
Accelerating Volume Rendering With Quantized Voxels

Benjamin Mora, Jean-Pierre Jessel, René Caubet

Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse Cedex 4, France

Abstract

We present here a new algorithm for accelerating volume
rendering with an orthographic projection. Because volume
rendering handles huge data sets, a reduction in the computational
cost of voxel projection is required to obtain interactive volume
rendering. We satisfy this issue by using the possibilities of
orthographic projection that allows the quantization of voxel
positions by subdividing the pixels. The same projection
properties are given for all the voxels with the center falling
within the same pixel subdivision. In contrast with classical
algorithms that require several instructions to compute either the
next traversed voxel or the next rasterized pixel, our method needs
only one addition instruction and one addressing instruction that
is sufficient to determine one projected pixel. Splatting can also
have a decisive advantage of it. Our algorithm is well suited for
low-end platforms when no hardware acceleration is available.
Experimental results show that our rendering rate is better than
other existing methods. This algorithm might allow obtaining
real-time volume rendering on conventional computers soon.

.H\ZRUGV�� Volume rendering, splatting, interactivity,
orthographic viewing, low-end platform, quantization,
rasterization.

1 INTRODUCTION

Literature on volume visualization has prospered during the
last decade. Recently, most publications have focused on
hardware accelerated algorithms [18, 20], because they fully take
advantage of the brute computational power. The latter is
available through either 3D texture mapping hardware or custom-
made architectures. It results in an interactive rendering with 2563

volumes, which is not possible on low-end PC platform yet.
However, there are several drawbacks with hardware acceleration,
and price is the first one (while graphics workstations using 3D
textures are expensive, custom-made architectures are really out
of price for the end-user). On the other hand, personal computers
become increasingly impressive. Soon, the solution might come
from plugged cards [19], but nowadays we mustn’t avoid pure
software algorithms that make volume rendering available on
every platform.

In this way, if one has to implement a fast volume rendering
algorithm, two kinds of methods are available: image-order
[3,8,16] and object-order [9, 10, 11, 22]. While the object-order
algorithms determine the contributions of each voxel on the image
plane, the image-order algorithms compute each pixel one by one.
Thus, advantages and disadvantages result from both of them.
Image-order techniques take advantage of an easy and fast way of
traversing data in order to obtain a good image quality. The main
drawback is that one voxel can be encountered either several
times or never, which is impossible with object-order techniques.
Furthermore, a coherent run of the memory is possible with the
latter. However, the object-order methods have the great
disadvantage of an expensive computational cost for projection
processing. Efficient schemes have been studied, and the shear-
warp rendering [9, 19, 22] is currently considered as the fastest
software algorithm. Nevertheless, it also has several gaps, and we
will demonstrate further the superiority of our method in most
cases.

Thus with the aim of choosing the best way to implement an
algorithm, technical hardware specifications of the platform must
be parsed. Personal computers suffer from two kinds of
restrictions that affect the rendering frame rate. First, the
computational power, which has been increasing, is still limited.
Furthermore, the memory bandwidth and the memory latency are
also a problem in the rendering of large data sets. While reduction
of the computations seems possible, reduction of the memory
bandwidth is more difficult, if we except frequency domain
renderings [5]. Thus, methods exist in order to either treat the
only significant voxels or bypass hidden voxels, but there is
always a minimal number of voxels to compute, especially when
the volume is semi-transparent. Furthermore, the memory
performances do not increase as much as processor performances.
It therefore seems obvious that in most cases, object-order
algorithms are more appropriate with personal computers because
less memory bandwidth is required. Our method is based on this
principle.

Therefore, an object-order algorithm must perform a fast
voxel projection in order to be efficient. The fastest way seems to
be the shear-warp method because one voxel fits with one pixel of
the intermediate image. However, several quality drawbacks
appear in this method. First, the two needed resampling steps blur
the image and then some information is lost. Secondly, voxels are
used as faces during the projection, and then some artifacts appear
according to the viewpoint. Third, one ray per voxel limits the
image quality. Other object-order methods, like splatting [10, 15,
17, 22], are more expensive, but produce better images. It is
obvious that speed and quality are always conflicting.

This paper shows that it is possible to reduce greatly this
conflict by using quantized voxels, which allow fast projections of
voxels, even if a good image quality is required. Section 2 of this
paper explains the main idea of quantized voxel and how to apply
it to the voxel projection and to splatting. Section 3 focuses on
some implementation choices and section 4 gives the first results
of this new method. Finally, analysis and comparisons with other
algorithms are done in section 5, which show the competitiveness
of our algorithm in most cases.

2� ALGORITHM

2.1 Principle

Preprocessed tables are well known from the programmers as
function accelerators. An understandable example is the cosine
function where tens of clock cycles are needed. The use of a
lookup table allows a result to be obtained immediately (i.e. 1
cycle if the data is into the cache). It is of course an approximate
result, and the accuracy depends on the table size. It is acceptable
or not, according to the application requirements.

We use this idea for accelerating the processing of the voxel
projection. Each voxel is reduced to a quantized voxel before
being processed. The “quantized” adjective means that there is a
limited set of distinct voxels that is assumed to be representative
of all the voxels. Every quantized voxel has its own properties like
color, position, and orientation. Fortunately, these properties are
often independent, which allows the separated quantization of
properties. The use of quantized values for accelerating volume
rendering is not new, especially for opacity and shading [4, 9],
where lookup tables are often used. However, it has never been
extended to the whole voxel processing, and to voxel projection in
particular, which is the focus of our article. This can be performed
by constraining volume rendering to orthographic projections,
because the same view (see fig. 1) is available for all the voxels
[11]. This restriction is often used [9, 11, 19], since perspective
projection is unneeded in most cases. Therefore, it is possible to
reduce any voxel to a quantized voxel that has close properties,
with a minimal error. Because both quantized voxel properties are
well known and quantized voxels are limited, all the information
that is required for voxel treatment can be quickly preprocessed.
Then each time a voxel is projected, appropriate tables give values
like color, pixel address, etc…

As mentioned above, quantifying properties is possible when
properties are independent. Our paper focuses on the projection
quantization that allows a fast rasterization scheme. Section 2.2
describes how to perform an efficient projection of the voxels, and
section 2.3 extends it to splatting.

2.2 Projection of Voxels

Projection of voxels is much time consuming. This is why
quantization of the position property can accelerate volume
rendering greatly. We use an orthographic projection in order to

perform this quantization. By considering that voxels are
parallelepipeds, then the voxel projection is delimited by a convex
hexagon that varies only according to the viewpoint. Thus the
projection of each voxel is a translated copy of a template
hexagon (see Fig. 1).

Figure 1:Orthographic view of a voxel and its projected hexagon.

We are now going to introduce several symbols for a better
algorithm understanding. All these symbols are defined into the
2D image plane.

In the aim of making a quantization of the position property,
the center of the projected hexagon is chosen as criterion. Let T be
the template hexagon of the voxel projection, H(C) denotes the
translated hexagon of T, with the C point as center. The IN
operator is given by:

 IN (hex, p) = True The p point is within the hex hexagon

 IN (hex, p) = False Otherwise

(1)

The area of effect concept is introduced now. Let P be any
pixel of the image plane, its area of effect (on the image plane) is
given by:

AOEH (P)= {C | IN (H (C), P)=True} (2)

It can be summed up as follows: the P pixel belongs to the
H(C) hexagon (i.e. P is within the voxel projection) if and only if
the C projection of the voxel center belongs to the P area of effect.
It is obvious that the area of effect shape only depends on the
template hexagon shape. An interesting property of the template
hexagon is that its center is a symmetry center. Hereby, AOEH (P)
is equal to H(P) in fact (we do not demonstrate it). Figure 2 shows
an example of the areas of effect of the image pixels.

Thus, it is possible to relate the image pixels to a voxel
projection represented with a C center. It is defined by:

Projection (C)={PL | IN (AOEH (PL), C) = True} (3)

T

The equation (3) states that a point list can be associated with
a C projected center. This list is created by looking for all the
areas of effect (see fig. 2) that contain the C point. If we suppose
the position of the C projected center has a limited number of
states (i.e. the center position is quantized), then each state can be
associated with a point list describing the projected pixels. These
lists will be created during a preprocessing step and will be used
for solving the voxel projection.

Because the image plane areas of effect are repetitive, as
shown in figure 2 (a) above, quantization can be reduced to a
square formed by four neighboring pixels. So now, the point lists
must be expressed relative to the square position. The edges areas
of effect crossing this square divide it into several regions. Then
one unique point list per region can be used, wherever the
projection of the voxel center points at within a region. However,
it takes much computation to solve exactly the region to which the
center projection falls. This problem is solved by subdividing the
square and by associating point lists with each subdivision. Figure
2 (b) shows that there are two kinds of subdivisions. First, an
empty subdivision (free of edges) ensures that the same point list
can be used for any voxel center that falls within this subdivision.
Next, there are subdivisions crossed by an area of effect edge.
This case requires additional computations because the side,
which the projection of the voxel center belongs to, must be fixed.
It can be done only during the voxel projection by solving the
equation (5), where a, b and c are the edge equation parameters
stored in an array (during the preprocessing step). The x and y
values are the projection coordinates (related to the square) of the
voxel center.

This test, which is done for each edge of the subdivision,
takes two multiplications, one addition, and one comparison.
Fortunately, the more the subdivisions are, the greater the

probabilities of falling into an empty subdivision are. It results
that this additional computation does not increase perceptibly the
rendering time.

Thus, two lists per subdivision are required in fact for solving
a voxel projection: a list of pixels within the projection and a list
of undecided pixels. Because the undecided pixels need to
perform tests (5), an equation number referring to an equation list
is associated with each undecided pixel.

)DVW�,PSOHPHQWDWLRQ

Because the efficiency of our algorithm clearly depends on its
implementation, we give some details about it here. Therefore,
several parameters must be taken into account. For example, each
time a voxel is projected, our algorithm accesses preprocessed
tables several times. Consequently, it is important that all the
tables remain into the data cache during the execution. This
constrains us to choose tables as small as possible and the
subdivision size must be considered carefully.

In order to reduce the table size, a segmentation of the
subdivided square is done during the preprocessing step. It results
from the fact that many subdivisions have the same properties
(point list), and thus they can be regrouped. Subdivisions are
classified according to the area of effect edges with a region-
growing algorithm. Therefore, a class number is given to each
subdivision (see fig. 2) instead of storing two point lists per
subdivision. In practice, the number of classes is very low, and
rarely exceeds one hundred. For example, the figure 2 square can
be segmented in nineteen regions: five empty regions, eight
regions that are crossed by one line, and six regions that are
crossed by two lines. Therefore, one octet is enough to store the
class number and the subdivision size can be set to 64 or 128,

F\E[D −≥+ .. (5)

pixels

template
hexagon

class number

1 1
1 1 2

2

1 1 2
5
5

5

433 5

5
5
5
5

.
.
.. .

.

.

.

..

(a) (b)

Figure 2 : Quantization of the image plane areas of effect.

a pixel area of effect

which take respectively 4 Kb or 16 Kb in memory. Point lists are
reduced too, because there is only one list per class. However, a
small list of edge equations is needed by classes that are crossed
by one edge at least.

The point list implementation must also be optimized. Storing
two relative coordinates per pixel would be a naive
implementation. Instead of this, a pixel can be addressed by a
single integer coordinate that is related to the square. This method
demands the image dimensions to be known, but allows a better
efficiency of memory addressing. For example (see fig. 2 right
part), if the size of the image is 512í512, then the top left corner
pixel will be referenced with 0 (0í512+0), the top right corner
pixel with 1 (0í512+1), and the bottom right corner pixel with
513 (1í512+1). In that way, the ith pixel affected by the voxel
projection can be indexed as following:

Pixel_Coordinate = Square_Coordinate + A[i] (4)

A is an array of integer values associated with the subdivision
affected by the projection of the voxel center. Because the pixel
coordinate and the square coordinate are also integer values, it
takes only one addition and one addressing operation a pixel.
That’s the reason why our method is so fast, as the section 4
proves.

Until now, we have not explained the preprocessing steps that
compute the projection lists. Because several methods are possible
to make these lists, we quickly describe here the algorithm we use.
It can be divided into three steps. First, a rasterization step
computes the intersections between the square subdivisions and
all the edges of all the areas of effect around this square. It results
in one temporary edge list per subdivision that allows a
segmentation step where the subdivisions are classified (the edge
list is used as criterion). Once the classification is made, it only
remains to set the point lists for each class. The undecided pixel
list of a class is quickly determined from the edge list. The sure
pixel list is set by taking an arbitrary point of the square belonging
to the class and by looking for all the areas of effect that contain
it. Although the preprocessing time is subdivision size dependent,
results show that our implementation takes a very short part of the
rendering time.

2.3 Splatting Application

Splatting is a powerful object-order algorithm that provides
high quality images, but it is not currently fast enough to achieve
interactive volume rendering. We show that using quantization
allows splatting to reach an interactive frame rate. The main idea
is the same as previously, but instead of projecting hexagonal
shapes, we use fuzzy splats with a gaussian kernel.

An important factor slowing the splatting algorithm is the
calculating of the voxel contribution into the screen plane. A
footprint table is nowadays largely used for accelerating splatting.
Pixels are mapped into the footprint table in order to calculate the
voxel energy. However, it requires several instructions per pixel.
Thus 7 additions and multiplication per pixel are used by [15],
without allowing for addressing instructions. Our algorithm

performs only 2 addressing instructions (with cache hits) and 1
integer addition per pixel, which is greatly faster than other
existing methods.

 Like in section 2.1, a template square, formed with four
neighboring pixels, is subdivided. Then it is assumed that every
splat falling in the same subdivision behaves as the splat adjusted
on the subdivision center (fig. 3). This quantized behavior is
represented with two lists a subdivision. A first list stores the
pixel indices (cf. section 2.2) that indicate which pixel is affected
by the splat. The second list gives the kernel function value
associated with the pixel index. These lists are calculated each
time the view point changes. However, this preprocessing step is
very fast.

Rendering is made as the previous algorithm, except that the
weight value is now integrated to the shading processing, and no
correction (5) is needed.

Figure 3: Splatting quantization.

(UURU�2YHUHVWLPDWLRQ

Actually, the splat center never falls on a subdivision center,
so the position quantization makes an error. The following proves
that this error is both measurable and low.

Our algorithm uses a gaussian function (6) as kernel. This
function is continuous and derivable at each point.

These properties permit us to use the following theorem:

�� �� �� �� � � �

I����

�� �� � � ��

I���� I���� I��� I��� I���I���ZHLJKW

LQGH[

SL[HOV

KD[IK[ID[I[.)()()(, 00 ≤−+⇒≤′∀ (7)

HE[I .)(= (6)
2.[U−

This theorem states that if we solve the maximum value of the
derivative function, we can overestimate the error made by a
translation of an h value. So the derivative of f (x) is needed:

Solving the extreme values of a function is generally done by
finding values such as the derivative is equal to zero. The
following result is given without demonstration:

With equation (8) and (9), we can then overestimate the
derivative. Let n the subdivision factor of the square, the
maximum distance between any point of a subdivision and its
center is:

 Finally, mixing (7), (8), (9) and (10) gives the error
overestimation:

This error is valid for a pixel, but it is also an overestimation
of the final pixel color. It can be proved easily by considering the
final color as a weighted sum of erroneous colors. Therefore, we
do not demonstrate it here.

A numerical example is now performed to illustrate the
algorithm accuracy. The b value is set to 0.446 and r is set to 2.0
[22]. The subdivision factor is set to 32 (i.e. 1024 subdivisions in
all), which seems to be a good compromise. The error
overestimation is then 0.012. This error is practically invisible
because it is assumed that the standard human eye can’t
distinguish more than 64 gray levels. Furthermore, the mean value
is amply under this score because it is an overestimation.

3 IMPLEMENTATION

This section describes choices that we made in order to get a
fast implementation of the two algorithms presented.

3.1 Shading

Shading provides additional clues for the image interpretation,
especially when one wants to visualize surfaces. However, its
complexity prohibits interactive volume rendering. So, a
simplified model must be chosen. Again, quantization is used to
solve this problem. Normal vectors are mapped into integer values
during a preprocessing step [4] that is only performed one time
every volume. Then, a look-up table converts voxel normal
vectors to color values [9]. This table is quickly preprocessed
each time the viewpoint and the lightning are modified.

A look-up table is also be used to both classify voxels and
return opacity values. Therefore, an interactive classification of
the volume is possible. Finally, voxels are treated as uniformly
shaded.

3.2 Skipping Transparent Voxels

Several techniques have been used [9, 16] in order to skip
transparent voxels efficiently. A run-length encoding of the
volume is widely used, but suffers from the fact that it needs to be
calculated each time the voxel classification changes. Our
approach uses a hierarchical two-level grid. Each first-level
element is made of a voxel grid and a discretized vector grid.
Furthermore, the element stores the minimum value of the voxel
grid, which permit to avoid empty spaces. This grid is computed
only once for all the volume.

3.3 Volume Traversal

A back-to-front traversal of the volume is chosen. Its
advantage is that an accumulation buffer is not needed. Alpha-
blending operations are then simplified. The main drawback is
that skipping hidden voxels, as in front-to-back methods, is
impossible. So front-to-back algorithms are optimized for surface
rendering, while back-to-front algorithms are optimized for semi-
transparent rendering. A front-to-back implementation of our
algorithm for faster rendering of surface is possible, but it will not
be discussed here.

In object-order algorithms, voxels are treated one by one. The
advantage is that the projected center of the voxel is quickly
computed from the previous one by performing an addition for
each coordinate. Then, determining the subdivision is easily done
with an arithmetic computation of the coordinates.

4 EXPERIMENTAL RESULTS

The first results of our new volume rendering method are
given here. Two techniques are presented. First, voxels are
projected using the algorithm described in section 2.2. The second
one is dedicated to the splatting algorithm (section 2.3).

Three platforms have been tested. A Pentium II Xeon at 450
MHz, which currently represents the standard low-end PC
platform, states as the reference. In order to compare from other

U
[[I

2

1
0)(±=⇒=′′ (9)

2

1

Q
(10)

HQ

UE≤ε (11)

(8)H[EU[I2)(−=′
2.[U−

existing methods, we use a SGI indigo 2 workstation with a
R4400 processor clocked at 250 MHz. Finally, our program has
also been run on a SGI octane workstation with a R10000
processor at 175 MHz.

Two medical CT data sets have undergone the tests. A well-
known 256í256í225 head data set will allow us to compare our
works with others classical algorithms in section 5. We also use a
bigger 512í512í85 torso data set for more results.

Five renderings have been performed from these two data sets.
First, the skull was rendered with a binary voxel classification that
does not require pixel accumulation. For a better image quality,
the skull has also been rendered with a fuzzy classification. Then
accumulation is now needed. After that, a face threshold has been
applied on the head data set, and the rendering was performed
with both voxel projection (binary classification) and splatting.
Finally, a semi-transparent torso result gives us more information.

Now some compilation parameters are given for more
understanding. The number of subdivision is 64 for the voxel
projection renderings. This number is reduced to 32 for splatting
renderings, in order to keep data in cache. The normals have also
been discretized into 8192 different values. The resultant images
are made of 512í512 pixels. Finally, the program has been
written in C language without using SIMD specific instructions.

The speed results are showed in Table 1. Times include all the
rendering pipeline (i.e. classification, preprocessing an rendering),
and times are averaged according several viewpoints.

Table 1: $YHUDJH� UHQGHULQJ� WLPHV� �LQ� VHFRQGV�� LPSOHPHQWHG� RQ
WKUHH�SODWIRUPV.

Data Set PII Xeon R10000 R4400

Skull 0.23 0.53 0.75

Skull (smoothed) 0.28 0.65 1.3

Face 0.95 2.2 3.7

Face (Splatting) 3.6 5.2 9.7

Torso 1.3 2.6 4.8

The second table indicates the different preprocessing times.
The skull values are equivalent to the face values and so, results
are not shown here.

Table 2: $YHUDJH� WLPHV� RI� WKH� SUHSURFHVVLQJ� VWHS� DFFRUGLQJ� WKH
SODWIRUP�DQG�WKH�PHWKRG�

Data Set PII Xeon R10000 R4400

Face < 0.01 < 0.01 0.04

Face (Splatting) 0.06 < 0.01 0.04

Torso 0.01 < 0.01 0.01

The third table gives the number of voxels that are computed
for each rendering. The treated column gives the number of voxels
contributing to the final image, while the inspected column
informs us about the total number of voxels that are analyzed. The
difference between these two columns rates the two-level grid
efficiency.

Table 3: 1XPEHU�RI�YR[HOV��LQ�WKRXVDQGV��WKDW�DUH� LQVSHFWHG�DQG
FRPSXWHG�

Data Set Treated Voxels Inspected Voxels

Number % Number %

Skull 912 6.2 2300 15.6

Skull (smoothed) 1132 7.7 2660 17.6

Face 4330 29.3 6224 42.2

Face (Splatting) 4330 29.3 6224 42.2

Torso 6030 27.0 8532 38.3

5 DISCUSSION AND COMPARISON

This section discusses the previous results and compares them
with two other algorithms [16, 23] for a better interpretation.

The table 1 shows that the first advantage of quantized voxels
is speed, as it was expected in section 2. With the projection
method, we can see that the maximum reached frame rate is 4
Hertz with a 256í256í225 volume (skull rendering), and full
data rendering is around one second, which allows a highly
interactive tool. Splatting takes also advantage of it, but it is
slower because the splat size is greatly bigger than a voxel
projection. However, splatting is rendered interactively, which
was not possible before with standard computers, and quality is
added to the image. We will discuss about quality only in the
comparison section because this factor is more difficult to
evaluate.

One can be surprised of the performance gap between the
Pentium processor and the fast R10000 processor. It seems that
our algorithm take advantage of the full speed L2 cache
architecture of the Pentium. Furthermore, it is well known that the
integer pipeline of R10000 processors is less efficient than
Pentium processors. Therefore, it seems obvious that our
algorithm is well suited to PC platforms.

Preprocessing times are given in table 2. This time is
independent of the number of treated voxel, and this is the
minimum rendering time that one can expect. Results indicate that
this stage does not increase significantly the rendering process.
Better still, it will not interfere with real-time volume rendering if
the data set is reduced.

In order to perform an interactive classification, a hierarchical
two-level grid structure has been used. However, table 3 shows
that this method is not really perfect. Thus, regarding the skull
rendering, only 6 percents of voxels are projected, but more than
15 percents are analyzed. It appears that the lower the number of

treated voxel is, the less our structure is efficient. A min-max
octree could be a better approach [9], but it goes beyond the
subject. This paper is focussed on the acceleration induced by the
quantized voxels. In that way, the torso rendering example proves
it. Up to four millions and half voxels can be shaded, accumulated
and projected in one second.

Comparisons

Now, a comparison of the quantized voxel method with other
algorithms [16, 23] is made. Shear-warp [9] is chosen because it
is currently considered as the reference method in software
volume rendering. The second approach referenced here is a
recently published ray-casting algorithm [16]. It is easier to make
a comparison by using both the same head data set and similar
processors.

A shear-warp implementation is presented in [23]. The used
computer is a SGI indigo 2 workstation at 150 MHz. The given
average time is 2.19 sec. for a fast classification algorithm. Our
skull rendering is achieved in 0.75 sec. on the same workstation,
but clocked at 250 MHz. By interpolating this result (but
performances never increase linearly to the frequency), we might
expect a rendering time around 1.25 sec., which is superior to
shear-warp. Nevertheless, while the shear-warp image is rendered
on a 256í256 image, ours is obtained on a 512í512 image.
Furthermore, our threshold setting includes 6 percents of voxels
of the entire volume, whereas the shear-warp tests only considers
5 percents. These facts allow us to say that quantized voxels are
greatly faster than the shear-warp.

A quality comparison is more difficult to achieve, and results
are often subjective. So, the reader is invited to refer to the
compared articles in order to make his own opinion. Because our
method uses a flat shading when voxels are projected, a poor
image quality may be expected. If it is true that the image is
aliased, it seems that more details are visible (teethes) in our
rendering than the given image in [23]. It can be explained both
by the fact that we use a bigger resolution, and because shear-
warp made two resampling steps, that partially blurs the image.
The first resampling stage happens when slices are processed on
the intermediate image. Every voxel of a slice has the same
resampling that leads to a reduced image quality. For example,
when all weights are equal, it is a well-known blurring filter that
is applied to the projected slice. The intermediate image must also
undergo a resampling step before becoming the final image.

Nevertheless, a comparison wouldn’t be complete without a
study of a ray-casting algorithm. A very efficient ray-casting
implementation seems to be [16]. A boundary encoding structure
encloses the interesting voxel. Therefore it is possible to project
the boundary voxels in a preprocessing step in order to
determinate both the viable rays, and the beginning voxel of each
ray. This algorithm quickly skips empty voxels.

An implementation has been made on SGI power challenge
with R10000 processors at 195 MHz. The given time of the skull
rendering is 0.47 sec, while our method obtain 0.53 on a 175
MHz processor. So times can be considered equivalent, but, the
ray-casting image size has only 256x256 pixels, and interactive
classification is not activate for this rendering. Furthermore, these

renderings greatly favor ray-casting algorithms because early ray
termination is often possible, while our method does not take
advantage of it (see section 3.3). In spite of everything, our
method is still competitive.

Quality comparison is now more difficult to achieve. Because
trilinear interpolation is used in [16], one can expect a very good
image quality, which is really the case on the proposed images.
However, the low resolution of this image can limit this factor.
Our skull rendering is more aliased, but combining both a fuzzy
classification of the skull and a higher resolution greatly reduce
this problem for a minimal performance penalty. Then, quality is
as good as a low-resolution ray-casting.

Splatting takes also advantage of quantization. The splat
quantization avoids the footprint rasterization that is time
consuming. Thus splatting is accelerated as never before, up to ten
times faster, and interactive splatting is now conceivable. Our
implementation shows that it is possible to render more than one
million voxels per second on a low-end processor. We do not
make any splatting comparison, because time differences are
really too large to be compared [15, 17].

6 CONCLUSION & FUTURE WORKS

We have proposed a new method for fast estimation of the
voxel projection by quantifying the voxel positions. Results
clearly show the speed superiority of our method compared to
existing methods, due to a high fill-rate. We demonstrate that
interactive volume rendering is nowadays possible on low-end
platforms. Furthermore, we present a variation of this method
oriented to splatting that clearly outperforms the classical use of
footprint tables. Splatting can be considered as a fully interactive
method by now.

This paper could be a way to a new kind of algorithm that is
based on quantized voxels. Soon, it should be possible to obtain
real-time volume rendering on 2563 volumes. We are investigating
methods to map this algorithm into perspective rendering, which
seems to be a hard task, and for increased surface rendering and
image quality.

7 ACKNOWLEDGEMENTS

We thank the CIRAD (Montpellier, France) for their
contribution through the C2000 software.

References

[1] W. Lorensen and H. Cline, “Marching cubes: A high
resolution 3D surface construction algorithm”,
SIGGRAPH’87, 1987, pp. 163-169.

[2] J. Kajiya and B. Von Herzen, “Ray tracing volume
densities”, SIGGRAPH’84, July 1984, pp. 165-174.

[3] J. Amanatides, A. Woo, “A fast voxel traversal algorithm for
raytracing”, Eurographics’87, 1987, pp. 3-9.

[4] A. S. Glassner, “Normal coding”, Graphics gems, Academic
press 1990, pp. 257-264.

[5] Takashi Totsuka and Marc Levoy, “Frequency domain
volume rendering”, SIGGRAPH 93, 1993, pp. 271-278.

[6] N. Stolte and René Caubet, “Discrete ray-tracing of Huge
Voxel Spaces”, Eurographics’95, vol. 14, no. 3, 1995, pp.
383-394.

[7] M. Levoy, “Display of surfaces from volume data”, IEEE
Comp. Graph. & App., Vol. 8, no. 5, 1988, pp. 29-37, 1988.

[8] M. Levoy, “Efficient raytracing of volume data”, ACM
Transactions on graphics, vol. 9, no. 3, 1990, pp. 245-261.

[9] P. Lacroute and M. Levoy, “Fast volume rendering using a
shear-warp factorization of the viewing transformation”,
SIGGRAPH’94, 1994, pp. 451-458.

[10] L. Westover, “Footprint evaluation for volume rendering”,
SIGGRAPH’90, 1990, pp. 367-376.

[11] J. Wilhelms and A. Van Gelder, “A coherent projection
approach for direct volume rendering”, SIGGRAPH’91,
1991, pp. 275-284.

[12] P. Sabella, “A rendering algorithm for visualizing 3D scalar
fields”, SIGGRAPH’88, 1988, pp. 51-58.

[13] R. A. Drebin, L. Carpenter and P. Hanrahan, “Volume
rendering”, SIGGRAPH’88, 1988, pp. 65-74.

[14] D. Laur and P. Hanrahan, “A progressive refinement
algorithm for volume rendering”, SIGGRAPH 91, 1991, pp.
285-288.

[15] K. Mueller and R. Yagel, “Fast perspective volume rendering
with splatting by utilizing a ray-driven approach”, Proc.
Visualization’96, 1996, pp. 65-72.

[16] M. Wan, A. Kaufman and S. Bryson, “High performance
presence-accelerated ray casting”, Proc. Visualization '99,
1999, pp. 379-386.

[17] K. Mueller, T. Möller and R. Crawfis, “Splatting without the
blur”, Proc. Visualization'99, 1999, pp. 363-371.

[18] R. Westermann and T. Ertl, “Efficiently using graphics
hardware in volume rendering applications”,
SIGGRAPH’98, 1998, pp. 169-177.

[19] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer and L. Seiler,
“The volumepro real-time ray-casting system”,
SIGGRAPH’99, 1999, pp. 251-260.

[20] R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibsonv,
W. Hiatt and H. Ohkami, “EM-Cube: an architecture for low-
cost real-time volume rendering”, Proc. 1997
Siggraph/Eurographics workshop on graphics hardware”,
august 1997, pp. 131-138.

[21] R. Yagel and A. Kaufman, “Template-based volume
viewing”, Proc. Eurographics’92, vol.11, no.3, pp. 153-167.

[22] K. Mueller and R. Crawfis, “Eliminating popping artifacts in
sheet buffer-based splatting”, Proc. Visualization’98, 1998,
pp. 239-245.

[23] P. Lacroute, “Fast volume rendering using a shear-warp
factorization of the viewing transformation”, Technical
report, September 95.

Figure 5a : Volume rendering
of a face with voxel

projection (0.95 sec.).

Figure 6a: Zoomed volume
rendering of a face with

voxel projection.

Figure 5b : Volume
rendering of a face with

splatting (3.6 sec.).

Figure 6b: Zoomed volume
rendering of a face with

splatting.

Figure 8: Volume rendering
of a torso (1.3 sec.).

Figure 7a: Volume rendering
of a skull with voxel

projection (0.23 sec.).

Figure 7b: Smoothed volume
rendering of a skull with voxel

projection (0.28 sec.).

Figure 9: Smoothed volume
rendering of a skull with voxel

projection (0.28 sec.).

