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Abstract

We present a new method for the multi-scale reconstruc-
tion of implicit surfaces with attributes from large unorga-
nized point sets. The implicit surface is reconstructed by
subdividing the global domain into overlapping local subdo-
mains using a perfectly balanced binary tree, reconstructing
the surface parts in the local subdomains from non-disjunct
subsets of the points by variational techniques using ra-
dial basis functions, and hierarchically blending together
the surface parts of the local subdomains by using a fam-
ily of functions called partition of unity. The subsets of the
points in the inner nodes of the tree for intermediate resolu-
tions are obtained by thinning algorithms. The reconstruc-
tion is particularly robust since the number of data points in
the partition of unity blending zones can be specified explic-
itly. Furthermore, the new reconstruction method is valid for
discrete datasets in any dimension, so we can use it also to
reconstruct continuous functions for the surface’s attributes.
In a short discussion, we evaluate the advantages and draw-
backs of our reconstruction method compared to existing re-
construction methods for implicit surfaces.

1 Introduction

Real-world datasets are often provided as an unorganized
set of a large amount of discrete data. The main (and maybe
the most difficult) problem to solve, in order to exploit the
scattered data, is to efficiently and precisely reconstruct a
continuous function starting from this dataset.

In the field of geometric modeling, this problem has be-
come of major importance due to the rapid development of
3D acquisition technologies such as range scanners, where
the geometry and its appearance is acquired as a large unor-
ganized point set with attributes. For further processing of
the geometry and its appearance, it is desirable to quickly
and robustly reconstruct a continuous surface with attributes
that is passing either exactly through the points, or, when
there is noise in the data, nearby the points. A multi-scale

representation of the surface is advantageous, because dif-
ferent precisions of the surface and its appearance are re-
quired depending on the type of further processing and the
provided time (e.g. detailed visualization, quick preview,
modeling, collision detection, storage, progressive network
transfer, detail analysis, physically-based operations).

In this paper, we present a new method for the multi-scale
reconstruction of surfaces with attributes from large unorga-
nized point sets. The geometry of the resulting surface at
any resolution is defined as an implicit surface as the zero-
set of a reconstructed defining function f : �3 � �, and the
appearance at a point on the surface is given by the evalu-
ation of the reconstructed continuous functions for the at-
tributes at the desired resolution. Consequently, we can con-
sider the surface reconstruction method as a combination of
multi-scale scattered data reconstructions for every involved
function.

In order to obtain a multi-scale reconstruction method for
large scattered data, we combine three well-known methods:
variational techniques using radial basis functions (RBF) are
used to solve a set of small local reconstruction problems,
thinning algorithms are used to obtain subsets of the data for
intermediate resolutions, and the partition of unity (POU)
method combines the local solutions together to get the final
reconstruction. As we will see, this combination is not only
robust and efficient, but also offers a high level of scalability,
and moreover it enables the adaptive selection of different
precisions of the multi-scale reconstruction.

The contributions of this paper are threefold. First, we
present a new multi-scale reconstruction method for large
scattered data. Second, we show how this method can be
applied to reconstruct implicit surfaces with attributes from
large unorganized point sets. Third, in a short survey, we
compare existing multi-scale reconstruction methods for im-
plicit surfaces to our new method and evaluate the advan-
tages and drawbacks.

The paper is organized as follows. In Section 2, we
present some relevant previous work about the reconstruc-
tion of implicit surfaces from unorganized point sets. Sec-
tion 3 provides the theoretical background for our new re-



construction method. In Section 4, we present our multi-
scale reconstruction method and apply it to the reconstruc-
tion of implicit surfaces with attributes in Section 5. Section
6 presents experimental results, and in Section 7 we evaluate
the advantages and drawbacks of our reconstruction method
compared to existing multi-scale reconstruction methods for
implicit surfaces before we conclude and indicate some di-
rections to future work.

2 Previous work

About 20 years ago, in an extensive survey, Franke [11]
identified radial basis functions (RBFs) as one of the most
accurate and stable methods to solve scattered data interpo-
lation problems. The pioneering work to interpolating sur-
faces using RBFs starting from unorganized point sets can
be attributed to Savchenko et al. [25] and Turk and O’Brien
[28]. Using these techniques, the implicit surface is calcu-
lated by solving a linear system. Unfortunately, since the
RBFs have global support, the equations lead to a dense lin-
ear system. Hence, both techniques fail to reconstruct im-
plicit surfaces from large point sets consisting of more than
several thousands of points.

To overcome this problem, by using Wendland’s com-
pactly supported RBFs [29], Morse et al. [21] showed how
to reconstruct implicit surfaces from larger point sets since
the involved linear system becomes sparse. This algorithm
was further improved by Kojekine et al. [17] by organizing
the involved sparse matrix into a band-diagonal sparse ma-
trix which can be solved more efficiently. Unfortunately, the
radius of support has to be chosen globally, which means
that the method is not robust against highly non-uniformly
distributed point sets where the density of the samples may
vary significantly.

A different approach to interpolate large point sets has
been proposed by Carr et al. [6] based on a fast evaluation of
RBF technique by Beatson et al. [4, 3] using fast multipole
methods. Unfortunately, the far field expansion has to be
done separately for every radial basis function, and is very
complex to implement.

Another fast evaluation method of RBFs, based on the
partition of unity method, was proposed by Wendland in a
theoretical survey [30] and a more practical sketch [31] on
which we have based our approach.

Ohtake et al. reconstruct implicit surfaces from a large
number of points by a multi-scale approach [23] with com-
pactly supported radial basis functions, but it is not feasible
for the approximation of noisy data and the number of points
is still limited due to the use of compactly supported radial
basis functions.

Two other methods to reconstruct implicit surfaces with-
out using radial basis functions have drawn much atten-
tion recently. In the first one presented by Alexa et al.
[2, 1] called Point Set Surfaces, an implicit surface is re-

constructed using a projection operator based on the method
of moving least squares [18, 19]. The resulting implicit sur-
face is defined by all points that project on themselves, and
the defining function is never calculated explicitly. Unfortu-
nately, the computation of the projection operator is rather
expensive since a non-linear optimization problem is in-
volved. Point Set Surfaces were further enhanced in order
to get a multi-scale representation of the point set [10].

In the second one, called MPU implicits, developed re-
cently by Ohtake et al. [22], the partition of unity method
[12] is used to reconstruct implicit surfaces. By using
weighted sums of different types of piecewise quadratic
functions capturing the local shape of the surface, implicit
surfaces from very large point sets can be reconstructed
while preserving sharp features.

Unfortunately, the latter techniques are only feasible to
reconstruct implicit surfaces from unorganized points and a
reconstruction of a continuous functions for the appearance
of the surface from the attributes of the points is not straight-
forward.

3 Background

3.1 Variational techniques with radial basis func-
tions

Given the set of N pairwise distinct points
P � �p1� � � � �pN� of dimension d: pk � �d , and the
set of values �h1� � � �hN�, we want to find a function
f : �d � � satisfying the constraints

f �pi� � hi i � 1 � � �N� (1)

Variational techniques with radial radial basis functions
reconstruct the following function that is satisfying these
constraints

f �p� �
N

∑
i�1

ωiφ���p�pi����π�p�� (2)

We denote here ��pi�p j�� the Euclidean distance, ωi the
weights, φ : � � � a conditionally positive definite basis
function, and πa polynomial of degree m depending on the
choice of φ. Some popular basis functions are shown below
[16]:

biharmonic φ�r� � r with πof degree 1

pseudo-cubic φ�r� � r3 with πof degree 1

triharmonic φ�r� � r3 with πof degree 2

thin plate φ�r� � r2 log�r� with πof degree 1

More precisely, the polynomial π�p� � ∑cαπα�p� with
�πα�

Q
α�1 is a basis in the d-dimensional null space contain-

ing all real-valued polynomials in d variables and of order at
most m with Q �

�m�d
d

�
.
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As we have an under-determined system with N �Q un-
knowns (ωi and cα) and N equations, so-called natural ad-
ditional constraints for the coefficients ωi are added in order
to ensure orthogonality, so that

∑ωic1 �∑ωic2 � � � ��∑ωicQ � 0� (3)

The equations (1), (2), and (3) determine the following
linear system:

Ax � b (4)

A �

�
Φ PT

P 0

�
(5)

Φ�

�
φ���pi�pj���

���� i�1���N
j�1���N

�

P �

�
πα�pi�

���� i�1���N
α�1���Q

�
x � �ω1�ω2� � � � �ωN �c1�c2� � � � �cQ�

T (6)

b � �h1�h2� � � � �hN �0�0� � � � �0� �� �
Q times

�T (7)

The solution vector x is composed of the weights ωi and
the polynomial coefficients cα for equation (2) and repre-
sents a solution of the interpolation problem given by (1).

If an approximation of the constraints of equation (1)
rather than an interpolation is desired, for example when
there is noise in the data, one solution is to slightly mod-
ify the diagonal of matrix Φ�Φ�8Nπρ�(see Carr [6, 7]),
where the parameter ρ controls the fitting tolerance (i.e. the
result is getting smoother when ρ is increased).

3.2 Partition of unity method

The main idea of the partition of unity method is to di-
vide the global domain of interest into smaller overlapping
subdomains where the problem can be solved locally. More
precisely, the global difficult problem is decomposed into
several smaller local problems and their local solutions are
combined together by using weighting functions that act as
smooth blending functions to obtain the global solution.

Consider the global domain Ω and divide it into M over-
lapping subdomains �Ωi�

M
i�1 with Ω�

�
i Ωi. On this set of

subdomains �Ωi�
M
i�1, we construct a partition of unity, i.e.

a collection of non-negative functions �wi�
M
i�1 with limited

support and with ∑wi � 1 in the entire domain Ω.
For each Ωi, a set Pi � �p�P �p�Ωi� is constructed, and

a local reconstruction function f i is computed. The global
reconstruction function f pou is then defined as a combination
of the local functions

fpou�p� �
M

∑
i�1

fi�p�wi�p�� (8)

The condition ∑wi � 1 is obtained from any other set of
smooth functions Wi by a normalization procedure

wi�p� �
Wi�p�

∑ j Wj�p�
� (9)

The weighting functions Wi have to be continuous at the
boundary of the subdomains Ω i. We define the weighting
functions Wi as the composition of a distance function Di :
�n � �0�1�, where Di�p� � 1 at the boundary of Ω i and a
decay function V : �0�1�� �0�1�, i.e. Wi�p� �V ÆDi�p�.

For a 3D axis-aligned box defined from the two opposite
corners S and T we use the following distance function D i

Di�p� � 1� ∏
r�x�y�z

4�pr�Sr��Tr �pr�

�Tr�Sr�2 � (10)

The choice of the decay function V determines the conti-
nuity between the local solutions f i in the global reconstruc-
tion function f pou. We suggest to use one of the following
decay functions that were chosen by including some simple
constraints similar to the construction of base spline func-
tions (V �0� � 1, V �1� � 0, V ��0� �V ��1� � 0, etc.).

continuity � 0 : V 0�d� � 1�d

continuity � 1 : V 1�d� � 2d3�3d2 �1

continuity � 2 : V 2�d� ��6d5 �15d4�10d3�1
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Figure 1. 2D interpretation of the distance
function D and two different weighting func-
tions for � 1 and � 2 continuity.

The graphs of the distance function D and two differ-
ent weighting functions are shown in Figure 1. Besides the
weighting functions, an appropriate method for the domain
decomposition into overlapping subdomains has to be cho-
sen, and in the following section we present a method that
uses a binary tree.

4 Multi-scale reconstruction method for large
scattered data

4.1 Overview

In this section, we present our new multi-scale recon-
struction method for large scattered data based on the back-
ground presented in the preceding section. First, the global
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domain of interest is subdivided recursively into two over-
lapping local subdomains containing an equal number of
points. The recursion terminates when the number of points
in the local subdomains falls below a threshold resulting in
a perfect binary tree (Section 4.2).

Second, in order to obtain the intermediate resolutions
of the reconstructed functions, we determine subsets of the
unorganized point sets at all the inner nodes of the binary
tree by using a thinning algorithm (Section 4.3). Then, we
compute the local reconstruction functions in the leaf nodes
and in the inner nodes by variational techniques with radial
basis functions.

The evaluation of the global reconstruction function at
the highest resolution is given by a partition of unity blend-
ing of the local reconstruction functions by pairs that is prop-
agated bottom-up from the leaf nodes, and the root node
contains the global reconstruction function. The evaluation
at intermediate resolutions is obtained by selecting the ap-
propriate precision at every branch of the binary tree and
the bottom-up partition of unity blending of the local recon-
struction functions by pairs (Section 4.4).

The particular charm of the new method is, that the lo-
cal reconstructions are calculated from the same number of
points in every local subdomain. Furthermore, the number
of points in the overlapping zone can be specified explicitly,
insuring an important constraint to stabilize the partition of
unity blending between the local subdomains.

4.2 Binary tree domain decomposition into over-
lapping subdomains

Starting from the unorganized point set P and its bound-
ing box being the entire domain Ω0, the binary tree domain
decomposition method adaptively subdivides Ω 0 using a bi-
nary tree. The tree is built in a top-down recursive pro-
cess starting from the root node, where the entire domain
Ω0 is subdivided into two overlapping subdomains Ω 1

1 and
Ω1

2 containing an equal number of points n1 in the respec-
tive point sets P 1

1 and P 1
2 . All subdomains Ωl at level l

are themselves subdivided recursively into two overlapping
subdomains Ωl�1

1 and Ωl�1
2 containing an equal number of

points nl�1 in the respective point sets P l�1
1 and P l�1

2 . The
recursion terminates, when the number of points in a sub-
domain falls below a threshold Tlea f . In this way, a perfect
binary tree of level L is established, i.e. all leaf nodes are
at the same level L in the tree, and all internal nodes have
the degree two. Furthermore, in all 2L leaf nodes, the equal
number of points nL is restricted to Tlea f �2 � nL � Tlea f .

Let us now give some insight how to subdivide a domain
Ωl into two overlapping subdomains Ω l�1

1 and Ωl�1
2 contain-

ing an equal number of points nl�1 in the respective point
sets P l�1

1 and P l�1
2 .

First, the number of points nl
o �Card�P l�1

1 	P l�1
2 � in the

overlapping zone Ωl�1
1 	Ωl�1

2 has to be specified explicitly

as an overlap quota q � �0�1� of the number of points n l:

nl
o � qnl (11)

In order to avoid a too low or too high number of points
in Ωl�1

1 	Ωl�1
2 in the interior nodes of the binary tree result-

ing in either an undesired behavior when sticking together
the functions of the local subdomains, or in a too high com-
putational overhead, we clamp nl

o to �Tmin�Tmax�. Then, the
number of points nl�1 in the subdomains can be calculated
as follows:

nl�1 �

	
nl

o �nl

2



(12)

The extent of the two overlapping subdomains Ω l�1
1 and

Ωl�1
2 is calculated by the following steps. First, the longest

axis of Ωl is determined. Second, we collect the point
sets P l�1

1 (respectively P l�1
2 ) containing the nl�1 points

with the lowest (respectively highest) values with respect
to the longest axis. In practice, we rearrange the points P l

with respect to their values of the longest axis. By setting
i1 � nl�1 and i2 � nl �nl�1 �1, we rearrange the points so
that pi � pi1 for 1� pi � pi1 and pi � pi2 for pi2 � pi � pnl :

Finally, Ωl�1
1 and Ωl�1

2 are defined by the bounding
boxes of P l�1

1 and P l�1
2 , respectively. Consider the result-

ing recursive algorithm for the binary tree domain decom-
position shown in Algorithm 1 that has to be called using
Decompose(P, 0).

Algorithm 1 Decompose(P , l)
Require: points P l , level l
Ensure: binary tree

set Ωl be the bounding box of P , set nl � Card�P l�
if nl � Tlea f then

set nl
o � qnl

clamp nl
o to �Tmin�Tmax�

determine the longest axis of Ωl

rearrange the points in Pl according to the longest axis
determine the points Pl�1

1 and P l�1
2

Decompose(P l�1
1 , l+1)

Decompose(P l�1
2 , l+1)

end if

Figure 2 illustrates the first levels of the resulting binary
tree with the corresponding overlapping subdomains.

4.3 Multi-scale reconstruction by thinning

For the highest resolution reconstruction, the local recon-
struction functions in all the leaf nodes of the perfect binary
tree are calculated using variational techniques with radial
basis functions. Recall, that this can be done efficiently since
the equal number of points nL in the leaf nodes is restricted
to Tlea f �2 � nL � Tlea f .

For the determination of the intermediate resolutions of
the multi-scale reconstruction, we reconstruct local recon-
struction functions in the inner nodes of the binary tree. To
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Figure 2. First steps of the binary tree domain
decomposition into overlapping subdomains.

enable the use of variational techniques with radial basis
functions, we recursively use a data thinning algorithm to
reduce the number of points P � in the inner nodes to Tlea f

points from the union of the points P1 
 P2 in the two child
nodes.

Since the thinning algorithm is applied recursively start-
ing at the bottom of the binary tree, each thinning step re-
quires only a small reduction from at most 2Tlea f to Tlea f

constraints. Consequently, we can apply a near-optimal and
rather costly thinning algorithm, and we decided to use the
greedy thinning algorithm proposed by Iske [15]. It is based
on the definition of the separation distance, i.e. the smallest
distance between two points of the point set P

sP � min
1�i� j�Card�P �

��pi�p j ���

and the definition of a removable point, i.e. a point where
the separation distance is attained:

rP is removable if sP � min
pi�P

��rP �pi��

In every iteration of Iske’s algorithm, the separation dis-
tance of the point set is determined and the removable point
is chosen and eliminated. Of course, the required number
of iterations depends of the number of points to be removed
(Algorithm 2).

Algorithm 2 Thin(P , k)
Require: point set P , new point set size k,
Ensure: lower resolution pointset P�

P � � P
repeat

find the separation distance sP �

choose one removable point rP �

P � � P � ��rP � �
until Card�P �� �� k

Summing up, once the binary tree is set up as explained
in the preceding section, the multi-scale reconstruction is
determined by the Algorithm 3 that has to be called with
LowResolution(root node), and some steps of this algo-
rithm are illustrated in Figure 3.

Algorithm 3 LowResolution(b)
Require: binary tree’s node b
Ensure: node’s low resolution reconstruction frb f

if b is a leaf node then
Calculate local RBF reconstruction for Pl

else
LowResolution(b’s left child)
LowResolution(b’s right child)
find low resolution constraints P� � Thin�P1 �P2�Tlea f �
Calculate local RBF reconstruction of P�

end if

����

�
�

(a) Simplification step

�
�

����

��
����

��

(b) Reconstruction of simplified
point set.

Figure 3. Recursive creation of the multi-scale
representation.

4.4 Adaptive multi-scale evaluation

For the evaluation of the global reconstruction function f
at a point p, the local reconstructions at the desired resolu-
tions are blended together by recursively applying the parti-
tion of unity method bottom-up in the binary tree. In order to
obtain the desired resolution, by starting from the root node,
we decide at every node of the binary tree whether the RBF
reconstruction frb f from the lower resolution point set is pre-
cise enough depending on an error condition ε, otherwise the
reconstruction function f l

pou at level l is given by the parti-
tion of unity blending of the local reconstruction functions
of the two child nodes f l�1

1 and f l�1
2 :

f l
pou�p� �

f l�1
1 �p�W l�1

1 �p�� f l�1
2 �p�W l�1

2 �p�

W l�1
1 �p��Wl�1

2 �p�
(13)

The weighting functions W l�1
1 and W l�1

2 for the local
subdomains Ωl�1

1 and Ωl�1
2 are constructed as explained in

Section 3.
Consider the recursive Algorithm 4 illustrating the adap-

tive multi-scale evaluation at a point p according to the er-
ror condition ε by applying the recursive partition of unity
blending that has to be called by Evaluate(p, 0, ε). Of
course, for an evaluation at the highest resolution, the algo-
rithm has to be called by Evaluate(p, 0, false).

Depending on the application, different error conditions
ε can be used, such as for example the size of the local sub-
domains, or the distance between the higher resolution point
set and the lower resolution point set. Figure 4 illustrates an
example of the multi-scale evaluation with the very simple
error condition ε being a given level. In the yellow nodes,
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Algorithm 4 Evaluate(p, l, ε)
Require: point p, level l, error condition ε
Ensure:

if p not in Ωl then
return 0

end if
if l is the leaf level then

return frb f �p�
else if error condition ε is true then

return frb f �p�
else

f1 = Evaluate(p, l �1, ε) at the left child
f2 = Evaluate(p, l �1, ε) at the right child
compute W1, W2 from children
return fpou � � f1W1 � f2W2���W1 �W2�

end if

����

(a) Level 0

����

���� ����

(b) Level 1

���� ����

����

���� ���� ���� ����

(c) Level 2

Figure 4. Evaluation at a given level.

the RBF reconstruction frb f is evaluated, in the red ones the
reconstruction f pou is given by a partition of unity blending
of the child nodes, and finally the gray nodes are not pro-
cessed at all.

4.5 Scalability

Concerning the computational complexity, we are inter-
ested in the scalability of both the reconstruction of the
global reconstruction function f starting from a point set P
consisting of N points, and the scalability of the evaluation
of the global reconstruction function f at a point p � � 3 .

The reconstruction of the global reconstruction function
f involves the following principal steps:

1. Determine the domain Ωl from the bounding box of the
point set P l and recursively subdivide it into overlap-
ping domains after collecting the point sets P l�1

1 and
P l�1

2 .

2. Compute the subsets of the unorganized point set in the
inner nodes of the binary tree.

3. Compute the local reconstruction functions f L for all
local subdomains ΩL in the 2L leaf nodes and in the
2L�1 inner nodes.

The first step is the recursive domain decomposition pro-
cess. In every node of the binary tree, it is understood that
the bounding box as well as the longest axis can be deter-
mined in linear time with respect to the number of points

in the node. According to Sedgewick [27], the points can
also be rearranged in linear time with respect to the longest
axis. Since the number of points in the overlapping zone
is bounded above by Tmax, the number of points per node
at every level is bounded, and hence the binary tree can be
created in O�N logN�. In the second step, the subsets of the
points at every of the 2L� 1 inner nodes have to be calcu-
lated from the point sets of the two child nodes. Recall, that
this is done in a bottom-up recursive process starting from
the leaf nodes. Since the number of points in the leaf nodes
is bounded by the constant Tlea f , and in the inner nodes we
apply the thinning algorithm to obtain a subset with at most
Tlea f out of 2Tlea f points, we consider that the computation
of a subset can be done in constant time. Consequently, the
computation of the subsets of the points at every of the 2 L�1
inner nodes can be done in O�N�. The third step involves the
computation of the local RBF reconstructions in all 2L leaf
nodes and in the 2L�1 inner nodes. Finding the local RBF
reconstruction in one node is in O�1�, because the number
of points nL per leaf node is bounded by the constant Tlea f .
Moreover, since the number of leaf nodes is proportional to
N, all local RBF reconstructions can be determined in O�N�
time.

Concerning the evaluation of the global reconstruction
function f at a point p, the following three steps are in-
volved:

1. Find all local subdomains ΩL with p �ΩL.

2. Evaluate all local reconstruction functions f L and the
corresponding weighting functions W L.

3. Propagate the evaluations of the local reconstruction
functions bottom-up in the binary tree by using a parti-
tion of unity blending.

Since there are only a constant number of subdomains in-
cluding the point p, the first and third step, i.e. traversing
the binary tree from the root node and propagating the eval-
uations bottom up, require O�logN� time. The evaluation
of one local reconstruction function can be done in constant
time because the number of points is bounded by Tlea f , and
since there is a constant number of concerned subdomains
for p, step two can be done in O�1�.

Summing up, the implicit surface can be reconstructed
in O�N logN� time, and the global reconstruction function f
can be evaluated in O�logN� time. Consequently, our new
multi-scale reconstruction method can be considered as effi-
cient according to Schaback [26]. Note that we experienced
a better scalability with our reconstruction method in prac-
tice. During the surface reconstruction, the binary tree cre-
ation in O�N logN� can be done very rapidly, and the results
in Section 6 show an overall linear reconstruction and loga-
rithmic evaluation time with respect to the number of points
N.
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(a) Surface and attributes reconstruction

(b) No distortions after applying a twist operator.

Figure 5. Chameleon (101 687 points). Re-
construction and deformation of the geometry
and the texture.

5 Multi-scale reconstruction of implicit sur-
faces with attributes

5.1 Reconstruction of the implicit surface

In order to reconstruct an implicit surfaces from the set
of N distinct points P � �p1� � � � �pN� to be on the surface,
we set up a general reconstruction problem. By using our
new multi-scale reconstruction method presented in the pre-
ceding section, we want to determine the defining function
of the implicit surface that is satisfying the constraints

f �pi� � 0 i � 1 � � �N� (14)

It is easy to see that the constraints of equation (1)
to determine the local RBF reconstruction functions with
h1 � h2 � � � �� hN � 0 are not sufficient, because resolving
the linear system of equation (4) yields the trivial solution
f �p� � 0. To overcome this problem, we introduce so-called
off-surface constraints according to [28, 6] as an additional
set of points P� � �p�1� � � � �p

�
N� where f �p�i� � h�i �� 0. The

involved off-surface points p �
i are computed starting from

the initial points pi and moving them along the normal vec-
tor: p�i � pi � κni. The normal is usually obtained during
data acquisition, however, when the normal is not available,
it can be estimated from neighboring points [14].

5.2 Reconstruction of the attributes

We also use our new multi-scale reconstruction method
to determine a continuous function for every attribute a i

of the points pi in the unorganized point set P . We refer
to attributes as a genus for ambient, diffuse and specular
color channels, reflectance and transmittance coefficients,
and others. We regard every attribute ai for a point pi � P
separately and reconstruct an attribute function f a for every
attribute that is satisfying the N constraints

fa�pi� � ai i � 1� ����N� (15)

Then, in order to determine the attributes of a point p on
the reconstructed implicit surface, we simply have to eval-
uate the attribute functions in the point p. For this reason,
we consider our attribute functions as a procedurally defined
solid texture, and of course, all characteristics of solid tex-
tures still apply to this procedurally defined solid texture.
For example, since both the implicit surface as a 2D mani-
fold in 3D and the solid texture are defined in �3 , deforma-
tions applied to the surface and to the texture conserve the
geometry-texture coherence and can hence be done without
distortions as shown in Figure 5.

5.3 Visualization

To visualize the resulting implicit surfaces, a polygonizer
such as the marching cubes algorithm [20, 33] can be used
to create a polygonal mesh. Of course, we could also use
Crespin’s algorithm based on knowledge about initial points
[8]. As other possible solutions, particle systems can be
used to sample the resulting implicit surface [32, 13] and to
polygonize it [9], or a mixed forward and backward warping
technique [24] based on knowledge about the unorganized
point set can be used. In order to account for global illu-
mination, raytracing can be done and accelerated by taking
into consideration the hierarchy of subdomains.

6 Results

All results presented in this section were performed on
an Intel Pentium 1.7 GHz with 512 MB of RAM running
Linux.

Table 1 presents the processing time depending on the ini-
tial number of constraints. In order to confirm the scalability
of our reconstruction method, we reduced the initial unorga-
nized point set by randomly choosing #points. We denote
#points the number of points (with an additional off-surface
points the total number is 2 #points), #leafs the number of
leafs of the resulting perfect binary tree, #ppl the equal num-
ber of points per leaf, ttree the binary tree creation time in
seconds, tthin the data thinning time in seconds, trec the local
reconstruction time in seconds, and t poly the polygonization
time in seconds by using Bloomenthal polygonizer [5] with
a resolution of 2% of the object’s bounding box size. Since
the polygonization process consists mainly of the evaluation
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Model #points #leafs #ppl ttree tthin trec tpoly

Isis 10 000 256 60 0.4 89 34 51
20 000 512 63 1.0 181 72 55
40 000 1024 66 2.5 373 173 62
80 000 2048 69 6.0 756 416 70

160 000 4096 72 14.4 1610 1087 80
Dragon 50 000 1024 81 3.3 390 362 253

100 000 2048 85 8.6 793 935 285
200 000 4096 89 18.7 1621 2114 325
400 000 8192 93 43.2 3354 4360 345

Table 1. Processing time (in seconds) of dif-
ferent 3D models.

of the global reconstruction function, we consider it repre-
sentantive for the evaluation time. The reconstruction pa-
rameters were q � 5%, Tlea f � 100, and a biharmonic basic
function for φ.

For the illustration of the experienced linear complex-
ity of the reconstruction time with respect to the number
of points, Figure 6(a) shows the graph of the reconstruction
time depending on the number of points. Moreover, Fig-
ure 6(b) shows the logarithmic complexity of the evaluation
time.
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Figure 6. Reconstruction and evaluation time
with respect to the number of points. Isis (left)
and Dragon (right).

Some visual examples of the reconstruction quality are
shown in Figure 7, and we compare a point-based rendering
technique using opaque splatting of the unorganized points
with the polygonal rendering of the reconstructed implicit
surfaces. At the given screen resolution, there are no visible
differences between the two methods.

Figure 8 illustrates the influence of the overlapping zone
size. If the zone is too small (that is simulated with the small
values of q and Tmin), the implicit function has still the cho-

(a) Isis - 160 000 points

(b) Dragon - 200 000 points

Figure 7. Point rendering using splatting (at
left, in red) and polygon rendering of the re-
constructed surface at the highest resolution.

(a) q � 1%, Tmin � 0 (b) q � 5%, Tmin � 5

Figure 8. Influence of the overlapping zone
size q on the reconstruction quality. Tlea f � 50.

sen continuity, but the surface appears not pleasant at over-
lapping zones.

Table 2 shows the quantitative results of the Stanford
Bunny reconstruction with different parameters for Tlea f and
q. Note that high values for Tlea f increase the reconstruction
time significantly.

Figure 9 shows that even non-uniform, scattered data can
be reconstructed robustly whether the density variation is
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Model Tlea f q #leafs #ppl trec

Bunny 50 1 1024 46 54
2 1024 48 59
5 2048 34 46

10 4096 30 66
100 1 512 81 171

2 512 86 211
5 1024 58 109

10 1024 89 474
200 1 256 152 633

2 256 162 799
5 512 106 417

Table 2. Bunny (35 947 points). Reconstruc-
tion time (in seconds) with respect to Tlea f , q

(a) Non-uniform dataset with hard density variation

(b) Non-uniform dataset with smooth density variation

Figure 9. Reconstruction from dataset of vari-
able point density.

sharp (Figure 9(a)) or smooth (Figure 9(b)). The two models
were built from the two original models by simply removing
randomly chosen samples from the initial unorganized point
sets.

We illustrate the results of the multi-scale reconstruction
in two parts. The first one shows only the surface recon-
struction, and the second one illustrates the attributes recon-
struction as well. To evaluate the error of the low resolution
reconstructions, we use the maximal and root-mean-square
error of the residuals of the lower resolution point set com-

Igea (134 346) Dragon (437 645) Santa (75 782)
level emax erms emax erms emax erms

0 2.490 0.447 2.497 0.533 1.660 0.395
1 2.387 0.422 2.975 0.536 1.635 0.330
2 2.341 0.347 2.415 0.415 1.446 0.298
3 2.340 0.309 1.821 0.346 1.397 0.232
4 1.730 0.232 1.716 0.308 1.299 0.170
5 1.493 0.173 1.340 0.248 0.913 0.114
6 1.168 0.125 1.270 0.193 0.660 0.073
7 0.998 0.086 1.146 0.147 0.541 0.046
8 0.680 0.054 1.143 0.110 0.445 0.029
9 0.603 0.035 1.138 0.080 0.256 0.018

10 0.510 0.022 1.113 0.074 0.000 0.000

Table 3. Reconstruction error at different
multi-scale levels (Tlea f � 100, q � 5%).

pared to the point set P

e�pi� � hi� f �pi�

emax�P � � max�e�pi��

erms�P � �

�
∑N

i�1 e�pi�2

N

Table 3 shows the two error measures at 10 different lev-
els compared to the highest resolution reconstruction for
three models.

Figures 10 and 11 show the visual quality of our multi-
scale reconstruction method at different levels. Note that
even for a very complex geometry, the low resolution recon-
struction maintains the topology well and smoothes out high
frequencies.

Recall that the surface and attributes reconstructions can
be evaluated at different resolution as illustrated in Figure
12. First, the highest resolution reconstruction from 148 138
points is presented for comparison, then the implicit surface
is only reconstructed at level 3 (700 points) with 4 different
reconstruction levels for the attributes.

7 Discussion

In this section, we evaluate the advantages and drawbacks
of our new method compared to the existing multi-scale re-
construction methods for implicit surfaces by Ohtake et al.
[23, 22] and to the state-of-the art reconstruction method of
Carr et al. [6]. Note that Carr et al. do not explicitly define
a multi-scale method, however, they introduce an algorithm
to reduce the number of constraints that could be used to es-
tablish different resolutions. But similar to the method of
Ohtake et al. [23], there will only be a small number of
different levels. The multi-level partition of unity implicit
method by Ohtake et al. [22] and our method allow to cre-
ate a significantly higher number of levels that are created
adaptively according to local surface characteristics. But
note that our method is the only one that enables an adaptive
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(a) Level 0 (80 points) (b) Level 3 (550 points)

(c) Level 6 (3770 points) (d) Level 9 (25850 points)

Figure 10. Multi-scale representation of the
Stanford Dragon (437 645 points).

(a) level 1 (150 points) (b) level 4 (1 042 points)

(c) level 7 (7 150 points). (d) level 10 (49 050 points)

Figure 11. Multi-scale representation of Igea
(134 346 points).

evaluation of the defining function of the implicit surface
after being reconstructed. This is particularly useful for a
view-dependent visualization of the implicit surface, where
surface parts being closer to the viewpoint can be visualized

more precisely compared to surface parts being farther away
from the viewpoint.

Moreover, our reconstruction method enables both the
approximation and interpolation of implicit surfaces from
large unorganized point sets similar to the method of Carr
[6] and [22], whereas the first method of Ohtake et al. [23]
can only interpolate unorganized point sets.

Unfortunately, our method and the method of Carr et al.
[6] require the introduction of off-surface constraints, and
experimental results have shown a rather high reconstruc-
tion time compared to the methods of Ohtake et al. [23, 22].
However, they are the only methods enabling the reconstruc-
tion of continuous functions for the attributes.

Since in the first method by Ohtake et al. [23] the RBF
reconstruction is accelerated using compactly supported ra-
dial basis functions (CSRBF), it cannot straightforwardly be
used to reconstruct implicit surfaces from very large unorga-
nized point sets due to the too large involved sparse matrix in
the linear system to solve. Another drawback of this method
is the rather slow evaluation of the defining function of the
reconstructed implicit surface at the highest resolution, since
the evaluation of the defining functions at all intermediate
resolutions is involved.

The multi-level partition of unity method seems to be the
only method to be able to reconstruct implicit surfaces while
preserving sharp features [22]. Anyway, we are still not con-
vinced that the partition of unity blending between sharp and
smooth features of the surface can preserve sharp features
without an extensive topology study. Moreover, we believe
that the partition of unity blending of three different types
of algebraic surfaces involved in this method is not as stable
against strongly different topologies between the local re-
constructions as by using exclusively local RBF reconstruc-
tions as in our new method.

An important advantage of Carr’s [6] reconstruction
method is, that the involved fast multipole method (FMM)
accounts for the constraints more globally compared to sim-
ply blending together the local reconstructions. However,
the far field expansion required by the FMM has to be done
separately for every basis function in every dimension, and
is very complex to implement. Moreover, like in the method
of Ohtake et al. [23], the involved high computational ef-
fort to reconstruct a new implicit surface after small changes
in the constraints makes its use difficult in implicit sur-
face modeling applications compared to our method and the
method of Ohtake et al. [22].

For the sake of convenience, we summarized the different
characteristics of the four discussed reconstruction methods
in Table 4.

8 Conclusions

In this paper, we described a new approach to reconstruct
large scattered datasets by dividing the global reconstruc-
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Carr Ohtake Ohtake Our
et al. [6] et al. [23] et al. [22] method

reconstruction method RBF RBF algebraic RBF
acceleration technique FMM CSRBF POU POU
off-surface constraints

�
- -

�
simple implementation -

� � �
multi-scale -

� � �
high number of levels - -

� �
adaptive reconstruction - -

� �
adaptive evaluation - - -

�
approximation

�
-

� �
interpolation

� � � �
attributes reconstruction

�
- -

�
very large point sets

�
-

� �
fast reconstruction -

� �
-

fast evaluation
�

-
� �

sharp edges - -
�

-

Table 4. Comparison of surface reconstruc-
tion techniques from unorganized points.

tion domain into smaller local subdomains, solving the re-
construction problems in the local subdomains with vari-
ational techniques using radial basis functions, and recur-
sively blending the solutions together using the partition of
unity method. A multi-scale reconstruction is obtained by
using thinning algorithms to obtain subsets of the data for
intermediate resolutions. Starting from these subsets, the lo-
cal reconstructions are computed with variational techniques
using radial basis functions as well.

In contrast to partition of unity implicits [22], where the
local reconstructions of all the leaf nodes are blended to-
gether using the partition of unity method, we use the par-
tition of unity method also for the inner nodes of the hi-
erarchy. The local reconstructions at the desired precisions
are blended together and propagated bottom-up, and the root
node contains the global reconstruction function.

Our approach has a nice linear behavior with respect to
the size of the dataset. Furthermore, the local reconstruc-
tion problems can be solved by various, non-communicating
entities due to the independence of the local subdomains.
The stability of the reconstruction obtained by the possibil-
ity to specify the number of points in the partition of unity
blending and by using variational techniques with radial ba-
sis functions makes our approach robust against highly, non-
uniformly distributed and topologically complex datasets al-
lowing its usage in various application fields.

We applied our new method to the multi-scale reconstruc-
tion of implicit surfaces with attributes by reconstructing
the defining function of the implicit surface and an attribute
function for every attribute. It is particularly beneficial that
different resolutions for the surface and the attributes can be
selected adaptively for different applications according to
local surface characteristics, viewing parameters, provided
time, or other criteria.

Our new multi-scale reconstruction method intrigues us

in various areas for current and future research. For exam-
ple, we intend to show the power of our method in further
applications, such as repairing 3D polygonal meshes and
the reconstruction of missing information in medical data.
Moreover, we are currently defining a new point-based ren-
dering technique for our reconstructed implicit surface by
using a curvature-driven sampling technique based on par-
ticle systems. Lower resolutions of the implicit surface can
be used to rapidly spread particles evenly and coarsely over
the surface before using the higher resolutions to increase
the precision. Using this point-based rendering technique,
a completely meshless interactive modeling environment by
using points both as modeling and rendering primitive can
be defined.
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