise Tree Automata, Streaming Tree Automata...

or any equivalent class.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 23 / 28

Defining Relations by FO-formulas

Closure properties

Recognizable relations are closed under Boolean operations, projection and
cylindrification.

All corresponding operations on tree automata can be performed in P-time
and preserve determinism except for projection.

These properties were known in the ranked case.

FO[ℜ]

φ ::= R(X1, . . . ,Xar(R)) | φ ∧ φ′ | ¬φ | ∃X ∈ TΣ. φ

where R ∈ ℜ, X1, . . . ,Xar(R) ∈ V , and Σ ∈ Ω.
All formulas are supposed well-typed.

⇒ If ℜ is a set of rec. relations, then Rφ(X1,...,Xm) is also recognizable.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 24 / 28

Valuedness of Binary Recognizable Relations

Definition

Let R ⊆ TΣ1
× TΣ2

. Then val(R) = maxt1∈TΣ1
|{t2 | (t1, t2) ∈ R}|

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 25 / 28

Valuedness of Binary Recognizable Relations

Definition

Let R ⊆ TΣ1
× TΣ2

. Then val(R) = maxt1∈TΣ1
|{t2 | (t1, t2) ∈ R}|

Theorem

For every automaton A recognizing R (i.e., L(A) = ovl(R)):

1 val(R) < ∞ can be decided in P-time in |A|.

2 val(R) < k (for a fixed k) can be decided in NP-time in |A|.

This was obtained using results on finite valuedness of tree transducers by Seidl.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 25 / 28

Valuedness of Binary Recognizable Relations

Definition

Let R ⊆ TΣ1
× TΣ2

. Then val(R) = maxt1∈TΣ1
|{t2 | (t1, t2) ∈ R}|

Theorem

For every automaton A recognizing R (i.e., L(A) = ovl(R)):

1 val(R) < ∞ can be decided in P-time in |A|.

2 val(R) < k (for a fixed k) can be decided in NP-time in |A|.

This was obtained using results on finite valuedness of tree transducers by Seidl.

Goal

Define the relation DelayS
q (Xt∗τ ,Xe) such that

delayS
q = val(DelayS

q)

and DelayS
q is recognized by an automaton built in P-time.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 25 / 28

FO restrictions to remain in P-time

ℜ = {R1, ...,Rk} → Rφ with φ ∈ FO[ℜ]

(ARi
)Ri∈ℜ

P−time?
→ ARφ

Some automata operations are not in P-time (determinization...).

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 26 / 28

FO restrictions to remain in P-time

ℜ = {R1, ...,Rk} → Rφ with φ ∈ FO[ℜ]

(ARi
)Ri∈ℜ

P−time?
→ ARφ

Some automata operations are not in P-time (determinization...).

FO∃[ℜ]

= formulas of FO[ℜ] where all quantifiers are existential and outermost.

ℜ = {R1, ...,Rk} → Rφ with φ ∈ FO∃[ℜ]

(ARi
)Ri∈ℜ

P−time
→ ARφ

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 26 / 28

Defining DelayS
q in FO∃[ℜ]

DelayS
q (Xt ,Xτ ,Xe) = ∃X ′

t ∈ TΣ. S(Xt) ∧ Bef&Canq(Xt ,Xτ ,Xe)
∧ S(X ′

t) ∧ Same(Xt ,X
′
t ,Xe) ∧ ¬Canq(X

′
t ,Xτ)

then we turn it into a binary relation 2DelayS
q (Xt∗τ ,Xe).

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 27 / 28

Defining DelayS
q in FO∃[ℜ]

DelayS
q (Xt ,Xτ ,Xe) = ∃X ′

t ∈ TΣ. S(Xt) ∧ Bef&Canq(Xt ,Xτ ,Xe)
∧ S(X ′

t) ∧ Same(Xt ,X
′
t ,Xe) ∧ ¬Canq(X

′
t ,Xτ)

then we turn it into a binary relation 2DelayS
q (Xt∗τ ,Xe).

Theorem (Main)

Bounded delay is decidable in P-time for n-ary queries and schemas in
unranked trees defined by det. tree automata, where n may be variable.
Bounded concurrency is decidable in P-time for fixed n.

For fixed k and n, k-bounded delay and concurrency are decidable in
NP-time.

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 27 / 28

Conclusion

Applications

for query design
◮ progressively compute the delay
◮ indicate whether the concurrency is bounded

for query evaluation
◮ adapt data structures and algorithm to known memory needs

Future work

XPath queries
◮ by translation to (det.) tree automata
◮ by syntactic analysis

Gauwin, Niehren, Tison (Mostrare) Bounded Delay and Concurrency LATA 2009 28 / 28

	Words
	Bounded Delay
	Bounded Concurrency

	Trees
	Tree Automata
	Recognizable Relations

