Bounded Delay and Concurrency for Earliest Query Answering

Olivier Gauwin Joachim Niehren Sophie Tison

INRIA Lille, Mostrare

LATA 2009

Gauwin, Niehren, Tison (Mostrare)

Bounded Delay and Concurrency

LATA 2009 1 / 28

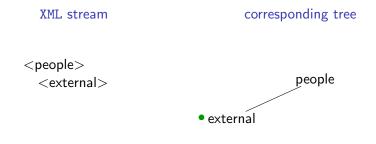
(3)

XML stream

corresponding tree

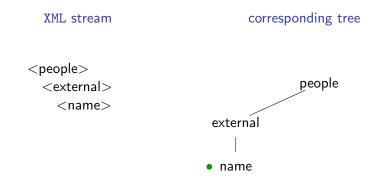
< people >

- 4 同 6 4 日 6 4 日 6



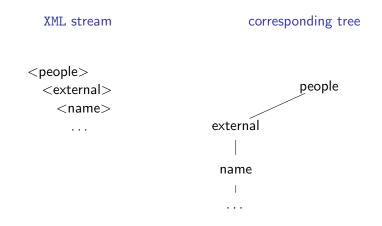
▲ 注 ト 注 つ へ C LATA 2009 2 / 28

(3)

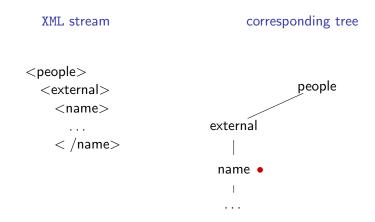


3 LATA 2009 2 / 28

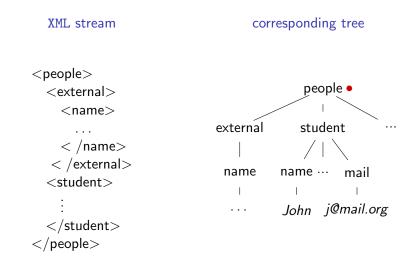
A B < A B </p>



▲ 王 ト 王 シ へ ペ LATA 2009 2 / 28

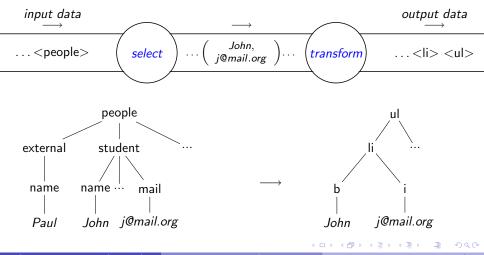


A B A A B A



A B < A B </p>

Query Answering in Streaming



Queries

- q1: select all nodes labeled by a
 - nothing to store
 - almost nothing to compute (just a test)

< 回 > < 三 > < 三 >

Queries

- q1: select all nodes labeled by a
 - nothing to store
 - almost nothing to compute (just a test)
- q2: select all nodes if the last child of the root is labeled by b
 - store the whole stream
 - for these candidates, test whether they can be output

< 3 > < 3

Queries

- q1: select all nodes labeled by a
 - nothing to store
 - almost nothing to compute (just a test)
- q2: select all nodes if the last child of the root is labeled by b
 - store the whole stream
 - for these candidates, test whether they can be output

Schemas

Schema information might improve the streamability. In q2, a schema could say that all last siblings are labeled by b.

• • = • • = •

Queries

- q1: select all nodes labeled by a
 - nothing to store
 - almost nothing to compute (just a test)
- q2: select all nodes if the last child of the root is labeled by b
 - store the whole stream
 - for these candidates, test whether they can be output

Schemas

Schema information might improve the streamability. In q2, a schema could say that all last siblings are labeled by b.

 \rightarrow Streamable classes of query+schema?

・ 同 ト ・ ヨ ト ・ ヨ ト

Streamable classes of query+schema

We propose 2 streamable classes:

- query+schema with bounded delay
- Q query+schema with bounded concurrency

Example

• query = select students that have an id

• schema =
$$\begin{cases} student \rightarrow (name, id?) \\ name \rightarrow \#PCDATA \\ ... & ... \\ ... & ... \\ \hline ... < student > < name > John < / name > \end{cases}$$

<ロ> (日) (日) (日) (日) (日)

Example

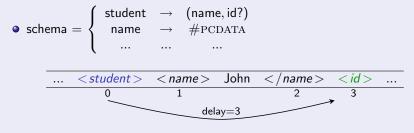
• query = select students that have an id

• schema =
$$\begin{cases} \text{student} \rightarrow (\text{name, id?}) \\ \text{name} \rightarrow \#\text{PCDATA} \\ \dots & \dots & \dots \end{cases}$$
$$\underline{\qquad \dots \qquad (\text{student} > < \text{name} > \text{John} < /\text{name} > (\text{id} > \dots) \end{cases}$$

<ロ> (日) (日) (日) (日) (日)

Example

• query = select students that have an id



イロト イポト イヨト イヨト 二日

Example

• query = select students that have an id

• schema =
$$\begin{cases} \text{student} \rightarrow \text{(name, id?)} \\ \text{name} \rightarrow \text{\#PCDATA} \\ \dots & \dots \\ \hline \dots & \dots \\ \hline \dots & \dots \\ \hline \text{(addent)} > \text{(name)} \text{(addent)} > \text{(addent)} \text{(addent)} \\ \hline \text{(addent)} > \text{(addent)} \text{(addent)} \\ \hline \text{(addent)} \text{(addent)} \text{(addent)} \text{(addent)} \\ \hline \text{(addent)} \text{(addent)} \text{(addent)} \text{(addent)} \text{(addent)} \text{(addent)} \\ \hline \text{(addent)} \text{(adden$$

Delay = number of tags between

the tag where the candidate becomes complete

the first tag where the candidate can be selected

イロト 不得下 イヨト イヨト

A query+schema (q, S) has a bounded delay iff $\exists k \geq 0$ s.t.

- \forall XML documents *t*,
- $orall \ \mathsf{candidates} \ au \in \mathsf{nodes}(t)^n$,
- $au \in q(t)$ can be decided with delay $\leq k$.

(3)

Example

• query = select students that have an id • schema = $\begin{cases} student \rightarrow (name, address, id?) \\ name \rightarrow \#PCDATA \\ address \rightarrow line+ \\ \end{cases}$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → のへで

Example

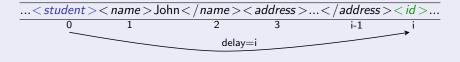
• query = select students that have an id

• schema = $\left<\right.$	student	\rightarrow	(name, address, id?)
	name	\rightarrow	#PCDATA
	address	\rightarrow	line+

...< student >< name > John < / name >< address >... < / address >< id >...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example



Example

• query = select students that have an id

• schema =	student	\rightarrow	(name, address, id?)
	name	\rightarrow	#PCDATA
	address	\rightarrow	line+

...< student >< name > John < / name >< address >... < / address > <i d > ...

 \rightarrow not bounded delay

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

• query = select students that have an id

• schema =	student	\rightarrow	(name, address, id?)
	name	\rightarrow	#PCDATA
	address	\rightarrow	line+

...< student >< name > John < / name >< address > ... < / address > <i d > ...

- \rightarrow not bounded delay
- \rightarrow but bounded concurrency: only 1 student to be stored at a time

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

• query = select students that have an id

• schema = $\left\{ \right.$	student	\rightarrow	(name, address, id?)
	name	\rightarrow	#PCDATA
	address	\rightarrow	line+

...< student >< name > John < / name >< address >... < / address > <i d > ...

- \rightarrow not bounded delay
- \rightarrow but bounded concurrency: only 1 student to be stored at a time

Concurrency

- = maximal number of candidates to be stored simultaneously
- = maximal number of simultaneous candidates s.t. selection or failure cannot be decided

Gauwin, Niehren, Tison (Mostrare)

Bounded Delay and Concurrency

Bounded Concurrency

A query+schema (q, S) has a bounded concurrency iff $\exists k \ge 0$ s.t. \forall valid XML documents t, \forall tags e of t, $|\{\tau \in \operatorname{nodes}(t)^n \mid \tau \in q(t) \text{ cannot be decided at } e\}| \le k$.

A B F A B F

Bounded Delay vs Bounded Concurrency

• Bounded Concurrency \Rightarrow Bounded Delay

• cf example with: address \rightarrow line+

< ∃ > <

Bounded Delay vs Bounded Concurrency

- Bounded Concurrency \Rightarrow Bounded Delay
 - cf example with: address \rightarrow line+
- Bounded Delay \Rightarrow Bounded Concurrency
 - because delay does not count partial tuples

Bounded Delay vs Bounded Concurrency

- - cf example with: address \rightarrow line+
- Bounded Delay \Rightarrow Bounded Concurrency
 - because delay does not count partial tuples

In terms of space complexity:

- k-Bounded Delay: full candidates can be removed after k tags
- k-Bounded Concurrency: at most k candidates at a time

Decide **bounded delay** and **concurrency** in P-time for queries defined by deterministic automata.

→ 3 → 4 3

Our goal

Decide **bounded delay** and **concurrency** in P-time for queries defined by deterministic automata.

Outline on words on trees

- 4 @ > - 4 @ > - 4 @ >

1 Words

- Bounded Delay
- Bounded Concurrency

Trees

- Tree Automata
- Recognizable Relations

• = • •

Queries defined by Automata

Canonical words

$$w = b | a | a | c | b | b | c | b | a | \dots$$

we define $w * \tau \in (\Sigma \times \mathbb{B}^n)^*$:

$$w * \tau = b_{00} | a_{10} | a_{00} | c_{01} | b_{00} | b_{00} | c_{00} | b_{00} | a_{00} | \dots$$

<ロ> (日) (日) (日) (日) (日)

Queries defined by Automata

Canonical words

$$w = b | a | a | c | b | b | c | b | a | \dots$$

we define $w * \tau \in (\Sigma \times \mathbb{B}^n)^*$:

$$w * \tau = b_{00} | a_{10} | a_{00} | c_{01} | b_{00} | b_{00} | c_{00} | b_{00} | a_{00} | \dots$$

Canonical language of a query q

$$extsf{Can}_{m{q}} = \{ w st au ~|~ au \in m{q}(w) \}$$

イロト イ理ト イヨト イヨト 二座

Queries defined by Automata

Canonical words

$$w = b | a | a | c | b | b | c | b | a | \dots$$

we define $w * \tau \in (\Sigma \times \mathbb{B}^n)^*$:

$$w * \tau = b_{00} | a_{10} | a_{00} | c_{01} | b_{00} | b_{00} | c_{00} | b_{00} | a_{00} | \dots$$

Canonical language of a query q

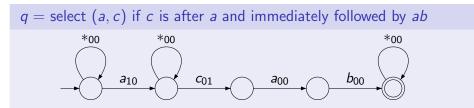
$$extsf{Can}_{m{q}} = \{ w st au \ | \ au \in m{q}(w) \}$$

 \rightarrow we define q by the deterministic automaton recognizing Can_{q} .

Gauwin, Niehren, Tison (Mostrare)

Bounded Delay and Concurrency

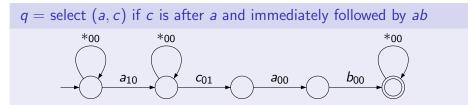
Queries defined by Automata: Example



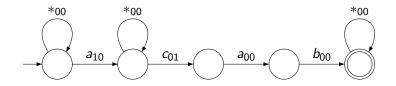
LATA 2009 14 / 28

< ∃ >

Queries defined by Automata: Example

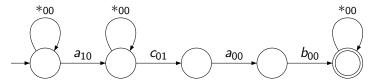


For clarity, we omit the schema in the following.

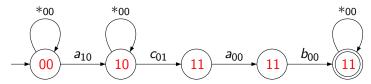


LATA 2009 15 / 28

(人間) システレステレ



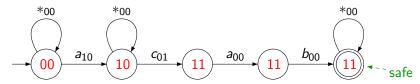
Make all states of the (det.) automaton accessible + co-accessible.



Make all states of the (det.) automaton accessible + co-accessible.

All states have a type

= the bitvector indicating on which components selection has been done.



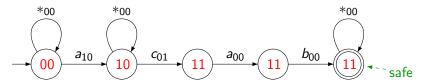
Make all states of the (det.) automaton accessible + co-accessible.

All states have a type

= the bitvector indicating on which components selection has been done.

Safe states p $type(p) = 1^n \land L(A[init = \{p\}]) = (\Sigma \times \{0\}^n)^*$

4 ∃ > 4



Make all states of the (det.) automaton accessible + co-accessible.

All states have a type

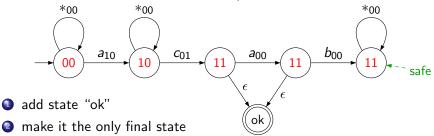
= the bitvector indicating on which components selection has been done.

Safe states p $type(p) = 1^n \land L(A[init = \{p\}]) = (\Sigma \times \{0\}^n)^*$

Idea: delay = longest path in unsafe states of type 1^n

Automaton capturing the Delay

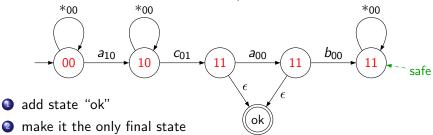
From the automaton A recognizing Can_q , we build D(A):



 ${f 0}$ add transitions to it, from unsafe states of type 1^n

Automaton capturing the Delay

From the automaton A recognizing Can_q , we build D(A):

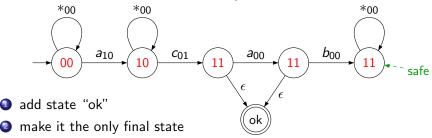


 ${f 0}$ add transitions to it, from unsafe states of type 1^n

$$\mathsf{delay}_q(w,\tau) = \mathsf{amb}_{D(A)}(w * \tau)$$

Automaton capturing the Delay

From the automaton A recognizing Can_q , we build D(A):



 ${f 0}$ add transitions to it, from unsafe states of type 1^n

$$\mathsf{delay}_q(w,\tau) = \mathsf{amb}_{D(A)}(w * \tau)$$

Theorem

Bounded delay for queries q and schemas S defined by dFAs A, B can be decided in time $O(|A| \cdot |B|)$, and k-bounded delay in P-time.

Gauwin, Niehren, Tison (Mostrare)

LATA 2009 16 / 28

- Bounded Delay
- Bounded Concurrency

Trees

- Tree Automata
- Recognizable Relations

• = • • -

Comparison with Bounded Delay

Delay	Concurrency
complete candidates	complete + partial candidates

(日) (同) (日) (日) (日)

Comparison with Bounded Delay

Delay	Concurrency
complete candidates	complete + partial candidates
decide at position e	decide at position e
whether $ au \in {\it q}({\it w})$	whether $ au \in q(w)$ or $ au otin q(w)$

< ロ > < 同 > < 回 > < 回 > < 回

Comparison with Bounded Delay

Delay	Concurrency
complete candidates	complete + partial candidates
decide at position e	decide at position e
whether $ au \in {\it q}({\it w})$	whether $ au \in q(w)$ or $ au otin q(w)$

but we use the same technique, *i.e.*, we build C(A) s.t.

$$\operatorname{concur}_q(w, e) = \operatorname{amb}_{C(A)}(w * e)$$

Theorem

Bounded and k-bounded concurrency for queries and schemas defined by canonical dFAs can be decided in P-time for any fixed $k \ge 0$.

→ 3 → 4 3

- Bounded Delay
- Bounded Concurrency

Tree Automata

Recognizable Relations

• = • •

-

 $\checkmark\,$ define delay and concurrency for queries on trees

▶ $pos(w) \rightarrow nodes(t)$ and tags(t)

4 ∃ > 4

 $\checkmark\,$ define delay and concurrency for queries on trees

- ▶ $pos(w) \rightarrow nodes(t)$ and tags(t)
- \checkmark define queries by tree automata A

 $\checkmark\,$ define delay and concurrency for queries on trees

- ▶ $pos(w) \rightarrow nodes(t)$ and tags(t)
- \checkmark define queries by tree automata A
- \checkmark states of A have a unique type
 - and they can be computed in P-time

- $\checkmark\,$ define delay and concurrency for queries on trees
 - ▶ $pos(w) \rightarrow nodes(t)$ and tags(t)
- \checkmark define queries by tree automata A
- \checkmark states of A have a unique type
 - and they can be computed in P-time
- \times A does not have safe states for selection/failure
 - we need $O(2^{|A|})$ to compute an equivalent automaton w/ safe states

- $\checkmark\,$ define delay and concurrency for queries on trees
 - ▶ $pos(w) \rightarrow nodes(t)$ and tags(t)
- \checkmark define queries by tree automata A
- \checkmark states of A have a unique type
 - and they can be computed in P-time
- \times A does not have safe states for selection/failure
 - we need $O(2^{|A|})$ to compute an equivalent automaton w/ safe states

we use another technique: recognizable relations between trees.		
words	delay	$\mathbf{v} = ambiguity \text{ of an automaton}$
CO	concurrency	
trees	delay concurrency	ight angle = valuedness of a rec. relation between trees

- Bounded Delay
- Bounded Concurrency

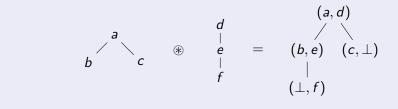
Tree Automata

Recognizable Relations

• = • •

-

Overlays of trees



LATA 2009 22 / 28

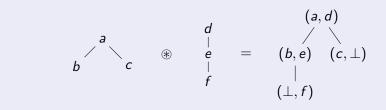
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 - のへで

Overlays of trees

 \circledast can be extended to k trees.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overlays of trees



 \circledast can be extended to k trees.

Overlay of a relation R

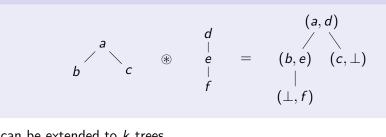
Let $R \subseteq T_{\Sigma_1} \times ... \times T_{\Sigma_k}$ be a relation over unranked trees.

$$\operatorname{ovl}(R) = \{t_1 \circledast \ldots \circledast t_k \mid (t_1, \ldots, t_k) \in R\}$$

Gauwin, Niehren, Tison (Mostrare)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ののの

Overlays of trees



 \circledast can be extended to k trees.

Overlay of a relation R

Let $R \subseteq T_{\Sigma_1} \times ... \times T_{\Sigma_k}$ be a relation over unranked trees.

 $\operatorname{ovl}(R) = \{t_1 \circledast \ldots \circledast t_k \mid (t_1, \ldots, t_k) \in R\} \subseteq T_{\Sigma_1 \times \ldots \times \Sigma_k}$

Gauwin, Niehren, Tison (Mostrare)

LATA 2009 22 / 28

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ののの

Recognizable Relations between Unranked Trees

$$R \subseteq T_{\Sigma_1} \times ... \times T_{\Sigma_k}$$

Definition

R is recognizable iff ovl(R) can be recognized by a tree automaton.

Which class of tree automata?

- tree automata on ranked trees
 - by encoding unranked \rightarrow ranked
- tree automata on unranked trees
 - Stepwise Tree Automata, Streaming Tree Automata...
- or any equivalent class.

(3)

Defining Relations by FO-formulas

Closure properties

- Recognizable relations are closed under Boolean operations, projection and cylindrification.
- All corresponding operations on tree automata can be performed in P-time and preserve determinism except for projection.

These properties were known in the ranked case.

FO[衆]

$$\phi ::= R(X_1, \dots, X_{\operatorname{ar}(R)}) \mid \phi \land \phi' \mid \neg \phi \mid \exists X \in T_{\Sigma}. \phi$$

where $R \in \Re$, $X_1, \ldots, X_{ar(R)} \in V$, and $\Sigma \in \Omega$. All formulas are supposed well-typed.

 \Rightarrow If \Re is a set of rec. relations, then $R_{\phi(X_1,...,X_m)}$ is also recognizable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Valuedness of Binary Recognizable Relations

Definition

Let $R \subseteq T_{\Sigma_1} \times T_{\Sigma_2}$. Then $\operatorname{val}(R) = \max_{t_1 \in T_{\Sigma_1}} |\{t_2 \mid (t_1, t_2) \in R\}|$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Valuedness of Binary Recognizable Relations

Definition

 $\mathsf{Let}\ R\subseteq T_{\Sigma_1}\times T_{\Sigma_2}.\ \mathsf{Then}\quad \mathsf{val}(R)=\mathsf{max}_{t_1\in \mathcal{T}_{\Sigma_1}} |\{t_2 \ | \ (t_1,t_2)\in R\}|$

Theorem

For every automaton A recognizing R (i.e., L(A) = ovl(R)):

- $val(R) < \infty$ can be decided in P-time in |A|.
- 2 val(R) < k (for a fixed k) can be decided in NP-time in |A|.

This was obtained using results on finite valuedness of tree transducers by Seidl.

イロト イポト イヨト イヨト 二日

Valuedness of Binary Recognizable Relations

Definition

 $\text{Let } R \subseteq T_{\Sigma_1} \times T_{\Sigma_2}. \text{ Then } \quad \text{val}(R) = \max_{t_1 \in \mathcal{T}_{\Sigma_1}} |\{t_2 \mid (t_1, t_2) \in R\}|$

Theorem

For every automaton A recognizing R (i.e., L(A) = ovl(R)):

•
$$val(R) < \infty$$
 can be decided in P-time in $|A|$.

2)
$$val(R) < k$$
 (for a fixed k) can be decided in NP-time in $|A|$.

This was obtained using results on finite valuedness of tree transducers by Seidl.

Goal

Define the relation $Delay_q^S(X_{t*\tau}, X_e)$ such that

$$delay_q^S = val(Delay_q^S)$$

and $Delay_q^S$ is recognized by an automaton built in P-time.

Gauwin, Niehren, Tison (Mostrare)

FO restrictions to remain in P-time

$$\frac{\Re = \{R_1, ..., R_k\} \rightarrow R_\phi \text{ with } \phi \in FO[\Re]}{(A_{R_i})_{R_i \in \Re} \xrightarrow{P-time?} A_{R_\phi}}$$

Some automata operations are not in P-time (determinization...).

(日) (同) (三) (三)

FO restrictions to remain in P-time

$$\frac{\Re = \{R_1, ..., R_k\}}{(A_{R_i})_{R_i \in \Re}} \xrightarrow{P-time?} R_{\phi} \text{ with } \phi \in FO[\Re]}$$

Some automata operations are not in P-time (determinization...).

FO∃[ℜ]

= formulas of $FO[\Re]$ where all quantifiers are existential and outermost.

$$\begin{array}{ccc} \Re = \{R_1, ..., R_k\} & \to & R_{\phi} \text{ with } \phi \in FO_{\exists}[\Re] \\ \hline (A_{R_i})_{R_i \in \Re} & \stackrel{P-time}{\to} & A_{R_{\phi}} \end{array}$$

Gauwin, Niehren, Tison (Mostrare)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Defining $Delay_q^S$ in $FO_{\exists}[\Re]$

$$\begin{array}{rcl} \textit{Delay}_q^S(X_t, X_\tau, X_e) &=& \exists X_t' \in \mathcal{T}_{\Sigma}. \ S(X_t) \land \ \textit{Bef}\&\textit{Can}_q(X_t, X_\tau, X_e) \\ \land \ S(X_t') \land \ \textit{Same}(X_t, X_t', X_e) \land \ \neg \textit{Can}_q(X_t', X_\tau) \end{array}$$

then we turn it into a binary relation $2Delay_q^S(X_{t*\tau}, X_e)$.

イロト イポト イヨト イヨト

Defining $Delay_q^S$ in $FO_{\exists}[\Re]$

$$\begin{array}{rcl} \textit{Delay}_q^S(X_t, X_\tau, X_e) &= \exists X_t' \in T_{\Sigma}. \ S(X_t) \land \ \textit{Bef}\&\textit{Can}_q(X_t, X_\tau, X_e) \\ \land \ S(X_t') \land \ \textit{Same}(X_t, X_t', X_e) \land \ \neg \textit{Can}_q(X_t', X_\tau) \end{array}$$

then we turn it into a binary relation $2Delay_q^S(X_{t*\tau}, X_e)$.

Theorem (Main)

- Bounded delay is decidable in P-time for n-ary queries and schemas in unranked trees defined by det. tree automata, where n may be variable. Bounded concurrency is decidable in P-time for fixed n.
- For fixed k and n, k-bounded delay and concurrency are decidable in NP-time.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusion

Applications

for query design

- progressively compute the delay
- indicate whether the concurrency is bounded
- for query evaluation
 - adapt data structures and algorithm to known memory needs

Future work

- XPath queries
 - by translation to (det.) tree automata
 - by syntactic analysis

• • = • • = •