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Abstract

This paper presents a solution for texture mapping unparameter-
ized models. The quality of a texture on a model is often limited
by the model’s parameterization into a 2D texture space. For mod-
els with complex topologies or complex distributions of structural
detail, finding this parameterization can be very difficult and usu-
ally must be performed manually through a slow iterative process
between the modeler and texture painter. This is especially true of
models which carry no natural parameterizations, such as subdivi-
sion surfaces or models acquired from 3D scanners. Instead, we
remove the 2D parameterization and store the texture in 3D space
as a sparse, adaptive octree. Because no parameterization is nec-
essary, textures can be painted on any surface that can be rendered.
No mappings between disparate topologies are used, so texture arti-
facts such as seams and stretching do not exist. Because this method
is adaptive, detail is created in the map only where required by the
texture painter, conserving memory usage.
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1 Introduction
With the advent of 3D paint programs, artists were able to paint tex-
ture detail directly onto the surface of models. However, 3D paint is
limited by the underlying parameterization between the model’s ge-
ometry and 2D texture space. Poor parameterizations result in un-
acceptable artifacts such as texture distortion, discontinuities, and
singularities.

Geometric detail does not necessarily correspond to texture de-
tail; in fact, the opposite is often true. As a result, it becomes an
iterative process to adjust the model’s parameterization to the re-
quired texture detail, and fix existing texture data to align with new
parameterizations. This process can require large amounts of time
from both the modeler and texture painter, and is often a bottle-
neck at CG animation production companies. As a production pro-
gresses, camera position and extreme animation poses often reveal
areas on the model which require more detail in the texture. This
requires the parameterization to be adjusted, the resolution of the
map increased, or both.

Our goal is to create a texturing method that fulfills the following
criteria:

• No parameterization should be necessary. A model should
inherently be paintable.
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• Discontinuities should not exist. The topology of the texture
should match the topology of the model.

• Increased texture detail should require only a localized in-
crease in map resolution. The texture should contain exactly
as much detail as has been painted.

• Memory usage should be similar to existing 2D textures.

After discussing related work, we show that storing texture maps
in an octree fulfills these requirements. We then discuss painting
textures, overcoming difficulties with some geometry, using these
textures in a renderer and memory usage. Finally, we show exam-
ples of our method and present ideas for future work.

2 Related Work
Traditional texture mapping applies a 2D image to 3D geometry to
represent visual features without requiring an increase in the un-
derlying geometry [Blinn and Newell 1976]. At render time, these
texture coordinates are interpolated across the surface and then used
to sample the 2D texture.

The most critical part of this process is arriving at a mapping
from the 3D geometry to the 2D texture space. Manual wrapping
methods include using a set of simple projections or unwrapping
the model into a flat sheet (figure 1). Significant work has been
done recently on arriving at a mapping automatically [Boada et al.
2001; Haker et al. 2000; Igarshi and Cosgrove 2001; Lévy 2001;
Ma and Lin 1988; Malliot et al. 1993; Pedersen 1996; Piponi and
Borshukov 2000; Sander et al. 2001]. Optimization methods are
somewhat successful [Hunter and Cohen 2000; Maillot et al. 1993,
Bennis et al. 1991], but all have significant limitations. Since tex-
ture detail has not yet been applied at optimization time, the as-
sumption is made that geometric detail will correspond to textural
detail. This issue can be avoided by reparameterizing a model once
some texture is applied [Sloan et al. 1998] or by allowing the user
to place texture or paint strokes interactively and then derive the
appropriate mapping function. Unfortunately, all parameterization
techniques introduce discontinuitues, stretching, and other artifacts
due to the problems of mapping between disparate topologies.

A 3D volumetric texture can be used to avoid the parameteri-
zation problem [Peachey 1985; Perlin 1985]. However, the mem-
ory needs for a complete 3D array of texture data can become pro-
hibitive when a large amount of surface detail is required. For a
surface texture, most of the space in the 3D texture is unused. Vol-
ume textures are almost exclusively generated procedurally at ren-
der time because of the high memory requirements.

The uniform resolution of image maps can be avoided by using
quadtrees to allocate memory as needed for localized areas of detail
[Berman et al. 1994]. Various space partitioning schemes are also
used to represent volumes [Frisken et al. 2000; Westermann and
Ertl 1997; Wilhelms and Van Gelder 1994]. In particular, octrees
can store 3D texture data for volume rendering [Boada et al. 2001]
or can be used as an alternate way to represent surfaces, where the
geometric detail drives the depth of the tree [Tamminen and Samet
1984]. A 3D texturing system similar to this work but developed
independently also uses octrees to store texture data [Benson and
Davis 2002].



Figure 1: Several methods of parameterizing an object (a). Auto-
matic unwrapping yields (b), iterative packing and relaxing results
in (c), and (d) was generated by defining the parameterization by
hand.

A 3D paint application allows the user to paint a model using all
the standard painting and image manipulation tools. The first 3D
paint systems stored the painted color in the vertices of the model
[Hanrahan and Haeberli 1990]. Current 3D painting systems put
the painted colors directly into the 2D texture map using texture
coordinates which already exist in the model [Daily and Kiss 1995].

3 Octex: Octree as a Texture Map
Instead of storing the texture data in a 2D image, we store it in a
sparse, adaptive octree [Samat 1990]. An octree is a spatial parti-
tioning tree where each node is divided evenly into eight children.
An octree consisting of a single node is constructed around the
model before it is transformed or deformed, and a location in 3-
space is used as the index into the octree. Thus, the model’s texture
coordinates are the same as its vertex coordinates in the model’s
local space. Since there are no discontinuities or singularities in 3-
space, this mapping will always be as smooth and continuous as the
model itself. With the addition of data described in the following
sections, we call this structure anoctexture, or octexfor short.

The detail in the tree is driven by the detail in the texture. Of the
eight children a given node can have, only those which contain a
portion of the model’s surface are ever created. These are called the
node’spotential children. Depending on the details in the texture,
only some of the potential children will actually be created for a
given node.

Each leaf node of the octex contains a color sample for every
texture stored in the tree. A typical model painted for high-end pro-
duction work will have at least three and as many as ten or more
textures painted for it. The model will usually need at least a dif-
fuse color texture, a specular color texture, and a bump map or a
displacement map. The textures are often painted to a similar level
of detail, therefore storing them all in the same tree significantly
reduces the total storage overhead. Textures not having some cor-
respondence in detail or coverage (i.e., a decal) can be broken out
into their own tree.

A color sample is also stored in parent nodes, but only if the par-
ent node does not have all its potential children. This sample repre-
sents the color for all the potential children that have not been cre-
ated. When all the potential children exist, they completely define
the color of the surface in that node and no color sample is stored
in the parent node (figure 2a). For texture filtering during render-
ing, an additional color can be stored in all parent nodes. This color
represents the average of all the potential children’s colors. It is
important to consider the non-existing children as well as the exist-
ing children. Because of this filtered color, the octex now contains

the 3D equivalent of a traditional MIP map [Williams 1983]. When
the renderer provides sample area information to the octex look-up
functions, the filtered texture data can be used when the sample area
covers several octex nodes. The use of this data is addressed further
in section 6.

Consider a model that is initially all white and represented by
a single white node. If a small red dot is painted somewhere on
the model, the original white node is given one child which corre-
sponds to the part of the model where the dot was painted. Nodes
are recursively subdivided until the size of the nodes receiving color
approximately matches the size of the red dot. These leaf nodes are
colored red. The parents of that node are outside the red dot, so the
rest of the model is still white. Figure 2b shows a 2D version of this
octex after the red dot is added.

4 Painting
3D painting is a natural interface for creating octextures because de-
tail can easily be added as painting occurs. As the model is painted,
we obtain the 3D locations of the paint using the z- buffer and in-
verse projection matrix. These positions are transformed into the
model’s local space, and hence the octex space, using the inverse
viewing matrix. We then iterate over the leaf nodes affected by the
new paint.

Figure 2: 2D example node (a) which has three potential children
(shaded area) due to where the surface passes through the node.
Only one of the potential children exists (blue), where paint was
applied. The color stored in this node (red) is the color for the two
non-existing potential children. Octex subdivision (b) when a small
red dot is painted into a coarse white octex. The shaded areas are
leaf nodes.

To assure that only the visible surfaces receive paint, in addi-
tion to the usual clipping and front facing tests, the surface must be
transformed to screen space, and compared against the depth buffer
of the rendered model.

When the screen space covered by a given leaf node has an area
larger than a pixel, and the new paint in that area is not all the same
value, then each of the node’s children that contain part of the sur-
face are created. The new children inherit the parent node’s color,
and are iterated. Finally, the paint color is composited over the color
already stored in the leaf node. Because the octex is subdivided to
match the resolution of the painting, detail is only created in the
map where it is painted (figure 3).

After the paint is applied, nodes are culled if their information is
redundant. When a child is a leaf node and contains the same color
data as the parent, the child is removed. Thus, the octex can also
shrink in size in a similar manner if detail is removed.

The nature of this method allows for as much detail as the painter
can create, making it easy for too much detail to be created. Setting
a limit on the depth of the octree or the total number of nodes can
prevent painters from unwittingly creating an overly large texture.
It can be useful to block new nodes from being created altogether
so a painter can zoom in to a model to tweak existing paint color
without increasing detail.



Figure 3: A 2D example of applying paint into an octex. The paint
fills a number of pixels from the point of view of the camera. The
octex is subdivided until the nodes are approximately the size of a
pixel.

The process of culling a child node that is identical to its parent
can be broadened to include child nodes that are merely similar to
their parents. When the color of the child is within some epsilon of
the parent’s color, the child can be removed. The epsilon can vary
depending on the depth of the node.

A primary benefit of this system is that any type of model which
can be rendered can be painted. The geometric operations used dur-
ing painting are essentially a subset of the operations which would
occur during rendering. Checking for an intersection between a
cube and a surface is well defined. It is also necessary to clip mod-
els to a leaf node. As such, our method works well on a wide variety
of surface types: polygons, parametric spline surfaces, subdivision
surfaces, and so on.

5 Normals in the Octex
The octex stores the texture volumetrically, but it is only meant to
be applied to a surface. It is possible for paint to leak to the opposite
side of a very thin model. Consider painting on an airplane wing.
As the top of the wing is painted near the sharp edge, some of the
nodes may be large enough to also contain the surface on the bottom
of the wing (figure 4).

Figure 4: The top of the wing is painted red, the bottom blue. The
nodes colored yellow contain two surfaces, so the paint there will
depend on the order of application.

To avoid this problem, the normal of the surface receiving paint
is written into the leaf node along with the paint color. Later, if
another paint sample is applied to the node, the normal of the ex-
isting paint and the normal of the incoming paint are compared.
When the normals are close enough, then the colors are combined
into one color, and the normals are averaged into one normal (fig-
ure 5). If they are further apart, then the new paint sample and nor-
mal are written into the node in addition to the original data. “Close
enough” is determined by controls in the 3D paint application, but
generally defaults to 90 degrees.

Just as the deformations of the model during animation must be
accounted for by storing the undeformed spatial coordinates as tex-
ture coordinates, the undeformed normals must also be stored in
the model. While this increases the size of both the model and the
octex, this extra overhead only needs to be taken on if the model is
thinner than the detail of the paint to be applied.

Since an accurate normal is not needed, the normal in the oc-
texture can be encoded in a small number of bits [Zhang and Hoff

Figure 5: Nodes with two surfaces contain two color samples, with
an associated normal.

1997]. Even 8 bits per normal can indicate 256 directions which
are more than enough for our purposes.

6 Rendering
Rendering using an octex is very similar to existing techniques us-
ing volume textures, making it trivial to add this feature to any ex-
isting renderer that supports 3D texture coordinates by using an al-
ternate texture-lookup function. The model’s untransformed vertex
positions are stored into the 3D texture coordinates and interpolated
as usual. For deforming models, the undeformed positions from
the reference model are used. For renderers that support custom
shaders, all the octex sampling can be done inside the shader. Typ-
ical hardware renderers handle the texture lookup directly making
support of octextures difficult.

As described in section 3, the filtered texture data within a node
is a 3D extension of a MIP map. The simplest way to compute this
filtered color is to average the colors for all the potential children,
even those which do not exist. This is analogous to a simple box
filter. Instead of weighting the child nodes equally, we weight the
samples using the area of the surface inside the node, preventing
portions of the model that just barely intersect an otherwise empty
node from being weighted improperly. Other filters could be used
by looking into neighboring nodes, but we have not explored using
them.

In a traditional texture, the MIP map level is chosen using either
the area of the sample in texture space or the screen-space partials
of the texture coordinates. This presents problems since the texture
coordinates can have discontinuities and singularities. The octex
has no such artifacts since the index is simply the model’s original
vertex locations in 3-space.

When a node is encountered during rendering which has multiple
texture samples and associated normals, the normal of the deformed
surface needs to be transformed back to model space to know which
texture sample to use. If the model is deformed, the original un-
transformed surface normals will need to be stored in the model in
the same way as the untransformed vertices.

7 Memory
Memory requirements of the octex will vary in comparison to a 2D
texture of similar detail. The storage size of the leaf nodes can be
exactly the same as the storage size of a pixel in a 2D texture map.
However, the size of the parent nodes can be quite a bit larger de-
pending on the implementation details. A simple implementation
will require up to eight pointers in the parent nodes. At four bytes
each, these nodes are significantly larger than the leaf nodes. The
overhead of the pointers can be reduced by using a pointerless oc-
tree [Samat 1991]. These representations use less memory than the
traditional pointer-based tree. In addition, storing extra data in a
leaf node (such as normal information) increases the size of that
node.

The size of an octex will be larger than the best 2D texture in
cases where there is a good 2D mapping and when the texture is of
uniform detail. A simple square is very easy to texture using a 2D
image. When the texture contains uniform detail and the smallest



detail is 0.1% of the area of the square, the 2D texture map will
require 1 million pixels, approximately 3MB of memory. For the
same simple object, the octex will be larger. There will still be
1 million leaf nodes using the same 3MB, but there will be some
cost for the parents. In this case there will be about 1/3 as many
parent nodes as leaf nodes since each parent node will only have
4 potential children. Since all potential children will exist, those
parents will not have any colors. Using the simple pointer-based
octree, they will require 4 pointers to their children which cost an
additional 5.3MB.

The overhead cost of the tree is variable, depending on the uni-
formity of texture detail. For uniform textures, all potential children
will be created. The number of parent nodes in a tree of depth d is:

d−1

∑
k=0

nk =
nd−1
n−1

where n is the branching factor. When n is the maximum of 8, the
octex has an overhead of 14% in terms of the number of nodes. In
practice, we have found that a typical surface mode is locally flat.
This means on average there are only about four potential children
in most of the nodes. In this case, if the tree were built down to a
uniform depth, the tree overhead would be about 33%.

Figure 6: 2D texture map used in figure 9a. Note the wasted space,
distortion and discontinuities.

A texture is rarely uniform in its detail across the surface. Unlike
the octex, the traditional 2D texture wastes quite a bit of space to
account for the high-detail regions, and space will also be lost to
areas not used by the parameterization (figure 6). The overhead of
the octex can be amortized across multiple textures by storing them
in the same tree. When there are N textures in the same octex, the
overhead cost per texture shrinks by a factor of N.

Suppose that the 1 million pixel texture above is all white except
for one pixel. The 2D texture will still cost 3MB in memory. How-
ever, the octex will be very small, just one leaf node and 10 parent
nodes which can be less than 50 bytes! Real-world textures are not
so extreme, but highly non-uniform texture detail is very common.

In order for the cost of the octex to be totally negated, and the oc-
tex to actually have fewer nodes than the corresponding 2D texture
has pixels, we only need a small portion of the model to have one
level less detail than the most detailed region. Assuming all nodes
are of equal size, the break-even point is when:

d−1

∑
k=0

nk +x∗nd = nd

where x is the percentage of leaf nodes which are at the full depth

of the octex, and n is the branching factor. This turns out to be just:

x =
n−d +n−2

n−1

For any reasonable depth, and a typical branching rate of 4, x
will be two-thirds. For the octex to have fewer nodes than the 2D
texture has pixels, just one third of the leaf nodes need to be at one
level less than the maximum.

For example, when texturing a creature, more detail would prob-
ably be painted on its face than on its feet, even though both areas
are likely to have similar geometric complexity. For an octex to be
smaller in memory than traditional 2D textures, some of the texture
needs to have less detail than the most detailed regions to negate
the overhead cost of the octex. The data structures for parent nodes
are typically larger than those for a single pixel, thus the octree will
usually require more memory than the visually equivalent 2D tex-
ture. The octex does grow at the same rate as the 2D texture as
details are added, therefore doesn’t have the excessive growth nor-
mally associated with volume textures.

8 Examples and Results
We have implemented these techniques in a 3D paint program and
a very simple software scan-line renderer. The only octex-specific
part of the renderer is a shader that loads and samples the octex files.
All images use four samples per pixel. All speed measurements
were taken on a 1 GHz Pentium III.

The 3D paint program allows the user to load in any model and
immediately begin painting. To rapidly preview the model, the oc-
tex is sampled at the vertices of the model and is drawn using inter-
polated vertex colors. When painting begins, a high quality image
is generated using our scan-line renderer. The user can then paint
on the model, and the paint is applied to the octex.

Figure 7 shows a model with a complex topology along with a vi-
sualization of its octex at several points during the painting process.
Initially the texture was roughed in, resulting in a coarse octex. As
the texture was refined, the nodes in the tree become smaller and the
structure of the model became evident. The final octex has 947,650
nodes, 715,763 of which are leaf nodes. The average number of
children per parent node is 4.08.

Figure 8 shows an animating model. This is a simple cylinder
that is bending to the left and wrinkling a bit as it bends. The texture
sticks to the model appropriately.

Figure 9 shows a creature textured with a 2D map, and the same
creature textured with an octex. This creature took about 6 hours to
model. Preparing the parameterization for the standard 2D texture
maps initially took 3.5 hours, plus about 2 hours to repeatedly go
back and adjust them. The mapping was made from an edge cut
along the middle of the underside of the creature and down each leg,
attempting to hide the seam. The texture coordinates were edited by
hand to get the best mapping. Due to their length, the legs were not
getting a large enough portion of the texture map, so additional cuts
and edits were needed. Sometimes multiple 2D maps are used to
avoid wasted space and to better fit the geometry at a consistent
resolution, but introduce many more discontinuities. All told, the
mapping process took nearly as long as modeling the geometry.
Even in the final mapping (figure 6), there are still artifacts due to
the parameterization.

The creature’s octex has approximately 3 million nodes, 2.24
million of which are leaf nodes. There are roughly twice as many
leaf nodes in the octex as there are pixels in the 2D texture map.
The average number of children per parent node is 3.92. Not all
potential children have been created, indicating that the texture de-
tail is not uniform. The images were rendered at a resolution of
2048x1200. The traditionally mapped images took 1 minute 37
seconds to render, while the octex images required 2 minutes 43



Figure 7: Model with complex topology and its octex at various stages in the painting process. Note how the octex becomes more detailed as
more detail is added to the texture. Holes in the refined surface represent potential children that have been unnecessary to create, as only leaf
nodes are shown. The final image in the sequence is the actual model with the painted texture.

Figure 8: Several frames from an animated sequence of a bending cylinder. The octex behaves correctly when applied to a deforming model.

seconds. The octex images render 68% slower than the traditional
texture maps. This represents the increase in time to sample an oc-
tex as opposed to a simple 2D array. The 2D texture takes 1.85MB
losslessly compressed, and the octex is 7.4MB, also compressed
without data loss.

9 Conclusions and Future Work
We have presented a texture storage, painting, and rendering tech-
nique that is free from the issues of parameterization between dis-
parate topologies. We have shown how our method allows for the
texture to be exactly as detailed as the paint that created it. While
the structure of the texture data is more expensive than a traditional
2D map, it is significantly cheaper than a full 3D volume texture.
We consider the expense incurred from the size increase to be well
worth the time saved by eliminating the solution of iterative param-
eterization adjustments.

There are several areas of expansion and improvement open to
this method:

• Time repainting a model changed during production could be
reduced if data within the octex were able to shift to match the
areas where the model had changed.

• Filtering and sampling could both be improved. Since the oc-
tex represents a 3D extension of MIP mapping, an improve-
ment on 2D MIP mapping [McCormack et al. 1999] may be
applicable. The use of more sophisticated filter kernels will
also be required.

• Allow paint to be stored not only at the surface position, but
also at a location displaced along the surface normal. For ex-
ample, a creature’s skin texture would be painted normally,
but the texture of muscles and fat under the skin could be
paintedbeneatha model’s surface. This sub-dermal color
could be blended with the skin color during rendering.
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