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Abstract
We present an algorithm forout-of-core simplificationof large
polygonal datasets that are too complex to fit in main memory. The
algorithm extends the vertex clustering scheme of Rossignac and
Borrel [13] by using error quadric information for the placement of
each cluster’s representative vertex, which better preserves fine de-
tails and results in a low mean geometric error. The use of quadrics
instead of the vertex grading approach in [13] has the additional
benefits of requiring less disk space and only a single pass over the
model rather than two. The resulting linear time algorithm allows
simplification of datasets of arbitrary complexity.

In order to handle degenerate quadrics associated with (near) flat
regions and regions with zero Gaussian curvature, we present a ro-
bust method for solving the corresponding underconstrained least-
squares problem. The algorithm is able to detect these degenera-
cies and handle them gracefully. Key features of the simplification
method include a bounded Hausdorff error, low mean geometric
error, high simplification speed (up to 100,000 triangles/second re-
duction), output (but not input) sensitive memory requirements, no
disk space overhead, and a running time that is independent of the
order in which vertices and triangles occur in the mesh.

1 INTRODUCTION
Polygonal simplification has been a hot topic of research over the
last decade, with a vast number of published algorithms. Many of
the early simplification algorithms were designed to handle modest
size datasets of a few tens of thousands of triangles. As is common
in most areas of computing, improvements in processor speed and
memory capacity have served merely to promote the production of
increasingly larger datasets, and a number of methods, particularly
for out-of-core visualization, have been proposed for coping with
models that are too large to fit in main memory, e.g. [3, 4, 10].
Following this trend, some of the more recent simplification algo-
rithms have been designed to be memory efficient, and typically
handle models with as many as several million triangles. In the last
few years, however, there has been an explosion in model size, in
part due to improvements in resolution and accuracy of data acqui-
sition devices, such as laser range and CT/MRI scanners. Indeed,
submillimeter resolution datasets such as theVisible Human[1],
which consists of well over 10 billion voxels, and the range scans of
Michelangelo’s sculptures made independently by research groups
at IBM [2] and Stanford University [7] contain up to two billion
triangles. These enormous datasets pose great challenges not only
for mesh processing tools such as rendering, editing, compression,
and surface analysis, but paradoxically also for simplification meth-
ods that seek to alleviate these problems. In addition to their large
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memory consumption, these algorithms also suffer from insuffi-
cient simplification speed to be practically useful for simplifying
very large meshes. As an example, the “memoryless” simplification
scheme proposed by Lindstrom and Turk [8]—one of the fastest and
most memory efficient algorithms available—requires a minimum
of 160n bytes of internal storage to represent ann-vertex model
and the necessary edge collapse priority queue. Simplifying a one
billion vertex model to a few million triangles using their algorithm
would require 160 gigabytes of RAM and, disregarding memory
thrashing, would take weeks to complete on a high end worksta-
tion!

One might argue that high resolution datasets such as the ones
described above are greatly oversampled, and that this problem
should be solved more directly during the data acquisition or syn-
thesis stage, e.g. by using adaptive sampling and tessellation during
range scanning and isosurface extraction. At best, this simply shifts
the problem to an earlier stage of the modeling pipeline, and results
not only in a need for specialized tools for each acquisition method,
but often raises a number of practical issues. In particular, it places
an additional burden on the data acquisitor in terms of deciding how
to sample the model and dealing with the difficult issues of regis-
tering and integrating different resolution surface patches. In some
cases, such a head-on approach is not even practical; one might not
know in advance what parts of a surface should be sampled densely,
or one might simply wish to retain the model at its full resolution
and allow the end-user to resample the model in a manner that suits
the given application.

Currently, few algorithms exist for performing high quality out-
of-core simplification. One reason for this is that existing in-core
methods are difficult to adapt to perform out-of-core simplification,
because the majority of them are based on performing simple local
operations that rely on having direct access to the connectivity of
the mesh. For example, the quality measures associated with the
vertex removaland edge collapseoperations typically depend on
the triangles surrounding the vertex or edge. Consequently, such
methods use large in-core data structures to allow efficient queries
of the local connectivity for any given mesh vertex. As mentioned
above, such data structures may require hundreds of bytes per ver-
tex, which might even be too large to off-load to disk. Instead, de-
velopers of out-of-core simplification algorithms are faced with two
alternatives: segmenting the model into multiple pieces and simpli-
fying them individually, or simplifying models using only limited
connectivity information, which is the approach taken in this paper.

We propose an efficient and easy to implement surface simpli-
fication algorithm that accepts models of arbitrary complexity, and
outputs a model that is small enough for in-core mesh processing
tools to handle and store internally. The algorithm is based on uni-
form sampling via vertex clustering, and is enhanced by a novel
use of error quadrics, which were originally developed for edge
collapse methods (cf. [5, 8]). To our knowledge, our algorithm is
one of very few, if not the only one, for doing fast, high quality
simplification of arbitrarily large models.

2 PREVIOUS WORK
Polygonal models have grown rapidly in complexity over recent
years, yet surprisingly little work has been done on out-of-core sim-
plification. Because most conventional simplification algorithms
are not relevant in the context of out-of-core simplification, we will
restrict our discussion of related work to methods that are directly
related to our algorithm, as well as the few methods that either
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perform out-of-core simplification or can be adapted for that pur-
pose. For a comparison of several well-known in-core simplifica-
tion methods, we refer the reader to [8].

Rossignac and Borrel proposed one of the earliest simplification
algorithms [13]. Their algorithm divides the model into cells from
a uniform rectilinear grid, and replaces all vertices in a grid cell by
a single representative vertex. When clustering vertices together,
the majority of triangles degenerate into edges or points and can be
discarded, thereby reducing the complexity of the model. Repre-
sentative vertices are computed by first estimating the impact each
vertex has on the visual appearance of the model using a number of
ad hoc heuristics. This vertex grading is then used either to compute
a weighted average or to select the most important of the original
vertices in each cluster as the representative. As alluded to, but not
explicitly stated, their algorithm can easily be adapted to work as an
out-of-core method. The appeal of this method lies in its simplicity
and speed, although the low quality models it produces, due in part
to existing vertex positioning schemes, has lead to the use of more
sophisticated simplification methods.

Recognizing that Rossignac and Borrel’s method is sensitive to
translation of the underlying grid, Low and Tan devised a method
that uses “floating cells” constructed by sorting the vertices on their
importance, and then iteratively letting the most important vertex
be the center of a new cluster that absorbs all vertices within an
arbitrarily shaped cell volume [9]. While providing higher quality
results, one drawback of this approach is that it requires sorting the
vertices, which is generally anO(n log n) procedure, compared to
theO(n) running time for Rossignac and Borrel’s original scheme.

Theedge collapseoperator has been used extensively in simpli-
fication, and is generally considered to produce the highest qual-
ity results. Ronfard and Rossignac use edge collapse to coarsen
a model while maintaining a list of supporting planes with each
vertex [12]. Initially, each vertex is assigned the planes associated
with its incident triangles. As two vertices are merged into one by
an edge collapse, the new vertex inherits the planes of the merged
vertices, and the maximum distance from the new vertex to its sup-
porting planes is used to measure the cost of collapsing the edge.
The edges of the model are ordered by increasing cost in a prior-
ity queue, and a greedy selection strategy is employed in which the
cheapest edge is always collapsed. Inspired by this technique, Gar-
land and Heckbert proposed using quadrics—a succinct encoding
of the local surface geometry as a4× 4 symmetric matrix—that al-
low an efficient computation of the sum of squared distances from
a vertex to its supporting planes [5]. Lindstrom and Turk [8] later
showed that recomputing the quadrics from scratch in each iteration
from the partially simplified surface, and weighting each quadric by
the squared triangle area (thus measuring squared displacements in
volume) improve the model quality. We use these area-weighted
quadrics in our out-of-core simplification algorithm.

Bernardini et al. describe an algorithm that has been specifically
designed to perform out-of-core simplification [2]. Their method
splits the model up into separate patches that are small enough to
be simplified separately in-core using a conventional simplification
algorithm. The patch boundaries are left intact to allow the different
pieces to be stitched together without cracks after simplification. A
new set of patch boundaries is then used as another iteration of sim-
plification is performed, allowing the seams between the previous
set of patches to be coarsened. A similar technique was proposed by
Hoppe for creating hierarchical levels of detail for height fields [6].
While conceptually simple, the time and space overhead of parti-
tioning the model and later stitching it together adds to an already
expensive in-core simplification process, rendering such a method
less suitable for simplifying very large meshes.

3 SIMPLIFICATION ALGORITHM
The simplification algorithm presented here is a hybrid of sev-
eral schemes, including [5, 8, 13]. At a high level, it resembles
Rossignac and Borrel’s vertex clustering algorithm, but is improved
both in execution time and quality by using the quadric error metric

introduced by Garland and Heckbert, and later improved by Lind-
strom and Turk, for positioning vertices. In particular, our linear
time algorithm improves upon [13] by requiring only a single pass
over the input model, compared to two or more, and does not use
any disk space beyond the input mesh, whereas their algorithm re-
quires an importance value to be stored with each vertex of the in-
put model. In describing our algorithm, we will focus on its novel
aspects and assume that the reader is familiar with vertex cluster-
ing and quadrics for simplification. We will first describe how the
quadrics and representative vertices are computed, and follow with
a description of the actual simplification algorithm.

3.1 Quadrics
In order to integrate quadrics with the general vertex clustering
scheme, we first make the observation that vertex clustering is a
special case ofvertex pair contraction—a generalization of edge
collapse to arbitrary pairs of vertices [5]. That is, mergingn ver-
tices within a cluster cell is equivalent to performing any sequence
of n − 1 contractions of pairs of vertices within the cluster until a
single vertex remains. As a consequence, we can extend Garland
and Heckbert’s original scheme from individual vertex contractions
to a predefined sequence of such operations. In fact, our algorithm
is equivalent to theirs, with the exception that our priority queue is
determined by the cluster grid rather than by the local geometry. We
use the quadrics from [8], which have proven to give better results
in the mean error sense.

Based on [8], we compute for each trianglet = (x1,x2,x3) its
associated quadric matrixQ as follows:

Q =

�
A
−bT

−b
c

�
= nnT (1)

n =

�
x1 × x2 + x2 × x3 + x3 × x1

−[x1,x2,x3]

�
(2)

wheren is a 4-vector made up of the area-weighted triangle normal
and the scalar triple product of its three vertices. We then distribute
Q to the clusters associated with each oft’s three vertices by adding
Q to their quadric matrices. SinceQ is symmetric, and since the
scalarc is not used, only 9 scalar values need to be stored with each
cluster. After adding up the quadrics of all the triangles in a cluster,
we use the block decomposition ofQ above and solve the linear
systemAx = b for the “optimal” representative vertex positionx.
That is,x is the position that minimizes the sum of squared volumes
of the tetrahedra formed byx and the triangles in the cell.

If a cell contains two nearly parallel surface sheets, the quadrics
will sometimes suggest a solutionx that is close to the intersection
of the extension of these two surfaces. The solution may in such
cases lie far outside the cell itself. We handle these degeneracies
by restricting the position ofx, either by independently clamping
its three coordinates to the cell bounds, or by “pulling” the vertex
towards the cell center until it is sufficiently close.

3.1.1 Robust Inversion of Quadric Matrices
In the discussion above, we assumed that the matrixA is invertible
and well-conditioned. In practice, this is often not the case, e.g. if
the surface is locally flat or has zero Gaussian curvature. Lindstrom
and Turk [8] proposed a partial solution to this problem by ensuring
that the problem is overconstrained, and then combining linear con-
straints that yield a sufficiently large value for the determinant ofA.
In our case, however, the quadrics yield at most three constraints,
and we use a slightly different approach that is able to both diag-
nose potential problems and also robustly produce the “best” vertex
in the sense thatx is chosen such that its distance to the cell center is
minimized. That is,x is the orthogonal projection of the cell center
onto the space of all solutions toAx = b. We accomplish this by
performing asingular value decompositionA = UΣVT, which
for a real symmetric positive semidefinite matrixA is equivalent
to doing an eigenvalue decomposition. This can be done quickly
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using a small number of Jacobi rotations [11]. For robustness, we
set a lower limit on the singular values and discard (zero) the ones
that are negligible:

σ+
i =

�
1/σi if σi/σ1 > ε
0 otherwise (3)

whereσ1 is the largest singular value andε is a threshold parameter
currently set to10−3. The vertexx closest to the cell center̂x that
satisfiesAx = b is then

x = x̂ + VΣ+UT(b−Ax̂) (4)

which simplifies toA−1b wheneverΣ+ = Σ−1, i.e. the above
equation is used whetherA is ill-conditioned or not, and always
yields a numerically robust solution.

3.2 Vertex Clustering
For performance reasons, it is important that the external mesh rep-
resentation is conducive to the types of mesh queries needed for
the given simplification operator. Fortunately, the combination of
vertex clustering and quadrics allows commonly used off-line data
structures to represent the mesh, such as anindexed meshin which
each triangle is a triplet of indices associated with an ordered list
of vertex coordinates. By storing the mesh in binary form as fixed-
length records, the vertices of a triangle can be fetched from disk
indirectly via random access. While such a format is compact, our
algorithm requires no connectivity information, and is thus able to
operate on atriangle soupin which each triangle is represented
directly as a triplet of vertex coordinates. The triangle soup repre-
sentation requires roughly twice as much disk space as the indexed
mesh, but typically increases the simplification speed by a factor
of 15–20, while also accommodating text file representations. In
addition, since our algorithm makes a single pass over the mesh
triangles, the triangle soup can be compressed externally and then
uncompressed on-the-fly during simplification. The model can even
be split up into several files if, for example, it is too large to store
on a single disk. We used the triangle soup representation for the
results presented in this paper. Similar to Rossignac and Borrel’s
original clustering algorithm, our algorithm also requires a bound-
ing box for the model, which is divided into a user-specified num-
ber of rectilinear grid cells. We anticipate that most data acquisition
methods are able to provide such bounds and store the mesh in ei-
ther of these two formats.

Once the cluster grid has been determined, we proceed by read-
ing the mesh one triangle at a time and incrementally construct an
in-core representation of the simplified mesh. It is generally fair to
assume that enough memory exists for this simplified mesh since
our goal is to produce a mesh coarse enough for in-core tools to
process it. Given a trianglet ∈ Tin from the original mesh, we
fetch its vertex coordinates. For each vertexvin of t, we construct
a hash key from the grid cell that the vertex falls in and do a hash
table lookup. This dynamic hash table maps grid cells, or clusters,
to the verticesVout in the simplified mesh. If this cell has not been
visited, a new vertex identifiervout is created (e.g. using consecu-
tive integers) and the quadric matrix associated withvout is initial-
ized to zero. If two or more of the triangle’s vertices belong to the
same cluster, thent reduces to an edge or a point, and is discarded.
Otherwise, we add it, as a triplet of indices intoVout , to the set of
simplified trianglesTout .

Before proceeding with the next triangle, we compute the
quadric matrixQ associated witht. For each vertex oft, we add
Q to the matrix of the cluster that the vertex belongs to. After the
input has been exhausted, we are left with a list of quadrics and a
list of triangles. Each quadric corresponds to a cluster of vertices
and triangles that share a grid cell, and from the quadric matrix we
compute the coordinates for the cluster’s representative vertexvout

using the procedure described above. The simplification then ends
by outputting the simplified mesh(Vout , Tout) in an appropriate
format.

model |Tin | |Tout | RAM (MB) time (h:m:s)
[5] [8] OoCS [5] [8] OoCS

dragon 871,306 244,562 213 134 28 5:31 11:59 0:16
dragon 871,306 113,090 214 134 11 5:55 14:12 0:12
dragon 871,306 47,228 214 134 7 6:06 15:21 0:10
buddha 1,087,716 204,750 250 166 26 7:13 16:58 0:17
buddha 1,087,716 62,354 251 166 8 7:35 19:19 0:12
blade 28,246,208 507,104 - 3,185 63 - 12:37:25 5:02
statue 386,488,573 3,122,226 - - 366 - - 1:59:20

Table 1: Simplification results of running QSlim [5], Memoryless Simplification [8],
and the out-of-core method (OoCS). All results were gathered on a 195 MHz R10000
SGI Origin with 4 GB of RAM and a standard SCSI disk drive.

4 RESULTS AND DISCUSSION
To evaluate the performance of our algorithm, we include results of
simplifying four large polygonal datasets: a buddha, a dragon, and a
model of Michelangelo’s St. Matthew statue created by researchers
at Stanford using a range scanner, as well as a turbine blade model
which was extracted from volume data as an isosurface. We applied
two levels of Loop subdivision to the blade model to increase its
triangle count by a factor of 16, thus making it more challenging to
simplify. Table 1 includes the triangles counts, memory usage, and
timing results of simplifying these models using our method as well
as the in-core methods presented in [5, 8]. While being much more
memory efficient than these two methods, our new algorithm is also
orders of magnitude faster. Note that the reported memory usage is
consistently higher than our implementation’s theoretical usage of
63 to 72 |Tout | bytes,1 as the former includes freed memory not
reclaimed by the operating system.

Figures 1a–c show the original buddha model and two out-of-
core simplified models. Notice how the models in 1a and 1b are
virtually indistinguishable, while some blocking artifacts appear
in 1c, yet most details are still present. Figures 2b–d show several
simplifications of the dragon model. We here compare our vertex
positioning scheme based on quadrics against 1) using the mean of
a cluster’s vertices and 2) the vertex grading scheme of Rossignac
and Borrel that chooses the most important vertex, and which has
been improved using the technique in [9]. Fine details near the jaws,
neck, and hind leg are washed out by the vertex averaging scheme,
and the ridge along the back has lost its sharpness. The model pro-
duced by vertex grading has a more choppy appearance with loss of
detail in the face. Finally, Figures 3a and 3b show close-ups of the
face of the St. Matthew statue covering less than 15% of its overall
height. This complex model consists of nearly 400 million trian-
gles, and could only be simplified using our out-of-core method.
Even after a reduction by a factor of 100, many fine details such as
the chisel marks are still preserved.

While the quality of our method is high in comparison with other
vertex clustering schemes, it does not perform adaptive sampling of
the model, and often produces models that can be further coarsened
in areas of low curvature with little loss in quality. For applications
that require extreme reduction and very high visual quality, our al-
gorithm can be used as a fast preprocessing step that produces a
model with a few hundred thousand triangles, which can then be
further simplified by a slower in-core simplification algorithm.

We envision several avenues for future research. As suggested
in [13], adaptive sampling can be handled using hierarchical sim-
plification, in which cells are recursively merged in less detailed
regions. The idea is to allow quadrics to be merged wherever they
“agree” on the local surface characterization. We also believe that
the quadric information can be used to improve the connectivity of
the mesh, for example by swapping edges in a manner that would
reduce the associated quadratic function. Finally, it would be pos-
sible to directly integrate our algorithm with the popularmarching
cubesalgorithm for isosurface extraction, thereby combining iso-
surfacing and simplification into a single step, and eliminating the
need to output an overly complex intermediate isosurface.

1The theoretical memory usage varies with the size and load of the dy-
namic hash table.
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1a. Original buddha.
1,087,716 triangles.

1b. OoCS
204,750 triangles.

1c. OoCS
62,354 triangles.

2a. Original dragon. 871,306 triangles. 2b. OoCS/Quadrics. 47,228 triangles. 3a. Original statue. 386,488,573 triangles.

2c. OoCS/Vertex mean. 47,228 triangles. 2d. OoCS/Vertex grading. 47,228 triangles. 3b. OoCS. 3,122,226 triangles.
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