Habilitation à Diriger des Recherches
École doctorale de Mathématiques et d'Informatique
Université de Bordeaux 1

Contributions au partitionnement de graphes parallèle multi-niveaux

(Contributions to parallel multilevel graph partitioning)

François Pellegrini

3 décembre 2009
Summary of the talk

• An introduction to combinatorial scientific computing and graph partitioning
• The multi-level framework
• Parallelization of the coarsening phase
• Parallelization of the refinement phase
• Conclusion and future directions for research
An introduction to combinatorial scientific computing and graph partitioning
Context

• Combinatorial scientific computing
 • Community “concerned with the formulation, application and analysis of discrete methods in scientific applications” [Hendrickson & Pothen, 2007]
• Takes its mindset and toolset from two main streams of informatics :
 • Graph theory
 – Discrete algorithms
 • Parallel computing
 – Main problems and applications in the field of scientific computing
Sparse matrix ordering (1)

- Solve the linear system:
 \[A \cdot x = b \]

where:

- A is **symmetric** (S) : \(A = A^T \) (real) or \(A = A^* \) (complex)
- A is **definite-positive** (DP) : \(\forall x \neq 0, x^T \cdot A \cdot x > 0 \)
 - Brings numerical stability properties
- A is **sparse** : the number of non-zero terms in A is small compared to the size of the matrix
 - Depends on problem type (not size)
 - Usually in \(O(1) \) per row or column
 - Reduced storage and computations
Sparse matrix ordering (2)

• When A is SDP, the linear system can be solved by means of Cholesky factorization:

\[A = L.L^T \]

where:
• L is **lower triangular**

• The factored system \(L.L^T.x = b \) can then be solved by triangular solving:
 • \(L.y = b \)
 • \(L^T.x = y \)
Fill-in (1)

• When factorizing A into $L.L^T$, L incurs **fill-in**
 • In addition to preexisting terms of A, potential non-zero terms are created in L during the factorization process
 • Variant of Gaussian elimination: for each column in index order, terms are added by merging patterns of left columns having non-zero entries of smallest index facing the current diagonal entry

• Storage for these additional terms has to be allocated even if they will hold numerical zeros
 • Value cannot be known in advance
 • **Symbolic factorization**
Fill-in (2)

- Fill-in only depends on the order in which unknowns are processed
 - Amounts to solving the permuted system $PAP^T x = b$
 - Numerical stability of Cholesky factorization is not impacted by the order of the unknowns
 - Yet, different orders can produce very different fill-ins

![Diagram](image)
Adjacency graph

- Symmetric (and sparse) matrices can be represented on the form of adjacency graphs
 - Vertices represent unknowns
 - Edges represent extra-diagonal non zeros
 - Unoriented edges (not arcs)
 - No loop edges
Fill-reducing orderings (1)

• By nature of Gaussian elimination, a zero $a_{i,j}$ term of the matrix will incur fill-in during factorization if there exists in the adjacency graph a path linking vertices v_i and v_j, such that all intermediate vertices have indices smaller than $\min(i,j)$
Fill-reducing orderings (2)

- Fill-reducing orderings are orderings which prevent as much fill-inducing paths as possible.

- Two main classes of heuristics:
 - **Minimum degree** methods [Tinney & Walker, 1967]
 - Order first vertices with smaller degrees, so that fewer fill-inducing paths will be likely to pass through them.
 - Bottom-up strategy.
 - **Nested dissection** methods [George, 1973]
 - Raise impassable barriers of high index vertices to break as many paths as possible.
 - Top-down strategy.
Nested dissection (1)

- Top-down strategy for removing potential fill-inducing paths
- Principle [George, 1973]
 - Find a vertex separator of the graph
 - Order separator vertices with available indices of highest rank
 - Recursively apply the algorithm on the separated subgraphs
The problem of finding fill-reducing orderings has been transformed into a graph partitioning problem.

Balanced bisections are not the only way to go:
- Unbalanced bisections amount to one-way dissections
 - Useful for graphs with large aspect ratio [George, 1980]
- Bi-level multisections [Ashcraft & Liu, 1998]

Yet, recursive bisection has useful properties suitable for parallel linear system solving:
- Balanced bipartitions provide broad and balanced elimination trees
Graph partitioning (1)

- Graph partitioning has proven useful in a wide number of application fields
 - Used to model domain-dependent optimization problems
 - “Good solutions” take the form of partitions which minimize vertex or edge cuts, while balancing the weight of graph parts
 - NP-hard problem in the general case
 - Many algorithms have been proposed in the literature:
 - Graph algorithms, evolutionary algorithms, spectral methods, linear optimization methods, ...
Graph partitioning (2)

• Two main problems for our team:
 • Sparse matrix ordering for direct methods
 • Domain decomposition for iterative methods

• These problems can be modeled as graph partitioning problems on the adjacency graph of symmetric positive-definite matrices
 • Edge separator problem for domain decomposition
 • Vertex separator problem for sparse matrix ordering by nested dissection
The multi-level framework
Graph partitioning algorithms

• Two main classes of partitioning algorithms:
 • **Global methods** (e.g. genetic algorithms, simulated annealing, greedy graph algorithms)
 – Consider all of the graph data
 – Are most often very slow when quality is desired
 • **Local optimization heuristics** (e.g. Fiduccia-Mattheyses)
 – Optimize an existing partition
 – Applied after some global method
 – Fast but have limited scope
Multi-level framework

• Principle [Hendrickson & Leland, 1994]
 • Create a family of topologically equivalent coarser graphs by clustering groups of vertices
 • Compute an initial partition of the smallest graph
 • Propagate back the result, with local refinement
Coarsening (1)

- Coarsening amounts to **quotienting** finer graphs according to some clustering partition, to obtain a coarser graph of similar topological structure.

- Several variants exist:
 - **Matching** of vertex pairs [Hendrickson & Leland, 1994]
 - Matchings do not need to be maximal
 - Weighted aggregation of groups of vertices [Chevalier & Safro, 2009]
 - Aims at reducing the impact of coarsening artifacts
Refinement

• The partition computed on the coarser graph is prolonged to the finer graphs
 • All of the vertices in every cluster are assigned to the same part as the one of the associated coarse vertex
 • The prolonged solution has the granularity of the coarser graph, because of coarsening artifacts

• The prolonged partition must be refined
 • Only local refinement is needed since global shape is assumed to be good
 • Use of local optimization algorithms
Local optimization algorithms (1)

• Try to improve a current partition by moving vertices between parts across the frontier

• The most widely used algorithms are greedy iterative graph algorithms
 • Both fast and efficient

• Several variants exist:
 • Kernighan-Lin (KL) [1970]: swaps of pairs of vertices between their two parts
 • Fiduccia-Mattheyses (FM) [1982]: individual moves from one part to another
 • Helpful sets [Diekmann et. al., 1995]: moves of clusters
Local optimization algorithms (2)

• Frontier vertices are moved according to their “gain value”, i.e. the improvement of the cut that results in moving them

\[v_6 \rightarrow v_1 \rightarrow v_4 \]

• Gains are updated after every move
 • Creates strong sequentiality constraints

• Detrimental moves can be accepted, provided that further beneficial moves are performed afterwards, which will result in an overall gain
 • Hill-climbing from local minima of the cut cost function
The need to go parallel

• Problem size keeps increasing
 • Graphs of more than ten million vertices cannot be handled on sequential computers
 • Need for scalable parallel graph partitioning tools

• Some parallel graph partitioning tools already exist
 • ParMeTiS [Schloegel, Karypis & Kumar, 1997]
 • ParJOSTLE [Walshaw et al., 1997]

• Existing parallel tools evidence performance problems:
 • Quality of partitions most often decreases when the number of processors increase
 • State-of-the-art local optimization algorithms are intrinsically sequential and do not parallelize well
The Scotch roadmap

• Devise robust parallel graph partitioning methods
 • Should handle graphs of more than a billion vertices distributed across one thousand processors

• Improve sequential graph partitioning methods if possible
 • Multi-level FM-like algorithms are both fast and efficient on a very large class of graphs but FM algorithms are intrinsically sequential

• Investigate alternate graph models (meshes/hypergraphs)

• Provide a software toolbox for scientific applications
 • Scotch sequential software tools
 • PT-Scotch parallel software tools
Design constraints

• Parallel algorithms have to be carefully designed
 • Algorithms for distributed memory machines
 • Preserve independence between the number of parts \(k \) and the number of processing elements \(P \) on which algorithms are to be executed
 • Algorithms must be “quasi-linear” in \(|V|\) and/or \(|E|\)
 • Constants should be kept small!
 – Theory is not likely to help much...

• Data structures must be scalable:
 • In \(|V|\) and/or \(|E|\) : graph data must not be duplicated
 • In \(P \) and \(k \) : arrays in \(k|V|, k^2, kP, P|V| \) or \(P^2 \) are forbidden
Parallelization of the coarsening phase
Questions about parallel coarsening

- Is there an efficient and scalable way to compute matchings in parallel?
 - Matchings do not need to be minimal
 - Matching process should avoid any bias
 - Should not depend in any way on data distribution
- What do we do when coarse graphs are “too small”?
 - Processing time is dominated by communication start-up time
 - More processes mean more operating system and synchronization hazards
Parallel matching (1)

- All existing parallel coarsening algorithms base on parallel matching to cluster pairs of adjacent vertices
 - Coarse graphs are built according to this clustering
- Doing the matching in parallel is not easy because:
 - The quality of the matching is critical for cut quality
 - Biases in the matching algorithm lead to significant loss of quality
 - Synchronization is required between processes which bear adjacent vertices, to propagate part ownership
 - Graphs may be distributed in a way that requires much communication
 - Else, the task would be too easy...
Parallel matching (2)

- Synchronization between non-local neighbors is critical
 - Dependency chains or loops between mating requests can stall the whole algorithm because of sequential constraints

- Some distributed tie-breaking is required
- Too many requests decrease matching probability
Parallel matching by graph coloring (1)

- Principle [Karypis and Kumar, 1999]
 - Compute a vertex coloring of the finer graph
 - No two neighbor vertices have the same color
 - A matching sweep is made of as many rounds as there are colors in the graph coloring
 - Only vertices of the current color can ask for mating during their round

- Removes chains, as well as many collisions
Parallel matching by graph coloring (2)

• Vertex colorings are computed using a distributed version of Luby's algorithm
 • Every vertex draws a random number
 • Vertices which are local maxima are painted with the first color, after which they are removed from the graph
 • The algorithm iterates until all vertices are colored

• Some colors have very few vertices
 • Partial sequentialization of the algorithm
 • Too many rounds for coloring, and for mating

<table>
<thead>
<tr>
<th>998699</th>
<th>908307</th>
<th>848574</th>
<th>804471</th>
<th>777182</th>
<th>757239</th>
<th>743009</th>
<th>733290</th>
</tr>
</thead>
<tbody>
<tr>
<td>720049</td>
<td>700112</td>
<td>661773</td>
<td>590857</td>
<td>478982</td>
<td>338154</td>
<td>200174</td>
<td>99186</td>
</tr>
<tr>
<td>41975</td>
<td>15071</td>
<td>4750</td>
<td>1377</td>
<td>372</td>
<td>108</td>
<td>20</td>
<td>6</td>
</tr>
</tbody>
</table>

Graph: 10 millions, |V| = 10,424 k, |E| = 78,649 k, δ = 15.09, type: 3D electromagnetics mesh, CEA/CESTA
Parallel probabilistic matching (1)

- Principle [Her & Pellegrini, 2009] [Chevalier, 2007]
 - The algorithm consists in a fixed number of passes
 - During each pass, yet unmatched vertices draw a random bit value.
 - If it is zero, the vertex is inactive during the pass
 - If it is one, the vertex sends a mating request to any one of its presumably unmatched neighbors
 - Sought for vertices reply positively or negatively

- Reduces topological biases
- Improves mating probability when data are irregularly distributed
Parallel probabilistic matching (2)

• Unlike all of its predecessors, this algorithm makes no assumption on the distribution of the graph vertices
 • Cannot induce any bias due to distribution artifacts
 • Converges quickly
 – 5 collective passes are enough to match 80 % of the vertices

<table>
<thead>
<tr>
<th>Pass</th>
<th>Matching</th>
<th>Coarsening</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>53.3</td>
<td>12.3</td>
</tr>
<tr>
<td>C2</td>
<td>68.7</td>
<td>13.6</td>
</tr>
<tr>
<td>C3</td>
<td>76.2</td>
<td>12.2</td>
</tr>
<tr>
<td>C4</td>
<td>81.0</td>
<td>10.6</td>
</tr>
<tr>
<td>C5</td>
<td>84.5</td>
<td>9.1</td>
</tr>
<tr>
<td>LF</td>
<td>100.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Parallelization of the coarsening phase (1)

• Once the parallel matching algorithm terminates, the coarsened graph is built
 • Using the same number of processes as the one used by the finer graph

• At this stage, the coarsened graph can either be:
 • Kept on the same number of processes
 – Decreases memory and processing cost
 • Folded on half of the processes [Karypis et al., 1997]
 – To reduce communication cost and improve data locality (reduces bias of biased algorithms)
 • Folded and duplicated on two subsets of processors [Chevalier & Pellegrini, 2008]
Parallelization of the coarsening phase (2)

- It is preferable to use folding and duplication only in the last stages of the coarsening process
 - All of the processes will compute distinct initial partitions
Parallelization of the refinement phase
Questions about parallel refinement

• Can we find a way to use global algorithms instead of local optimization algorithms?
 • Local optimization algorithms do not parallelize well...

• Can we preserve as much as possible the quality of existing local optimization algorithms?
 • Especially needed for sparse matrix ordering
 – Concerns “small” graphs, with less than one hundred million vertices
Band graphs (1)

- Principle [Chevalier & Pellegrini, 2006]
 - Since only local improvements are necessary on the finer graph, it is not necessary to provide the refinement algorithm with all of the graph data, as only a small band around the projected separator is necessary.
Band graph (2)

- Interests
 - Band graphs need only be of width 3 around the projected separator
 - Maximum distance at which fine vertices can be when their coarse vertices are neighbors
 - Since band graphs are several orders of magnitude smaller than full graphs, expensive algorithms can be applied to them more easily
 - Band graphs constrain refinement algorithms and prevent them from falling into local optima resulting from coarsening artifacts
- Distributed band graphs are easy to create
Multi-centralization (1)

- Principle [Chevalier & Pellegrini, 2008]
 - Since band graphs are supposed to be small, they can be multi-centralized such that sequential local optimization algorithms can still be applied to their copies
Multi-centralization (2)

Not scalable, but:

- Rather inexpensive for mesh graphs
- Yields results which are equivalent to, or even better than, the sequential version
 - Better exploration of problem space
- Is fine, to date, for sparse matrix ordering

- Parallel algorithms can also be used
 - Genetic algorithms [Chevalier & Pellegrini, 2006]
 - Diffusion-based algorithms
Parallelization of nested dissection (1)

• Three levels of concurrency: [Chevalier & Pellegrini, 2006]
 • In the nested dissection process itself
 – Straightforward, coarse grain parallelism
 – Redistribution of subgraph data across processors
 • In the coarsening phase of the multi-level algorithm
 – Synchronous probabilistic matching algorithm
 – Folding and duplication in the coarser stages
 • In the refinement process during the uncoarsening phase
 – Multi-sequential optimization
Parallelization of nested dissection (2)

- After a separator has been computed, the two separated subgraphs are folded and redistributed each on a half of the available processors
 - The two sub-trees are separated logically but also physically, which reduces network congestion
 - Temporary folding thread (if MPI is thread-safe)
Results for parallel sparse matrix ordering (1)

- Metrics are:
 - NNZ, the number of non zeros in L
 - OPC, the operation count of Cholesky factorization

- Indirect metrics
 - Many parameters impact solver performance
 - Can't even be computed a priori
 - We use separator size as the metric for bipartitions

<table>
<thead>
<tr>
<th>Graph</th>
<th>Size ($\times 10^3$)</th>
<th>Average degree</th>
<th>O_{ss}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>V</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>audikw1</td>
<td>944</td>
<td>38354</td>
<td>81.28</td>
<td>5.48E+12</td>
</tr>
<tr>
<td>cage15</td>
<td>5154</td>
<td>47022</td>
<td>18.24</td>
<td>4.06E+16</td>
</tr>
</tbody>
</table>
Results for parallel sparse matrix ordering (2)

<table>
<thead>
<tr>
<th>Test case</th>
<th>Number of processes</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5.73E+12</td>
<td>5.65E+12</td>
<td>5.54E+12</td>
<td>5.45E+12</td>
<td>5.45E+12</td>
<td>5.45E+12</td>
</tr>
<tr>
<td>O<sub>PTS</sub></td>
<td>5.82E+12</td>
<td>6.37E+12</td>
<td>7.78E+12</td>
<td>8.88E+12</td>
<td>8.91E+12</td>
<td>1.07E+13</td>
<td></td>
</tr>
<tr>
<td>O<sub>PM</sub></td>
<td>64.14</td>
<td>43.72</td>
<td>31.25</td>
<td>20.66</td>
<td>13.86</td>
<td>9.83</td>
<td></td>
</tr>
<tr>
<td>t<sub>PTS</sub></td>
<td>32.69</td>
<td>23.09</td>
<td>17.15</td>
<td>9.80</td>
<td>5.65</td>
<td>3.82</td>
<td></td>
</tr>
<tr>
<td>t<sub>PM</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results for parallel sparse matrix ordering (3)

<table>
<thead>
<tr>
<th>Test case</th>
<th>Number of processes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>cage15</td>
<td></td>
</tr>
<tr>
<td>O<sub>PTS</sub></td>
<td>4.58E+16</td>
</tr>
<tr>
<td>O<sub>PM</sub></td>
<td>4.47E+16</td>
</tr>
<tr>
<td>t<sub>PTS</sub></td>
<td>396.72</td>
</tr>
<tr>
<td>t<sub>PM</sub></td>
<td>195.93</td>
</tr>
</tbody>
</table>

![PTScotch, ParMetis, Seq. Scotch](image1)

![OPC, base 1.0 for sequential Scotch](image2)
Recursive graph bipartitioning

- K-way graph partitioning can be approximated by a sequence of recursive bipartitionings
 - Bipartitioning is easier to implement than k-way partitioning
 - No need to choose the destination part of vertices
 - It is only an approximation, but a rather good one for mesh graphs [Simon & Teng, 1993]
Diffusion algorithms (1)

- Principle [Walshaw, Cross & Everett, 1995]
 - Optimize shapes of subdomains by analogy with the auto-organization of soap bubbles with respect to the shape of their interfaces
 - Randomly select seeds, grow subdomains, and iterate to re-center seeds until convergence

![Diagram of diffusion algorithm process](Taken from [Meyerhenke & Schamberger, 2006])
Diffusion algorithms (2)

• Interest
 • Improves partition shapes for FEM iterative methods
 • Randomly select seeds, grow subdomains, and iterate to re-center seeds until convergence

• Drawbacks
 • Do not explicitly enforce load balance
 • Global iterative methods, slow for large graphs
Jug of the Danaides (1)

• Principle [Pellegrini 2007]
 • Analogous to “bubble growing” algorithms but natively integrates the load balancing constraint
 • The graph is modeled as a set of leaking barrels
 • Two antagonistic liquids (Scotch and anti-Scotch) flow from two source vertices
 • Liquids vanish when they meet
Jug of the Danaides (2)

• Sketch of the algorithm
Jug of the Danaides (3)

• Outline of the algorithm
 • Iterative algorithm
 • Every barrel leaks (at most) one unit of liquid per unit of vertex weight and of time
 – Similar to return drain edges in the Bubble-FOS/C algorithm of [Meyerhenke & Schamberger, 2006]
 • Injecting $|W_v|/2$ units of each of the liquids ensures convergence (whole system leaks at most $|W_v|$ per turn)
 – Anchor vertices of band graphs taken as sources
• No need to wait for full convergence
 – We just want to know which liquid dominates in each of the barrels
Jug of the Danaides (4)

• While the nature of the algorithm is very similar to diffusion methods, it has some specificities
 • Current diffusion-based methods compute and stabilize flows from each of the seeds, then select for each vertex the flow of maximum value
 – Data of size $k|V|$ has to be maintained
 – Our algorithm elects the winner at each step and requires only data of size $|E|$
 • The amount of liquid leaked is not a fraction of the amount present on each vertex, but a fixed value
 – Flows cannot span on more than the prescribed amount of weights
Jug of the Danaides (5)

- Using JotD as the optimization algorithm in the multi-level process:
 - Smooths interfaces
 - Is slower than sequential FM (20 times for 500 iterations)
Jug of the Danaides (6)

- Average, on a set of test graphs, of recursive bipartitioning results with respect to cut size (ΔCut), load imbalance ratio (ΔMaCut) and maximum diameter of parts (ΔMDi), compared to multi-level banded Fiduccia-Mattheyses.
Parallel graph partitioning by R.B. (1)

- Sample test graphs

| Graph | $|V|$ ($\times 10^3$) | $|E|$ ($\times 10^3$) | Avg.Deg. | Description |
|----------------|----------------------|----------------------|-----------|---------------------------|
| 10MILLIONS | 10424 | 78649 | 15.09 | 3D electromagnetics |
| 23MILLIONS | 23114 | 175686 | 15.20 | 3D electromagnetics |
| 45MILLIONS | 45241 | 335749 | 14.84 | 3D electromagnetics |
| 82MILLIONS | 82294 | 609508 | 14.81 | 3D electromagnetics |
| AUDIKW1 | 944 | 38354 | 81.28 | 3D mechanics mesh |
| BRGM | 3699 | 151940 | 82.14 | 3D geophysics mesh |
| CAGE15 | 5154 | 47022 | 18.24 | DNA electrophoresis |
| COUPOLE8000 | 1768 | 41657 | 47.12 | 3D structural mechanics |
| THREAD | 30 | 2220 | 149.32 | Connector problem |
Runtime and partition quality (1)

PT-Scotch
45MILLIONS

PT-Scotch
45MILLIONS

of Proc [log]

Time (sec.) [log]

Cut size

of Proc [log]
Runtime and partition quality (2)

PT-Scotch
82MILLIONS

PT-Scotch
82MILLIONS

- 2 parts
- 4 parts
- 8 parts
- 16 parts
- 32 parts
- 64 parts
- 128 parts
- 256 parts
- 512 parts
- 1024 parts
- 2048 parts
Runtime and partition quality (3)

<table>
<thead>
<tr>
<th>Test case</th>
<th>Number of processes: Number of parts</th>
<th>(P_{\text{Peak}}:2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32:2</td>
<td>32:32</td>
</tr>
<tr>
<td></td>
<td>32:1024</td>
<td>32:1024</td>
</tr>
<tr>
<td></td>
<td>384:2</td>
<td>384:256</td>
</tr>
<tr>
<td></td>
<td>384:1024</td>
<td>384:1024</td>
</tr>
</tbody>
</table>

45 MILLIONS

<table>
<thead>
<tr>
<th>(C_{PTS})</th>
<th>1.15E+05</th>
<th>1.13E+06</th>
<th>7.24E+06</th>
<th>1.06E+05</th>
<th>3.65E+06</th>
<th>7.29E+06</th>
<th>1.05E+05</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{PM})</td>
<td>1.26E+05</td>
<td>1.38E+06</td>
<td>7.57E+06</td>
<td>1.39E+05</td>
<td>3.81E+06</td>
<td>7.62E+06</td>
<td>1.26E+05</td>
</tr>
<tr>
<td>(t_{PTS})</td>
<td>24.24</td>
<td>102.29</td>
<td>150.56</td>
<td>13.85</td>
<td>28.08</td>
<td>30.04</td>
<td>10.26(192)</td>
</tr>
<tr>
<td>(t_{PM})</td>
<td>84.55</td>
<td>48.24</td>
<td>36.21</td>
<td>28.72</td>
<td>25.65</td>
<td>23.15</td>
<td>21.51(256)</td>
</tr>
</tbody>
</table>

82 MILLIONS

<table>
<thead>
<tr>
<th>(C_{PTS})</th>
<th>1.46E+05</th>
<th>1.90E+06</th>
<th>1.08E+07</th>
<th>1.40E+05</th>
<th>5.57E+06</th>
<th>1.09E+07</th>
<th>1.45E+05</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{PM})</td>
<td>1.78E+05</td>
<td>2.12E+06</td>
<td>1.13E+07</td>
<td>1.73E+05</td>
<td>5.95E+06</td>
<td>1.14E+07</td>
<td>1.61E+05</td>
</tr>
<tr>
<td>(t_{PTS})</td>
<td>46.48</td>
<td>189.42</td>
<td>297.76</td>
<td>23.26</td>
<td>46.91</td>
<td>61.54</td>
<td>16.93(192)</td>
</tr>
<tr>
<td>(t_{PM})</td>
<td>176.4</td>
<td>85.87</td>
<td>76.42</td>
<td>32.83</td>
<td>30.22</td>
<td>26.9</td>
<td>30.00(256)</td>
</tr>
</tbody>
</table>
Runtime and partition quality (4)

<table>
<thead>
<tr>
<th>Test case</th>
<th>Number of processes: Number of parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P<sub>Peak</sub>: 2</td>
</tr>
</tbody>
</table>

AUDIKW1

<table>
<thead>
<tr>
<th></th>
<th>C<sub>PTS</sub></th>
<th>C<sub>PM</sub></th>
<th>t<sub>PTS</sub></th>
<th>t<sub>PM</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.08E+05</td>
<td>1.14E+05</td>
<td>3.51</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>2.08E+06</td>
<td>2.04E+06</td>
<td>11.84</td>
<td>3.59</td>
</tr>
<tr>
<td></td>
<td>1.00E+07</td>
<td>9.76E+06</td>
<td>17.35</td>
<td>5.27</td>
</tr>
<tr>
<td></td>
<td>1.05E+05</td>
<td>1.15E+05</td>
<td>5.87</td>
<td>4.45</td>
</tr>
<tr>
<td></td>
<td>5.81E+06</td>
<td>5.76E+06</td>
<td>10.72</td>
<td>4.62</td>
</tr>
<tr>
<td></td>
<td>9.96E+06</td>
<td>9.76E+06</td>
<td>10.06</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td>1.11E+05</td>
<td>1.12E+05</td>
<td>3.01(128)</td>
<td>2.37(192)</td>
</tr>
</tbody>
</table>

THREAD

<table>
<thead>
<tr>
<th></th>
<th>C<sub>PTS</sub></th>
<th>C<sub>PM</sub></th>
<th>t<sub>PTS</sub></th>
<th>t<sub>PM</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.60E+04</td>
<td>5.62E+04</td>
<td>0.53</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>6.15E+05</td>
<td>6.03E+05</td>
<td>0.97</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>1.82E+06</td>
<td>1.84E+06</td>
<td>1.07</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>5.60E+04</td>
<td>5.73E+04</td>
<td>0.85</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.29E+06</td>
<td>1.29E+06</td>
<td>1.27</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>1.82E+06</td>
<td>1.84E+06</td>
<td>1.28</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>5.62E+04</td>
<td>5.63E+04</td>
<td>0.47(16)</td>
<td>0.52(8)</td>
</tr>
</tbody>
</table>
Runtime and partition quality (5)

- Cut size ratio is most often in favor of PT-Scotch vs. ParMeTiS up to 2048 parts
- Partition quality of ParMeTiS is irregular for small numbers of parts
- Gets worse when number of parts increases as recursive bipartitioning prevents global optimization (greedy algorithm)
Runtime and partition quality (6)

• In most cases, PT-Scotch produces better partitions
 • About 20% better when bipartitioning graph 82MILLIONS

• For a large number of parts, ParMeTiS provides slightly better for graphs AUDIKW1, THREAD and BRGM
 • These graphs have a high average degree
 • The greedy nature of recursive bipartitioning negatively impacts cut quality on the long term
Conclusion
Where we are now...

- Parallel sparse matrix ordering
 - Bottleneck removed for the near future
 - More work to be done as size of problems increases
 - Graph of 82+ million unknowns ordered and system solved by the PaStiX parallel direct solver on the Tera10 machine at CEA

- Parallel graph partitioning
 - Parallel k-way graph partitioning by recursive bipartitioning
The Scotch software package

- All of the algorithms are available to the community
 - Scientific reproducibility
 - Freely available from the INRIA Gforge
 - Modular and documented code (≈100k lines of C)
- Upgrades on a regular basis
 - Version 4.0 : February 2004 : 2500+ direct downloads
 - About one major release per year (5.2 almost ready)
- Usage by third-party software
 - Emilio (CEA/CESTA), Code_Aster (EDF), Dolfin/Fenics (Simula), MUMPS (ENSEEITH, LIP & LaBRI), PaStiX (LaBRI), SuperLU (U. C. Berkeley), Zoltan (Sandia), ...
Where we are heading to...

• Upcoming machines will comprise very large numbers of processing units, and will possess NUMA / heterogeneous architectures
 • More than a million processing elements on the Blue Waters machine to be built at UIUC (joint lab with INRIA)

• Impacts on our research :
 • Topology of target architecture has to be taken into account
 – Static mapping and not only graph partitioning
 • Dynamic repartitioning capabilities are mandatory
Parallel direct k-way graph partitioning

- Extension to k parts of the multilevel framework used for recursive bipartitioning
 - Straightforward for the multi-level framework itself
 - K-way band graphs are already available

- Stability problems with our diffusion-based algorithms
Parallel static mapping (1)

- Compute a mapping of $V(S)$ and $E(S)$ of source graph S to $V(T)$ and $E(T)$ of target architecture graph T, respectively.

- Communication cost function accounts for distance:

$$f_C(\tau_{S,T}, \rho_{S,T}) \overset{\text{def}}{=} \sum_{e_S \in E(S)} w(e_S) |\rho_{S,T}(e_S)|$$

- Static mapping features are already present in the sequential Scotch library.
 - We have to go parallel.
Parallel static mapping (2)

- Partial cost function in the context of recursive bipartitioning
 \[f'_C(\tau_{S,T}, \rho_{S,T}) \overset{\text{def}}{=} \sum_{v \in V(S')} w(\{v, v'\}) |\rho_{S,T}(\{v, v'\})| \]
 \(\{v, v'\} \in E(S)\)

- Decision making depends on available mapping information
Parallel static mapping (3)

• Recursive bi-mapping cannot be transposed in parallel
 • All subgraphs at some level are supposed to be processed simultaneously for parallel efficiency
 • Yet, ignoring decisions in neighboring subgraphs can lead to “twists”

• Only sequential processing works!
Parallel static mapping (4)

- Parallel multilevel framework for static mapping
 - Parallel coarsening and k-way mapping refinement
 - Initial mapping by sequential recursive bi-mapping
Dynamic remeshing and repartitioning

• Move upwards from the production of general-purpose tools to more specific application domains
 • Motivation for joining the Bacchus team
• Parallel adaptive remeshing
 • Take into account the numerical stability of the problem being studied
 • Take advantage of the work done in PT-Scotch on distributed graphs
• Dynamically repartition the remeshed graphs
Thanks!

- To all the Scotch-men:
 - Cédric Chevalier
 - Jun-Ho Her
 - Sébastien Fourestier
 - Cédric Lachat