
Complexity of Earliest Query Answering
with Streaming Tree Automata

Olivier Gauwin Anne-Cécile Caron Joachim Niehren Sophie Tison

INRIA Lille, Mostrare

9th January 2008

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 1 / 27

Streaming for XML

Stream: <people><external> . . .

Tree:

people

external

name

“Paul”

... student

name

“John”

... mail

“j@mail.org”

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 2 / 27

Query Answering in Streaming

input data

<people><external> . . .

output data

 . . .

query

people

external

name

“Paul”

... student

name

“John”

... mail

“j@mail.org”

−→

ul

li

b

“John”

i

“j@mail.org”

...

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 3 / 27

Related work on streaming

XQuery:
◮ Schmidt, Scherzinger & Koch (07)
◮ Stark, Fernandez, Michiels & Siméon (07)

Transducers:
◮ Frisch & Nakano (07)
◮ Nakano (04)

XPath:
◮ Gupta & Suciu (03)
◮ Green, Miklau & Onizuka (03)
◮ Bar-Yossef, Fontoura & Josifovski (04)
◮ Grohe, Koch & Schweikardt (05)

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 4 / 27

Earliest Query Answering

XPath query: /people/∗[mail]

people

external

name

“Paul”

... student

name

“John”

... mail

“j@mail.org”

Earliest selection:
when <mail> is read

Earliest failure:
when </external> is read

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 5 / 27

Related work on Earliest Query Answering

Automata:
◮ Berlea (06, 07): queries defined Pre-Order Automata

XPath:
◮ Olteanu (07): Forward XPath
◮ Benedikt & Jeffrey (07): XPath filters with zero lookahead

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 6 / 27

What is missing?

n-ary queries (n ≥ 0)
◮ collect n-tuples of nodes, like in XQuery
◮ q(t) ⊆ nodes(t)n

Select pairs (name,mail)

people

external

name

“Paul”

... student

name

“John”

... mail

“j@mail.org”

−→

ul

li

b

“John”

i

“j@mail.org”

...

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 7 / 27

What is missing?

schema: safe for valid continuations
◮ example:

XPath query: /people/∗[mail]

people

external

name

“Paul”

... student

name

“John”

... mail

“j@mail.org”

DTD







external → name
student → name . . . mail
. . .

Earliest selection:
when <student> is read

Earliest failure:
when <external> is read

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 8 / 27

What is missing?

schema: safe for valid continuations
◮ example:

XPath query: /people/∗[mail]

people

external

name

“Paul”

... student

name

“John”

... mail

“j@mail.org”

DTD







external → name
student → name . . . mail
. . .

Earliest selection:
when <student> is read

Earliest failure:
when <external> is read

Consequence: MSO queries defined by automata

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 8 / 27

Fondamental questions

how to define earliest selection and earliest failure?

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 9 / 27

Fondamental questions

how to define earliest selection and earliest failure?

is there an algorithm to compute these earliest positions?

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 9 / 27

Fondamental questions

how to define earliest selection and earliest failure?

is there an algorithm to compute these earliest positions?

how complex is it?

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 9 / 27

1 Earliest Query Answering

2 Streaming Tree Automata

3 Streaming Algorithm

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 10 / 27

1 Earliest Query Answering

2 Streaming Tree Automata

3 Streaming Algorithm

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 11 / 27

Notations

Trees and events

events(t)= {start} ∪ ({open, close} × nodes(t))

t =

a
π0

a
π1

b
π3

b
π2

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 12 / 27

Notations

Trees and events

events(t)= {start} ∪ ({open, close} × nodes(t))

t≤e : the tree which contains all nodes of t opened before e

t =

a
π0

a
π1

b
π3

b
π2

t≤(close,π1)=

a
π0

a
π1

b
π2

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 12 / 27

Notations

Trees and events

events(t)= {start} ∪ ({open, close} × nodes(t))

t≤e : the tree which contains all nodes of t opened before e

equale(t, t
′) ⇔







e ∈ events(t) ∩ events(t ′)
and
t≤e = t ′≤e

t =

a
π0

a
π1

b
π3

b
π2

t ′=

a
π0

a
π1

b
π2

a
π3

b
π4

equal(close,π1)(t, t
′)

¬equal(open,π3)(t, t
′)

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 12 / 27

Sufficient events for selection

(τ, e) ∈ selS
q (t) ⇔

{

τ ∈ nodes(t≤e)n ∧
∀t ′ ∈ S . equale(t, t

′) ⇒ τ ∈ q(t ′)

Example

q0 =”select nodes that don’t have a next sibling”

a
π0

a
π1

b
π3

b
π2

selq0(t) contains:
(π0, e) for events e following (open, π0)
(π2, e) for events e following (close, π1)
(π3, (close, π0))

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 13 / 27

Sufficient events for selection

(τ, e) ∈ selS
q (t) ⇔

{

τ ∈ nodes(t≤e)n ∧
∀t ′ ∈ S . equale(t, t

′) ⇒ τ ∈ q(t ′)

Example

q0 =”select nodes that don’t have a next sibling”

a
π0

a
π1

b
π3

b
π2

selq0(t) contains:
(π0, e) for events e following (open, π0)
(π2, e) for events e following (close, π1)
(π3, (close, π0))

consider the DTD: S0 = {a → a∗b, b → ǫ}
selS0

q0
(t) contains:

(π0, e) for events e following (open, π0)
(π2, e) for events e following (open, π2)
(π3, e) for events e following (open, π3)

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 13 / 27

Optimal events for selection

(τ, e) ∈ opt selS
q (t) ⇔ e = min�t{e ′ | (τ, e ′) ∈ selS

q (t)}

Example

q0 =”select nodes that don’t have a next sibling”

a
π0

a
π1

b
π3

b
π2

opt selq0
(t) =







(π0, (open, π0)),
(π2, (close, π1)),
(π3, (close, π0))

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 14 / 27

Optimal events for selection

(τ, e) ∈ opt selS
q (t) ⇔ e = min�t{e ′ | (τ, e ′) ∈ selS

q (t)}

Example

q0 =”select nodes that don’t have a next sibling”

a
π0

a
π1

b
π3

b
π2

opt selq0
(t) =







(π0, (open, π0)),
(π2, (close, π1)),
(π3, (close, π0))

consider the DTD: S0 = {a → a∗b, b → ǫ}

opt selS0
q0

(t) =







(π0, (open, π0)),
(π2, (open, π2)),
(π3, (open, π3))

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 14 / 27

Optimal events for selection

(τ, e) ∈ opt selS
q (t) ⇔ e = min�t{e ′ | (τ, e ′) ∈ selS

q (t)}

Example

q0 =”select nodes that don’t have a next sibling”

a
π0

a
π1

b
π3

b
π2

opt selq0
(t) =







(π0, (open, π0)),
(π2, (close, π1)),
(π3, (close, π0))

consider the DTD: S0 = {a → a∗b, b → ǫ}

opt selS0
q0

(t) =







(π0, (open, π0)),
(π2, (open, π2)),
(π3, (open, π3))

Similarly, we define sufficient and optimal events for failure.

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 14 / 27

Complexity of Sufficiency: for MSO queries

Sufficiency problem: Decide whether (τ, e) ∈ selS
q (t)

Queries defined by MSO formula

The sufficiency problem for MSO-defined queries is decidable but
non-elementary.

Queries defined by tree automata

Sufficiency and optimality for queries defined by non-deterministic tree
automata are DEXPTIME-hard.

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 15 / 27

Complexity of Sufficiency: for MSO queries

Sufficiency problem: Decide whether (τ, e) ∈ selS
q (t)

Queries defined by MSO formula

The sufficiency problem for MSO-defined queries is decidable but
non-elementary.

Queries defined by tree automata

Sufficiency and optimality for queries defined by non-deterministic tree
automata are DEXPTIME-hard.

Sufficiency for failure: same complexity (not obvious).

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 15 / 27

Complexity of Sufficiency: for MSO queries

Sufficiency problem: Decide whether (τ, e) ∈ selS
q (t)

Queries defined by MSO formula

The sufficiency problem for MSO-defined queries is decidable but
non-elementary.

Queries defined by tree automata

Sufficiency and optimality for queries defined by non-deterministic tree
automata are DEXPTIME-hard.

Sufficiency for failure: same complexity (not obvious).

We proved hardness results for other classes of queries.

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 15 / 27

Determinism

Wanted: deterministic automata when evaluated in streaming order

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 16 / 27

Determinism

Wanted: deterministic automata when evaluated in streaming order

bottom-up / top-down automata: does not fit

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 16 / 27

Determinism

Wanted: deterministic automata when evaluated in streaming order

bottom-up / top-down automata: does not fit

document order: Nested Word Automata
◮ problem: queries on events, not nodes

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 16 / 27

Determinism

Wanted: deterministic automata when evaluated in streaming order

bottom-up / top-down automata: does not fit

document order: Nested Word Automata
◮ problem: queries on events, not nodes

we define Streaming Tree Automata

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 16 / 27

1 Earliest Query Answering

2 Streaming Tree Automata

3 Streaming Algorithm

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 17 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack:

a

a

b

b

p0

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack:
γ1

a

a

b

b

p0

p0

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack: γ1

γ1

a

a

b

b

p0

p0

p0

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack:

γ2

γ1

γ1

a

a

b

b

p0

p0

p0

p0

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack: γ1

γ1

a

a

b

b

p0

p0

p0

p0 p1

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack:
γ1

a

a

b

b

p0

p0

p0

p0 p1

p2

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack: γ2

γ1

a

a

b

b

p0

p0

p0

p0 p1

p2 p2

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack:
γ1

a

a

b

b

p0

p0

p0

p0 p1

p2 p2 p2

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Streaming Tree Automata

A: STA on TΣ with Σ = {a, b} and Γ = {γ1, γ2}
states = {p0, p1, p2} init = {p0} final = {p1, p2}

rules = {
open a p0 → p0 γ1

open b p0 → p0 γ2

open a p2 → p2 γ1

open b p2 → p2 γ2

close a p0 γ1 → p0

close b p0 γ2 → p1

close a p2 γ1 → p2

close b p2 γ2 → p2}

Stack:

a

a

b

b

p0

p0

p0

p0 p1

p2 p2 p2

p2

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 18 / 27

Implications on Complexity

Deterministic STAs

The sufficiency problem of queries defined by deterministic STAs is in
PTIME combined complexity.

Non-deterministic STAs

The sufficiency problem of queries represented by non-deterministic STAs
is DEXPTIME-complete.

hardness is known, membership is obtained by determinization

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 19 / 27

1 Earliest Query Answering

2 Streaming Tree Automata

3 Streaming Algorithm

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 20 / 27

A basic algorithm

Signature

Input:
◮ a query q and a schema S
◮ the stream of events of a tree t ∈ TΣ

Output:
◮ all the tuples of q(t) at their earliest event w.r.t. S

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 21 / 27

A basic algorithm

Signature

Input:
◮ a query q and a schema S
◮ the stream of events of a tree t ∈ TΣ

Output:
◮ all the tuples of q(t) at their earliest event w.r.t. S

Computation

generate all candidate tuples on the fly

if a candidate is sufficient for selection, output it and remove it

This algorithm is clearly earliest.

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 21 / 27

Reducing space consumption

Concurrency

τ is alive at event e if it is neither selected nor failed at e

the concurrency is the maximal number of candidates that are alive at
a same event

introduced by Bar-Yossef, Fontoura, Josifovski (without schema)

Complexity

by testing for failures, we can discard some candidates

we only keep alive candidates

space complexity bounded by concurrency

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 22 / 27

An efficient algorithm for STAs

Main ideas

input: deterministic STA A recognizing the canonical language of q

At each event and for each alive candidate:

memoize the state reached in A

compute safe states for selection and failure

2 steps

1 Logic: build the STA E(A) that recognizes sufficiency

2 Algorithm: compute safe states

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 23 / 27

E(A): an STA for detecting sufficiency

E(A) = A + additional information on sufficiency

states of E(A) are of the form (p,S,F) where:
◮ p ∈ statesA

◮ S ⊆ statesA are safe states for selection
◮ F ⊆ statesA are safe states for failure

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 24 / 27

E(A): an STA for detecting sufficiency

E(A) = A + additional information on sufficiency

states of E(A) are of the form (p,S,F) where:
◮ p ∈ statesA

◮ S ⊆ statesA are safe states for selection
◮ F ⊆ statesA are safe states for failure

let r(e) = (p,S,F), r being a run on t for one candidate τ

◮ e is sufficient for selection iff p ∈ S
◮ e is sufficient for failure iff p ∈ F

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 24 / 27

E(A): an STA for detecting sufficiency

E(A) = A + additional information on sufficiency

states of E(A) are of the form (p,S,F) where:
◮ p ∈ statesA

◮ S ⊆ statesA are safe states for selection
◮ F ⊆ statesA are safe states for failure

let r(e) = (p,S,F), r being a run on t for one candidate τ

◮ e is sufficient for selection iff p ∈ S
◮ e is sufficient for failure iff p ∈ F

⇒ Sufficiency is MSO-definable!

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 24 / 27

Efficient algorithm

Overview

A is deterministic ⇒ E(A) is deterministic

we don’t build E(A), but its runs on the fly

to do so, we compute the safe states in 2 steps
◮ precomputation of an accessibility relation (in PTIME)
◮ at reception of an event, use this relation to compute the safe states

(in PTIME)

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 25 / 27

Perspectives

use this formalization on some decision problems

earliest query answering problem of Forward XPath with schemas

find other fragments suitable for streaming

improve data structure for candidates (Meuss, Schultz and Bry, 2001)

queries defined by selection automata

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 26 / 27

Thank you!

Gauwin, Caron, Niehren, Tison (Mostrare) Complexity of Earliest Query Answering 9th January 2008 27 / 27

	Earliest Query Answering
	Streaming Tree Automata
	Streaming Algorithm

