
Interactive Solid Texturing using Point-based Multiresolution
Representations

Patrick Reuter
LaBRI - CNRS - INRIA
University Bordeaux 1

France
preuter@labri.fr

Benjamin Schmitt
LaBRI - CNRS - INRIA
University Bordeaux 1

France
schmitt@labri.fr

Christophe Schlick
LaBRI - CNRS - INRIA
University Bordeaux 1

France
schlick@labri.fr

Alexander Pasko
Dept. Digital Media

Hosei University
Japan

pasko@mail.com

ABSTRACT

This paper presents an interactive environment for texturing surfaces of arbitrary 3D objects. By uniquely using solid
textures and applying them to the surface, we do not require an explicit parameterisation in texture space. Various
solid textures can be combined by building a constructive texturing tree of space partitions to define the photometric
attributes at each location of the object. Though solid texturing using constructive textures is very powerful, mainly
because of its generality, it is quite difficult to use in practice as it is not well suited to interactive tools. To overcome
this limitation, we use a multiresolution point-based representation ensuring that texture evaluation and rendering
maintains a given frame rate. Our tool is realized as a plugin for the Pointshop3D system. The main advantage of our
texturing approach compared to Pointshop3D is that point-based rendering is only used during the interactive texturing
step. We always keep a feedback to the initial geometric representation of the object (polygonal mesh, parametric or
implicit surface, voxel arrays, or whatever) which means that the final textured object can be easily exported to standard
graphics software that cannot directly handle discrete surface points (e.g. CAD systems, photorealistic rendering
engines).

Keywords: solid texturing, point-based representations, constructive texturing

1 INTRODUCTION

The typical process used in the computer graphics industry
to create a realistic 3D object has not much changed dur-
ing the last twenty years. There are three principal steps
involved in this process: first, define the shape of the ob-
ject by creating a geometric representation, second define its
visual appearance by creating a set of surface or volume tex-
tures, and third, apply the textures all over the geometry to
get a nice-looking final object. A huge number of techniques
have been proposed to achieve the first step, a large number
of techniques have also been proposed to achieve the second
one, but only few methods have been proposed to easily and
robustly link the texture and the geometry.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Journal of WSCG, Vol.12, No.1-3., ISSN 1213-6972
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic
Copyright UNION Agency – Science Press

Except for some simple shapes and/or simple textures, this
third step is still a painful trial-and-error task to do for the
graphics designer, especially when the texture has to be-
have accordingly to the geometry changes in an animated
sequence.

In this paper, we propose a new idea that links the tex-
ture and the geometry of arbitrary objects during an inter-
active and intuitive process. This process combines two ap-
proaches previously developed in computer graphics: con-
structive texturing and point-based rendering. The first ap-
proach offers a general framework for texturing objects of
arbitrary nature (i.e. polygonal meshes, voxel arrays, para-
metric or implicit surfaces, and others), while the second one
offers a flexible way for rendering the surfaces of such ob-
jects. The combination of both approaches allows the de-
velopment of an intuitive tool for applying textures to geo-
metric shapes with interactive feedback. This interactivity is
guaranteed, whatever the complexity of the geometry and the
texture, by using a multiresolution representation of discrete
surface points extracted from the object, both for rendering
and for texture evaluation.

The remainder of the paper is organised as follows: Section
2 recalls some previous work on which we have built our

1



new approach, Section 3 presents our technique in detail,
Section 4 discusses some of our experimental results, and
finally, Section 5 concludes and proposes some directions to
future work.

2 PREVIOUS WORK

2.1 Constructive texturing

In [Schmi01], a general approach for texturing objects of ar-
bitrary nature, called constructive texturing, is introduced.

This technique consists in defining for a given object G a
partition � =

S
i
�i, where in each subset �i of the parti-

tion, a different set of photometric attributes is defined (am-
bient, diffuse and specular colours, reflectance and transmit-
tance coefficients, etc.). For each point of the object, one has
to be able to answer the following question: “Is this point
inside or outside a given subset �i?” In the affirmative case,
the photometric attributes corresponding to �i are applied.

One powerful solution for point membership classification
is to use the function representation (FRep, for short) model
[Pasko95]. With this model, each space partition �i is de-
fined by a function Fi, corresponding to an attribute Ai. The
only requirement of the FRep model is to define Fi as a C0

real-valued function, with negative values outside the parti-
tion, positive values inside the partition, and zero values on
its boundary. The defining functions Fi are usually built us-
ing a constructive approach, resulting in a tree structure, with
primitives at the leaves and operations at the nodes. This tree
can be seen as an extension of the classical CSG tree where
the user can easily provide his own set of primitives and op-
erations.

(a) textured cube (b) twisted geometry
and texture

Figure 1: The texture follows after applying a twist
operator.

The main advantage of constructive texturing is its general-
ity: it can be applied to polygonal meshes, BRep represen-
tation, parametric and implicit surfaces, voxel arrays, and
others. Moreover, the texture behaves accordingly to geom-
etry changes in animated sequences without creating distor-
tions as illustrated in Figure 1. On the other hand, the major
drawback of this approach is that the creation of the space
partitions is usually complex and rather painful. This is due
both to the constructive approach inherent to method, and to
the lack of interactive tools. Consequently, it is difficult for
a non-expert user to generate the nodes of the partition at the
desired location of the object surface.

2.2 Point-based rendering

Although the first use of points as rendering primitive can
be attributed to Levoy and Whitted in 1985 [Levoy85] and
to Szeliski and Tonnesen in 1992 [Szeli92], point-based ren-
dering has attracted growing interest since 1998 starting by
the works of Grossman and Dally [Gross98]. Further devel-
opments by Rusinkiewicz and Levoy [Rusin00] and Pfister et
al. [Pfist00] have generated dozens of papers recently. This
is due to the fact that modern graphics hardware has made
it possible to treat and render an order of magnitude higher
amount of points. A similar trend in the modelling field, that
could be called point-based modelling, can be detected in
a couple of recent papers [Pauly03, Reute03, Turk02]. The
main idea that links all these papers together is the use of
discrete surface points without explicit connectivity instead
of polygonal meshes. As the connectivity has no longer to
be managed, some common operations, such as multiresolu-
tion (level-of-detail) generation, geometrical deformations,
or topology modifications, are much easier to implement
with objects described by discrete surface points compared
to polygonal meshes.

2.3 Interactive surface painting and texturing

In the literature, several environments can be found, which
can be used to interactively paint or texture the surface of an
object. Surface painting environments are usually based on
a metaphor of the real painting approach, where one uses a
symbolic pencil or a brush to paint the object, the colour be-
ing applied is then evaluated according to a brush function
resulting in a realistic effect [Hanra90, Agraw95]. Surface
texturing environments require first to specify a location and
a direction on the surface, and second, to apply an existing
2D image. The latter step requires a local parameterisation
of the surface which is often a non-trivial task. Furthermore,
one has to think how to stitch the 2D images together with-
out distortion. Several solutions exist, Praun et al. [Praun00]
show how to repeatedly map a small texture on a polygonal
mesh using local overlapping parameterisations, and Turk
[Turk99] and Wei and Levoy [Wei01] show how to synthe-
sise textures on polygonal meshes.

In almost every existing surface painting and texturing envi-
ronment, a polygonal mesh or a parametric patch is required.
When the object is defined by polygons, no additional step
is needed. But if it is defined using another representation
scheme, a special preprocessing is required. For instance,
Pedersen [Peder95] proposes a general solution when the ob-
ject is defined as an implicit surface, where a local parame-
terisation is defined by estimating geodesics on the surface.
Witkin and Heckbert’s particle system [Witki94] can also be
used to establish a parameterization for texture mapping on
implicit surfaces [Zonen98].

One solution to avoid parameterisation when texturing sur-
faces of arbitrary objects is the use of octree textures de-
veloped recently [Benso02, DeBry02], where only the sub-
sets of volume textures actually intersecting the surface are
stored efficiently in an octree. However, the resulting tex-
ture is discrete and has a fixed resolution limit determined
by the depth of the octree. Moreover, an octree has to be
stored for every attribute, resulting in a significant storage



overhead. Nevertheless, octree textures can be easily inte-
grated in our software environment thanks to the construc-
tive texturing approach.

Another solution that does not require explicit parameteri-
sation is used in the Pointshop3D environment [Zwick02].
This innovating approach proposes to paint the surface of an
object which is defined as a cloud of points. By applying
a texture (2D texture, uniform colour, or other), the corre-
sponding surface points are coloured. The interactive pro-
cess of painting is intuitive, and good results are achieved.
However, as it is totally based on discrete surface points, this
approach suffers from a severe drawback: once the surface is
textured, the resulting object can hardly be exported to stan-
dard graphics software that cannot handle discrete surface
points (e.g. CAD systems, photorealistic rendering engines).

3 OUR APPROACH

3.1 Overview

The main advantage of solid texturing is that it can be ap-
plied on surfaces of arbitrary 3D objects without requiring
a parameterisation. On the other hand, creating complex
solid textures using constructive texturing and applying them
at the desired location of the surface is difficult for a non-
expert user. The lack of interactive and intuitive tools makes
this approach painful because it is hard to generate the nodes
of the texture partition according to the shape of the object.
This paper proposes a solution that solves this problem: its
basic idea is to let the user define the space partition by in-
teractively selecting points on the surface.

Interactivity is guaranteed thanks to the dual nature of the
multiresolution scheme being applied. First, as usual, the
multiresolution representation is used for rendering to main-
tain a constant frame rate. Thanks to the adaptive and flex-
ible multiresolution representation, areas of interest can be
rendered in a higher resolution than the other areas of an ob-
ject surface without causing connectivity problems. Second,
in addition to rendering, we also use the multiresolution ap-
proach in the texturing step: at low resolution, the user can
paint large parts of the object, and when the resolution is
increased, finer details can be painted. Moreover, the photo-
metric attributes can also be determined in a multiresolution
manner, thus, when texturing an object surface, visual results
are obtained rapidly in a coarser resolution before refining
them in a background process.

The procedure we have defined can be divided into 10 steps,
as illustrated in Figure 2. In a preprocessing step, discrete
surface points are extracted from a given object of arbitrary
type (step 1), and a multiresolution representation of the
cloud of discrete surface points is set up (step 2). After this,
the object is visualised in the adapted level-of-detail (step 3).
Then, the object surface can be textured by the user (steps
4-7), the photometric attributes of the surface points are up-
dated (step 8), and visualised (back to step 3). Finally, when
the user has finished texturing, the texture can be exported
(step 9) and used during postprocessing (step 10). Details of
these steps are given in the following subsections.

pr
ep

ro
ce

ss
in

g
po

st
pr

oc
es

si
ng

Visualization

us
er

 in
te

ra
ct

iv
e 

pa
in

tin
g 

re
al

−
tim

e
pr

oc
es

si
ng

2

1

3
(a)

crete surface points &
multiresolution set−up

of arbitrary type
Geometric model

Extraction of dis−

Update of
photometric

attributes

HyperFun Export

Add new node to the

tree
constructive texturing

(CAD, ray−tracing, ...)
graphics software
Use in standard

Point Selection

Selection of
material index

Primitive selection

(sphere, RBF, con−
volution surface, ...)

8

4

5

6

7

9

10

Figure 2: The different steps involved in our interac-
tive texturing process.

3.2 Preprocessing

Before texturing an object using a point-based rendering
technique, one needs to define a cloud of discrete points
on the object surface (step 1). The complexity of this pre-
processing stage heavily depends on the object nature. In
the case of polygonal or parametric objects, the extraction
is done in a direct manner as these representations explicitly
define the boundary of the object. In the case of other repre-
sentations, such as FRep, voxel arrays, or scanned data, one



needs to extract the corresponding isosurfaces. A large num-
ber of techniques exist for this task, such as polygonisation,
particle systems [Witki94], or ray-tracing applied to an ob-
ject. Moreover, some efficient resampling techniques have
been proposed in order to augment or lessen the number of
extracted surface points [Alexa01].

Once the cloud of discrete surface points is extracted, the
multiresolution representation is set up (step 2). This is done
not only for level-of-detail rendering, but also for progres-
sive evaluation of the constructive texturing tree. We use a
hierarchy of bounding spheres stored in a binary tree in spirit
of QSplat [Rusin00] which is built up in a top-down recur-
sive manner during preprocessing. This is done by splitting
the set of surface points along the longest axis of its bound-
ing box, recursively computing two subtrees, and finding the
bounding sphere enclosing two children spheres. In each
node, we store the radius of the bounding sphere and the sur-
face point lying closest to the barycenter of all surface points
in the bounding sphere. Note that the radius of the bound-
ing spheres at the leaf nodes is determined directly from the
sampling grid used for extracting the surface points.

Defining solid texture coordinates by discrete surface point
locations is prone to aliasing artifacts when high-frequency
textures are used, even at the highest resolution of the hierar-
chy. This is also true for the surface textures natively defined
in the Pointshop3D environment [Zwick02], but in contrast
to Pointshop3D, discrete surface points are only used in an
intermediate step to previsualise the textured surface. These
aliasing artifacts will not occur during postprocessing as il-
lustrated in Figure 3, where a high-frequency perlin noise is
applied to an FRep tiger object.

(a) Previsualisation (b) Final ray-traced image

Figure 3: Aliasing artifacts do not occur in postpro-
cessing.

Figure 4: A set of established space partitions shown
on the dinosaur statue.

3.3 Real-time processing

In order to ensure real-time processing, the evaluation of the
photometric attributes of the surface points as well as the
rendering itself has to be done in a given time. To meet this
requirement, the adapted level in the multiresolution hier-
archy, where the photometric attributes of all nodes can be
evaluated in the given time, is determined. This might not
be the highest level of the hierarchy, as the cost of determin-
ing the attributes for a surface point increases with the com-
plexity of the solid texture represented by the constructive
texturing tree. Then, the photometric attributes of all further
nodes and surface points of the multiresolution hierarchy are
determined (step 8) in a background process as indicated by
(a) in the algorithm.

In addition to choosing the adapted multiresolution level
with respect to the evaluation cost of the attribute tree, the
number of surface points which can be rendered by the
graphics hardware has also to be taken into account for effi-
cient visualisation (step 3). This cost might be rather small
when the projection of the bounding sphere of the surface
point falls on a single screen pixel. Even when the projection
of the bounding sphere falls on several screen pixels, the cost
might stay small using some hardware-accelerated splatting
technique [Rusin00], but increases when a high-quality splat
is drawn [Zwick01]. However, even high-quality splats can
now be drawn with hardware acceleration [Ren02] using
modern graphics hardware [Lindh01].

3.4 Texturing: user interaction

At this stage of the algorithm, the user textures the object
surface. This is done by choosing a material index for the
texture to be used (step 4), defining a space partition (steps
5 and 6), and adding the space partition as a new node in
the constructive texturing tree (step 7). We will detail these
steps in the following.

Selection of material index (step 4) First, the user selects
a material index for a solid texture that will be applied
in the space partition. Any kind of solid texture can
be used, varying from procedural textures, volumetric
textures, simple materials, and others.

Primitive Selection (step 5) Depending on the shape of the
space partition the user wishes to obtain, different
tools are available. By tool, we mean any primitive
that can be defined in the FRep model. The simplest
tools to define a space partition are the sphere and the
block. By using convolution surfaces for the space
partition, the user can texture the object with a brush
tool of a any size. With more complex primitives, the
user has even more control over the space partition to
define. For instance, by using variational implicit sur-
faces [Savch95, Turk99] defined by radial basis func-
tions (RBF), the user can define a volume including
all selected points. As an example, a textured object
and its corresponding space partitions of a dinosaur
sculpture can be seen in Figure 4.

Point Selection (step 6) In this step, the user selects the
surface points. These surface points are the param-
eters of the FRep primitive defining the space par-
tition. For example, by using the RBF primitive, a



space partition interpolating all the surface points is
determined. When the chosen tool is a brush, the se-
lected surface points define the skeleton of the convo-
lution surface for the space partition. When a sphere
is chosen, the selected surface point defines the cen-
ter, and the radius can be specified interactively.

New node in the constructive texturing tree (step 7)
Once the new space partition has been created (i.e. a
new primitive), it is added to the current constructive
texturing tree. This is done automatically while
using the set-theorethic union operation, but any
other operation available in the FRep model can be
used (including other set-theoretic operations such
as intersection, or blending union). In the case of
overlapping partitions, set-theoretic operations need
to be defined by the user. Indeed, if one considers
a union operation of, for instance, two overlapping
blocks, the resulting geometry is well defined. But
if one considers the union of attributes, the result
needs to be specified. In the case of a red and a green
block, the color of the intersection of the blocks can
be either red, or green, or yellow, or any other color;
it corresponds to different operations on attributes,
namely priority given to an attribute, a min/max
function, or a user defined operation. By default, we
give priority to the last added primitive.

When the user has painted on the surface by choosing the
desired texture and points to define the space partition, the
photometric attributes of the surface points are updated (step
8) and visualised (back to step 3). Then, the user can con-
tinue to add further space partitions and to associate photo-
metric attributes with them. Although the space partitions
can be very complex, interactivity is achieved because the
evaluation of the solid texture represented by the construc-
tive texturing tree is processed only for the discrete surface
points used for visualisation, at the adapted level-of-detail.

3.5 Postprocessing

Once the solid texture defined by the constructive texture is
created, it can be saved, and exported using the extended
version of HyperFun [Adzhi99] (step 9), which is a spe-
cial high-level language that supports all the main notions
of FRep modelling and has been recently extended to sup-
port the constructive texturing concept. A set of plug-ins has
been developed such that several existing software tools sup-
port objects described by HyperFun, such as Maya [Maya],
PovRay [PovRa], and other (step 10). Export to polygonal
representations, such as VRML, are also supported.

4 RESULTS

4.1 Overview

We implemented our tool as a plugin for Pointshop3D
[Zwick02]. A screenshot of our plugin can be seen in Figure
5, where the user is selecting the tool to define a space parti-
tion. Besides the rendering modes provided by Pointshop3D,
we implemented our own rendering modes to manage the

multiresolution representation. All timings given in this sec-
tion were measured on a 1.7 Ghz Pentium PC with 512 MB
RAM.

Figure 5: A screenshot of our plugin.

4.2 Preprocessing

The preprocessing step is divided into two parts, the extrac-
tion of the surface points and the creation of the multireso-
lution representation. The time for the extraction of the sur-
face points is strongly related to the type and complexity of
the object’s geometry. Setting up the multiresolution repre-
sentation is fast, it only depends on the number of extracted
surface points and is in O(nlogn).

As our texturing technique can be applied to surfaces of ob-
jects from arbitrary type, the example objects in this pa-
per have different underlying object representations. For
the polygonal mesh of the Stanford Dragon, extracting the
437,645 surface points (Figure 6(b)) is done instantaneously
like for the 38,619 surface points of the dinosaur statue (Fig-
ure 4) by directly using the vertices of the mesh. For the
implicit surface of the 3D ant defined by an FRep model, it
took 46 seconds to extract the 140,616 surface points (Fig-
ure 8(g)) due to the complexity of the implicit formulation
of the object. Extracting the 78,499 surface points (Fig-
ure 7(a)) from the well known Siemens head sampled on a
150x200x192 voxel grid took 13 seconds.

Setting up the multiresolution representation took less than
a second for every example shown in this paper.

4.3 Real-time process

There are two major bottlenecks which determine the inter-
activity of our texturing approach. First, the evaluation of the
constructive texturing tree to determine the photometric at-
tributes of the surface points when nodes to the attribute tree
were added, and second, the rendering of the surface points.
Thanks to the multiresolution approach we use, maintaining
interactivity for both bottlenecks is achieved by choosing the
right balance between the number of surface points which
can be evaluated by traversing the constructive texturing tree
and the number of surface points which can be rendered.



(a) high resolution (b) very low resolution (c) corresponding space partitions

Figure 6: A more complex example using multiple space-partitions.

The time to determine the photometric attributes of the sur-
face points heavily depends on the complexity of the solid
texture described by the constructive texturing tree. The
evaluation of the photometric attributes at the surface points
becomes critical only when very complex primitives are
used. In all the examples shown in this paper, the photo-
metric attributes of all surface points as well as of the inte-
rior nodes of the hierarchy used for multiresolution could be
evaluated in less than a second.

If the photometric attributes of a huge number of surface
points are determined, simple hardware splatting of the sur-
face points suffices [Rusin00], resulting in high-quality im-
ages when the projection of the bounding sphere associated
to each surface point falls only on a few screen pixels. Us-
ing our rendering implementation, we can render up to 5M
points per second using a Geforce 3 graphics board.

If only a small number of surface points could be evalu-
ated, a high-quality software splatting technique is used for
point-based rendering. The adapted level-of-detail of the
multiresolution representation is chosen to insure interac-
tive framerates. Using our rendering implementation of the
output-sensitive surface splatting technique, we can render
up to 300k surface splats per second in a 512x512 win-
dow. Note that the authors of the surface splatting tech-
nique claim to render up to 500k surface splats per second
using a better optimised implementation on a similar hard-
ware configuration [Zwick01]. However, we envisage to use
the hardware-accelerated approach of [Ren02], which is less
output-sensitive and where up to 3M surface points per sec-
ond can be rendered. Moreover, we recently became aware
of the hardware-accelerated point-based multiresolution ren-
dering approach [Dachs03] which is perfectly suited for our
approach. By shifting the computational cost to traverse the
multiresolution hierarchy from the CPU to the graphics hard-
ware, CPU load is liberated for evaluating the photometric
attributes while rendering over 50M points per second.

The desired quality/speed trade-off can be chosen, Figure 8
shows different levels-of-detail of our 3D ant rendered using
surface splats (Figures 8(a)-8(c)) and hardware splats (Fig-
ures 8(d)-8(f)), as well as the obtained framerates.

(a) 78,499 extracted discrete
surface points

(b) ray-traced image

Figure 7: Texturing a surface from the Siemens voxel
array head sampled on a 150x200x192 grid.

4.4 User interaction

A more complex textured object, the Stanford Dragon de-
scribed by 437,645 points, can be seen in Figure 6(a). We
also show another resolution that was used during the tex-
turing step (Figure 6(b)) as well as the corresponding space
partitions that have been established (Figure 6(c)).

4.5 Postprocessing

In our environment, we used PovRay [PovRa] to obtain pho-
torealistic rendering. Some of our results are shown in Fig-
ure 7(b) and Figure 8(h).

5 CONCLUSIONS

In this paper, we presented a new idea that links the tex-
ture and the geometry of an object by combining two ap-
proaches previously developed in computer graphics: con-
structive texturing and point-based rendering. This combi-
nation allowed us to develop a software environment where
3D objects of arbitrary nature (i.e. polygonal meshes, iso-
surfaces of voxel arrays, parametric or implicit surfaces, and
others) can be textured by using an interactive and intu-
itive process. An interactive framerate is always guaran-
teed, whatever the complexity of the geometry and/or the
texture, because the environment uses a multiresolution rep-
resentation of discrete surface points extracted from the ob-



ject, that is tuned according to the performance of the graph-
ics hardware and according to the texture complexity. This
multiresolution representation offers also high-quality an-
tialiased point-based rendering. One major advantage of our
approach is that point-based rendering is only used during
the interactive texturing step. We always keep a feedback
to the initial geometric representation of the object (polygo-
nal mesh, parametric or implicit surface, or whatever) which
means that the final textured object can be easily exported to
standard graphics software that cannot directly handle dis-
crete surface points (e.g. CAD systems, photorealistic ren-
dering engines).

Our implementation is still under development: currently
four kinds of FRep primitives (i.e. spheres, blocks, con-
volution surfaces, and radial basis functions applied to a
set of discrete surface points) can be used to create a par-
tition of the constructive texturing tree. An immediate ex-
tension will be to widen the set of available FRep primi-
tives. Two more straightforward extensions will be to in-
tegrate the hardware-accelerated high-quality splatting tech-
nique [Ren02] that renders more than 3M points per second
on current graphics hardware, and the sequential point trees
technique [Dachs03], that shifts the CPU load for the mul-
tiresolution rendering to the graphics hardware.

We are also investigating two promising directions. The first
one is to allow the texturing of geometric attributes in addi-
tion to photometric ones, such as bump mapping or displace-
ment mapping. Such a feature is offered in the Pointshop3D
environment as it works easily exclusively on a cloud of
points. In our case, as we want to keep a feedback to the
original geometric representation, the process is not that ob-
vious. One solution that we are currently implementing is
to use the implicit deformation technique proposed by Cani
[Cani93]. The second direction that we are investigating is
to use this interactive kernel to manipulate something else
than photometric or geometric attributes. By covering the
object with a set of parameterised primitives, one can build
a set of local parameterisations of the surface that can be
smoothly blended together and used as a support for con-
ventional hardware texture mapping.

ACKNOWLEDGEMENTS

We are grateful to Tamy Boubekeur, Clment Bichel, Blanca
Borro Escribano, and Elisabeth Brunet for the design and
implementation of the Pointshop3D plugin.

REFERENCES
[Adzhi99] Valery Adzhiev, Richard Cartwright, Eric Fausett, Ana-

toli Ossipov, Alexander Pasko, and Vladimir V. Savchenko.
Hyperfun project: A framework for collaborative multidimen-
sional F-rep modeling. In Proceedings of the Implicit Surfaces
’99, pages 59–69, 1999.

[Agraw95] Maneesh Agrawala, Andrew C. Beers, and Marc Levoy.
3D painting on scanned surfaces. In 1995 Symposium on In-
teractive 3D Graphics, pages 145–150, April 1995.

[Alexa01] Marc Alexa, Johannes Behr, Daniel Cohen-Or, David
Levin, Shachar Fleishman, and Claudio T. Silva. Point set
surfaces. In IEEE Visualization 2001, pages 21–28, October
2001.

[Benso02] David Benson and Joel Davis. Octree textures. ACM
Transactions on Graphics, 21(3):785–790, July 2002.

[Cani93] Marie-Paule Cani. An implicit formulation for precise
contact modeling between flexible solids. In Proceedings of
ACM SIGGRAPH 93, pages 313–320, August 1993.

[Dachs03] Carsten Dachsbacher, Christian Vogelgsang, and Marc
Stamminger. Sequential point trees. ACM Transactions on
Graphics, 22(3), 2003.

[DeBry02] David (grue) DeBry, Jonathan Gibbs, Devorah DeLeon
Petty, and Nate Robins. Painting and rendering textures on
unparameterized models. ACM Transactions on Graphics,
21(3):763–768, July 2002.

[Gross98] J. P. Grossman and William J. Dally. Point sample
rendering. In Rendering Techniques ’98, pages 181–192.
Springer Verlag, 1998.

[Hanra90] Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG
painting and texturing on 3D shapes. Computer Graphics
(Proceedings of ACM SIGGRAPH 90), 24(4):215–223, Au-
gust 1990.

[Levoy85] Marc Levoy and Turner Whitted. The use of points as
display primitive. Technical Report TR 85–022, University of
North Carolina at Chapel Hill, 1985.

[Lindh01] Erik Lindholm, Mark J. Kilgard, and Henry Moreton.
A user-programmable vertex engine. In Proceedings of ACM
SIGGRAPH 2001, pages 149–158. ACM Press / ACM SIG-
GRAPH, August 2001.

[Maya] Maya. Alias-WaveFont. www.aliaswavefront.com.

[Pasko95] Alexander Pasko, Valery Adzhiev, Alexei Sourin, and
Vladimir V. Savchenko. Function representation in geometric
modelling: concept, implementation and applications. The
Visual Computer, 11(8):429–446, 1995.

[Pauly03] Mark Pauly, Richard Keiser, Leif Kobbelt, and Markus
Gross. Shape modeling with point-sampled geometry. ACM
Transactions on Graphics, 22(3), 2003.

[Peder95] Hans Køhling Pedersen. Decorating implicit surfaces. In
Proceedings of ACM SIGGRAPH 95, pages 291–300, August
1995.

[Pfist00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. In Proceedings of ACM SIGGRAPH 2000, pages 335–
342, July 2000.

[PovRa] PovRay. The Persistance of Vision. www.povray.org.

[Praun00] Emil Praun, Adam Finkelstein, and Hugues Hoppe.
Lapped textures. In Proceedings of ACM SIGGRAPH 2000,
pages 465–470, July 2000.

[Ren02] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Ob-
ject space EWA surface splatting: A hardware accelerated ap-
proach to high quality point rendering. Computer Graphics
Forum (Eurographics 2002), 21(3):461–470, 2002.

[Reute03] Patrick Reuter, Ireneusz Tobor, Christophe Schlick, and
Sebastien Dedieu. Point-based modelling and rendering using
radial basis functions. Proceedings of ACM Graphite 2003,
February 2003.

[Rusin00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A
multiresolution point rendering system for large meshes. In
Proceedings of ACM SIGGRAPH 2000, pages 343–352, July
2000.

[Savch95] Vladimir V. Savchenko, Alexander Pasko, Oleg G.
Okunev, and Tosiyasu L. Kunii. Function representation of
solids reconstructed from scattered surface points and con-
tours. Computer Graphics Forum, 14(4):181–188, October
1995.



(a) 140,616 high-quality surface splats ren-
dered at > 1:5 fps (frames per second)

(b) 34,980 high-quality surface splats ren-
dered at > 3 fps

(c) 11,043 high-quality surface splats ren-
dered at > 5 fps

(d) 140,616 hardware splats rendered at >
30 fps

(e) 34,980 hardware splats rendered at > 95

fps
(f) 11,043 hardware splats rendered at >
200 fps

(g) 140,616 extracted discrete surface points from FRep model (h) ray-traced image

Figure 8: Multiresolution rendering using hardware splats and high-quality surface splats and obtained framerates, start-
ing from 140,616 discrete surface points extracted from an FRep model, and the final ray-traced image.

[Schmi01] Benjamin Schmitt, Alexander Pasko, Valery Adzhiev,
and Christophe Schlick. Constructive texturing based on hy-
pervolume modeling. The Journal of Visualization and Com-
puter Animation, 12:297–310, 2001.

[Szeli92] Richard Szeliski and David Tonnesen. Surface modeling
with oriented particle systems. Computer Graphics (Proceed-
ings of ACM SIGGRAPH 92), 26(2):185–194, July 1992.

[Turk99] Greg Turk and James O’Brien. Shape transformation us-
ing variational implicit functions. In Proceedings of ACM
SIGGRAPH 99, pages 335–342, August 1999.

[Turk02] Greg Turk and James F. O’Brien. Modelling with im-
plicit surfaces that interpolate. ACM Transactions on Graph-
ics, 21(4):855–873, 2002.

[Wei01] Li-Yi Wei and Marc Levoy. Texture synthesis over arbi-
trary manifold surfaces. In Proceedings of ACM SIGGRAPH
2001, pages 355–360, August 2001.

[Witki94] Andrew P. Witkin and Paul S. Heckbert. Using particles
to sample and control implicit surfaces. In Proceedings of
ACM SIGGRAPH 94, pages 269–278, July 1994.

[Zonen98] Ruben Zonenschein, Jonas Gomes, Luiz Velho, and
Luiz Henrique de Figueiredo. Controlling texture mapping
onto implicit surfaces with particle systems. In Proceedings
of Implicit Surfaces ’98, pages 131–138, June 1998.

[Zwick01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar,
and Markus Gross. Surface splatting. In Proceedings of ACM
SIGGRAPH 2001, pages 371–378, August 2001.

[Zwick02] Matthias Zwicker, Mark Pauly, Oliver Knoll, and
Markus Gross. Pointshop 3D: An interactive system for
point-based surface editing. ACM Transactions on Graphics,
21(3):322–329, July 2002.


