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Abstract—The ongoing hardware evolution exhibits an es-
calation in the number, as well as in the heterogeneity, of
computing resources. The pressure to maintain reasonable
levels of performance and portability forces application de-
velopers to leave the traditional programming paradigms and
explore alternative solutions. PASTIX is a parallel sparse direct
solver, based on a dynamic scheduler for modern hierarchical
manycore architectures. In this paper, we study the benefits and
limits of replacing the highly specialized internal scheduler of
the PASTIX solver with two generic runtime systems: PARSEC
and STARPU. The tasks graph of the factorization step is made
available to the two runtimes, providing them the opportunity
to process and optimize its traversal in order to maximize
the algorithm efficiency for the targeted hardware platform.
A comparative study of the performance of the PASTIX solver
on top of its native internal scheduler, PARSEC, and STARPU
frameworks, on different execution environments, is performed.
The analysis highlights that these generic task-based runtimes
achieve comparable results to the application-optimized embed-
ded scheduler on homogeneous platforms. Furthermore, they
are able to significantly speed up the solver on heterogeneous
environments by taking advantage of the accelerators while
hiding the complexity of their efficient manipulation from the
programmer.

I. INTRODUCTION

Emerging processor technologies put an emphasis on

increasing the number of computing units instead of in-

creasing their working frequencies. As a direct outcome of

the physical multiplexing of hardware resources, complex

memory hierarchies had to be instated to relax the memory

bottleneck and ensure a decent rate of memory bandwidth

for each resource. The memory becomes divided in several

independent areas, capable of delivering data simultaneously

through a complex and hierarchical topology, leading to

the mainstream Non Uniform Memory Accesses (NUMA)

machines we know today. Together with the availability

of hardware accelerators, this trend profoundly altered the

execution model of current and future platforms, progressing

them toward a scale and a complexity unattained before.

Furthermore, with the established integration of accelerators

into modern architectures, such as GPUs or Intel Xeon Phis,

high-end multi-core CPUs are consistently outperformed by

these novel, more integrated, architectures both in terms

of data processing rate and memory bandwidth. As a con-

sequence, the working environment of today’s application

developers evolved toward a multi-level massively parallel

environment, where computation becomes cheap but data

movements expensive, driving sup the energetic cost and

algorithmic overheads and complexities.

With the advent of APIs for GPU programming, such

as CUDA or OpenCL, programming accelerators has been

rapidly evolving in the past years, permanently bringing

accelerators into the mainstream. Hence, GPUs are becom-

ing a more and more attractive alternative to traditional

CPUs, particularly for their more interesting cost-per-flop

and watts-per-flop ratios. However, the availability of a par-

ticular programming API only partially addresses the devel-

opment of hybrid algorithms capable of taking advantage of

all computational resources available, including accelerators

and CPUs. Extracting a satisfactory level of performance,

out of such entangled architectures, remains a real challenge

due to the lack of consistent programming models and tools

to assess their performance. In order to efficiently exploit

current and future architectures, algorithm developers are

required to expose a large amount of parallelism, adapt

their code to new architectures with different programming

models, and finally, map it efficiently on the heterogeneous

resources. This is a gargantuan task for most developers as

they do not possess the architectural knowledge necessary to

mold their algorithms on the hardware capabilities in order

to achieve good efficiency, and/or do not want to spend new

efforts with every new generation of hardware.

Solving large sparse linear systems of equations, Ax = b,
is one of the most important and time-consuming parts in

many scientific and engineering algorithms, a building block

toward more complex scientific applications. A significant

amount of research has been done on dense linear algebra,

but sparse linear algebra on heterogeneous system is a

work-in-progress. Multiple reasons warrant this divergence,

including the intrinsic algorithmic complexity and the highly

irregular nature of the resulting problem, both in terms of

memory accesses and computational intensities. Combined
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with the heterogeneous features of current and future parallel

architectures, this depicts an extremely complex software

development field.

The PASTIX solver is a sparse direct solver that can

solve symmetric definite, indefinite, and general problems

using Cholesky, LDLT , and LU factorizations, respectively.

The PASTIX implementation relies on a two-level approach

using the POSIX Thread library within a node, and the

Message Passing Interface (MPI) between different nodes.

Historically, PASTIX scheduling strategy was based on a

cost model of the tasks executed that defines the execution

order used at runtime during the analyze phase. In order

to complement the lack of precision of the cost model on

hierarchical architectures, a dynamic scheduler based on a

work-stealing strategy has been developed to reduce the idle

times while preserving a good locality for data mapping [1].

More recently, the solver has been optimized to deal with

the new hierarchical multi-core architectures [2], at the level

of internal data structures of the solver, communication

patterns, and scheduling strategies.

In this paper, we advance the state-of-the-art in supernodal

solvers by migrating PASTIX toward a new programming

paradigm, one with a promise of efficiently handling hybrid

execution environments while abstracting the application

from the hardware constraints. Many challenges had to be

overcome, going from exposing the PASTIX algorithms

using a task-based programming paradigm, to delivering a

level of task parallelism, granularity, and implementation

allowing the runtime to efficiently schedule the resulting,

highly irregular tasks, in a way that minimizes the execution

span. We exposed the original algorithm using the concept

of tasks, a self-contained computational entity, linked to

the other tasks by data dependencies. Specialized task-

graph description formats were used in accordance with

the underlying runtime system (PARSEC or STARPU).

We provided specialized GPU-aware versions for some of

the most compute intensive tasks, providing the runtimes

with the opportunity to unroll the graph of tasks on all

available computing resources. The resulting software is, to

the best of our knowledge, the first implementation of a

sparse direct solver with a supernodal method supporting

hybrid execution environments composed of multi-cores

and multi-GPUs. Based on these elements, we pursue the

evaluation of the usability and the appeal of using a task-

based runtime as a substrate for executing this particular

type of algorithm, an extremely computationally challenging

sparse direct solver. Furthermore, we take advantage of the

integration of accelerators (GPUs in this context) with our

supporting runtimes, to evaluate and understand the impact

of this drastically novel portable way of writing efficient

and perennial algorithms. Since the runtime system offers a

uniform programming interface, dissociated from a specific

set of hardware or low-level software entities, applications

can take advantage of these uniform programming interfaces

for ensuring their portability. Moreover, the exposed graph

of tasks allows the runtime system to apply specialized opti-

mization techniques and minimize the application’s time to

solution by strategically mapping the tasks onto computing

resources by using state-of-the-art scheduling strategies.

The rest of the paper is organized as follows. We describe

the supernodal method of the PASTIX solver in Section III,

followed by a description of the runtimes used IV. Section V

explains the implementation over the DAG schedulers with a

preliminary study over multi-core architectures, followed by

details on the extension to heterogeneous architectures. All

choices are supported and validated by a set of experiments

on a set of matrices with a wide range of characteristics.

Finally, section VI concludes with some prospects of the

current work.

II. RELATED WORK

The dense linear algebra community spent a great deal of

effort to tackle the challenges raised by the sharp increase of

the number of computational resources. Due to their heavy

computational cost, most of their algorithms are relatively

simple to handle. Avoiding common pitfalls such as the

“fork-join” parallelism, and expertly selecting the blocking

factor, provide an almost straightforward way to increase the

parallelism and thus achieve better performance. Moreover,

due to their natural load-balance, most of the algorithms can

be approached hierarchically, first at the node level, and then

at the computational resource level. In a shared memory con-

text, one of the seminal papers [3] replaced the commonly

used LAPACK layout with one based on tiles/blocks. Using

basic operations on these tiles exposes the algorithms as a

graph of tasks augmented with dependencies between them.

In shared memory, this approach quickly generates a large

number of ready tasks, while, in distributed memory, the

dependencies allow the removal of hard synchronizations.

This idea leads to the design of new algorithms for various

algebraic operations [4], now at the base of well-known

software packages like PLASMA [5].

This idea is recurrent in almost all novel approaches

surrounding the many-core revolution, spreading outside the

boundaries of dense linear algebra. Looking at the sparse

linear algebra, the efforts were directed toward improving

the behavior of the existing solvers by taking into account

both task and data affinity and relying on a two-level hybrid

parallelization approach, mixing multithreading and message

passing. Numerous solvers are now able to efficiently exploit

the capabilities of these new platforms [2], [6]. New solvers

have also been designed and implemented to address these

new platforms. For them the chosen approach follows the

one for dense linear algebra, fine-grained parallelism, thread-

based parallelization, and advanced data management to deal

with complex memory hierarchies. Examples of this kind of

solver are HSL [7] and SuperLU-MT [8] for sparse LU or
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Cholesky factorizations and SPQR [9] and qr_mumps [10]

for sparse QR factorizations.

With the advent of accelerator-based platforms, a lot of

attention has shifted toward extending the multi-core aware

algorithms to fully exploit the huge potential of accelerators

(mostly GPUs). The main challenges raised by these het-

erogeneous platforms are mostly related to task granularity

and data management: although regular cores require fine

granularity of data as well as computations, accelerators such

as GPUs need coarse-grain tasks. This inevitably introduces

the need for identifying the parts of the algorithm which

are more suitable to be processed by accelerators. As for

the multi-core case described above, the exploitation of this

kind of platform was first considered in the context of dense

linear algebra algorithms.

Moreover, one constant becomes clear: a need for a

portable layer that will insulate the algorithms and their

developers from the rapid hardware changes. Recently, this

portability layer appeared under the denomination of a task-

based runtime. The algorithms are described as tasks with

data dependencies in-between, and the runtime systems

are used to manage the tasks dynamically and schedule

them on all available resources. These runtimes can be

generic, like the two runtimes used in the context of this

study (STARPU [11] or PARSEC [12]), or more specialized

like QUARK [13]. These efforts resulted in the design of

the DPLASMA library [14] on top of PARSEC and the

adaptation of the existing FLAME library [15]. On the

sparse direct methods front, preliminary work has resulted

in mono-GPU implementations based on offloading parts of

the computations to the GPU [16]–[18]. Due to its very

good data locality, the multifrontal method is the main

target of these approaches. The main idea is to treat some

parts of the task dependency graph entirely on the GPU.

Therefore, the main originality of these efforts is in the

methods and algorithms used to decide whether or not a

task can be processed on a GPU. In most cases, this was

achieved through a threshold based criterion on the size of

the computational tasks.

Many initiatives have emerged in previous years to de-

velop efficient runtime systems for modern heterogeneous

platforms. Most of these runtime systems use a task-based

paradigm to express concurrency and dependencies by em-

ploying a task dependency graph to represent the applica-

tion to be executed. Without going into details, the main

differences between these approaches are related to their

representation of the graph of tasks, whether they manage

data movements between computational resources, the extent

they focus on task scheduling, and their capabilities to

handle distributed platforms.

III. SUPERNODAL FACTORIZATION

Sparse direct solvers are algorithms that address sparse

matrices, mostly filled with zeroes. In order to reduce the

Figure 1: Decomposition of the task applied while process-

ing one panel

number of operations, they consider only non-zeroes of

the matrix A. During factorization, new non-zero entries

– called fill-in – appear in the factorized matrix and lead

to more computation and memory consumption. One of the

main objectives of those solvers is to keep the fill-in to its

minimum to limit the memory consumption. The first step

of any sparse direct solver is the computation of a nested

dissection of the problem that results in a permutation of

the unknowns of A. This process is a graph partitioning

algorithm applied to the connectivity graph associated with

the matrix. The computed permutation reduces the fill-in that

the factorization process will generate, and the elimination

tree [19] is generated out of the separators discovered during

the graph partitioning process. Basically, each node of the

tree represents the set of unknowns that belongs to a sepa-

rator, and edges are connections between those separators in

the original graph. The edges of the tree connect a node to

almost all nodes in the path that connect it to the root of the

tree. They represent contributions from one node to another

during the factorization. The second step of sparse solvers

is the analysis stage which predicts the non-zero pattern of

the factorized matrix through a symbolic factorization. The

resulting pattern is grouped in blocks of non-zero elements

to allow for more efficient BLAS calls. Blocks can be

enlarged, if extra fill-in is allowed, for better performance,

or split to generate more parallelism.

Once the elimination tree and the symbolic factorization

are computed, two different methods can be applied: mul-

tifrontal [20] or supernodal [21]. The PASTIX solver uses

a supernodal method. Each node of the elimination tree, or

supernode, represents a subset of contiguous columns, also

called a panel, in the matrix. To each node of the elimination

tree, we associate a task, called 1D task, that performs three

steps associated with the panel A, as shown in the Figure 1:

1) Factorization of the diagonal block,

2) Triangular solve on the off-diagonal blocks in the

panel (TRSM), and
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3) For each off-diagonal block Ai, apply the associated

update to the facing panel Ci (GEMM) – we call Ci

the facing panel with the diagonal block owning the

same rows as the off-diagonal block Ai.

Figure 1 represents a lower triangular matrix used in

case of symmetric problems with Cholesky factorization,

but is also valid for non-symmetric cases with PASTIX. In a

general manner, PASTIX works on the matrix A+AT , which

produces a symmetric pattern. In non-symmetric cases, the

steps 2 and 3 are then duplicated for the L and U matrices

of the LU factorization. Besides, the PASTIX solver doesn’t

perform dynamic pivoting, as opposed to SuperLU [22],

which allows the factorized matrix structure to be fully

known at the analysis step. In the rest of the paper, we will

discuss only the Cholesky implementation. LDLT and LU
factorizations follow the same method.

The PASTIX solver relies on a cost model of this 1D

task to compute a static scheduling. This static scheduling

associates ready tasks with the first available resources

among the computational units. The complexity of such an

algorithm depends on the number of tasks and resources.

Hence, the 1D task is kept as a large single task to lower

the complexity of the analysis part. However, it is obvious

that more parallelism could be extracted from those tasks,

but would increase the analysis step complexity.
First, the triangular solves, applied on off-diagonal blocks

of each panel, are independent computations that depend

only on the diagonal block factorization. Thus, each panel is

stored as a single tall and skinny matrix, such that the TRSM

granularity can be decided at runtime and is independent of

the data storage. At lower levels of the elimination tree, the

small block granularity might induce a large overhead if

they are considered as independent tasks. On the contrary,

at higher levels, the larger supernodes (Order of N
2
3 for

a 3D problem of N unknowns, or sqrt(N) for a 2D

problem) might be split to create more parallelism with low

overhead. That is why supernodes of the higher levels are

split vertically prior to the factorization to limit the task

granularity and create more parallelism. In this study, to

compare to the existing PASTIX solver, we keep all TRSM

operations on a single panel grouped together as a single

operation.
Second, the same remark as before applies to the update

tasks with a higher order of magnitude as before. Each

couple of off-diagonal blocks (Ai, Aj), with i < j in

a panel, generates an independent update to the trailing

submatrix formed by their outer product. To adapt to the

small granularity of off-diagonal blocks in sparse solvers,

those updates are grouped together. Two variants exists. Left-
looking: all tasks contributing to a single panel are associated

in a single task, they have a lot of input edges and only one

in-out data. Right-looking: all updates generated by a single

panel are directly applied to the multiple destination panels.

This solution has a single input data, and many panels are

accessed as in-out. PASTIX uses the right-looking variant.

Therefore, the nature of the supernodal algorithm is in itself

a DAG of tasks dependent on the structure of the factorized

matrix, but independent of the numerical content thanks to

the static pivoting strategy. However, since we consider a

data as a panel, and both of the targeted runtime systems

take a fixed number of dependencies per tasks, one update

task will be generated per couple of panels instead of one

per panel, as in PASTIX.

IV. RUNTIMES

In our exploratory approach toward moving to a generic

scheduler for PASTIX, we considered two different run-

times: STARPU and PARSEC. Both runtimes have been

proven mature enough in the context of dense linear algebra,

while providing two orthogonal approaches to task-based

systems.

The PARSEC [12] distributed runtime system is a generic

data-flow engine supporting a task-based implementation

targeting hybrid systems. Domain specific languages are

available to expose a user-friendly interface to developers

and allow them to describe their algorithm using high-

level concepts. This programming paradigm constructs an

abridged representation of the tasks and their dependencies

as a graph of tasks – a structure agnostic to algorithmic

subtleties, where all intrinsic knowledge about the complex-

ity of the underlying algorithm is extricated, and the only

constraints remaining are annotated dependencies between

tasks [23]. This symbolic representation, augmented with

a specific data distribution, is then mapped on a particular

execution environment. The runtime supports the usage of

different types of accelerators, GPUs and Intel Xeon Phi,

in addition to distributed multi-core processors. Data are

transferred between computational resources based on coher-

ence protocols and computational needs, with emphasis on

minimizing the unnecessary transfers. The resulting tasks are

dynamically scheduled on the available resources following

a data reuse policy mixed with different criteria for adaptive

scheduling. The entire runtime targets very fine grain tasks

(order of magnitude under ten microseconds), with a flexible

scheduling and adaptive policies to mitigate the effect of

system noise and take advantage of the algorithmic-inherent

parallelism to minimize the execution span.

The experiment presented in this paper takes advantage

of a specialized domain specific language of PARSEC,

designed for affine loops-based programming [14]. This

specialized interface allows for a drastic reduction in the

memory used by the runtime, as tasks do not exist until they

are ready to be executed, and the concise representation of

the task-graph allows for an easy and stateless exploration of

the graph. In exchange for the memory saving, generating a

task requires some extra computation, and lies in the critical

path of the algorithm. The need for a window of visible
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tasks is then pointless, the runtime can explore the graph

dynamically based on the ongoing state of the execution.

STARPU [11] is a runtime system aiming to allow pro-

grammers to exploit the computing power of clusters of

hybrid systems composed of CPUs and various accelerators

(GPUs, Intel Xeon Phi, etc) while relieving them from the

need to specially adapt their programs to the target machine

and processing units. The STARPU runtime supports a task-
based programming model, where applications submit com-

putational tasks, with CPU and/or accelerator implemen-

tations, and STARPU schedules these tasks and associated

data transfers on available CPUs and accelerators. The data

that a task manipulates is automatically transferred among

accelerators and the main memory in an optimized way

(minimized data transfers, data prefetch, communication

overlapped with computations, etc.), so that programmers

are relieved of scheduling issues and technical details as-

sociated with these transfers. STARPU takes particular care

of scheduling tasks efficiently, by establishing performance

models of the tasks through on-line measurements, and then

using well-known scheduling algorithms from the literature.

In addition, it allows scheduling experts, such as compilers

or computational library developers, to implement custom

scheduling policies in a portable fashion.

The differences between the two runtimes can be classi-

fied into two groups: conceptual and practical differences. At

the conceptual level the main differences between PARSEC

and STARPU are the tasks submission process, the central-

ized scheduling, and the data movement strategy. PARSEC

uses its own parameterized language to describe the DAG

in comparison with the simple sequential submission loops

typically used with STARPU. Therefore, STARPU relies

on a centralized strategy that analyzes, at runtime, the

dependencies between tasks and schedules these tasks on

the available resources. On the contrary, through compile-

time information, each computational unit of PARSEC

immediately releases the dependencies of the completed task

solely using the local knowledge of the DAG. At last, while

PARSEC uses an opportunistic approach, the STARPU

scheduling strategy exploits cost models of the computation

and data movements to schedule tasks to the right resource

(CPU or GPU) in order to minimize overall execution time.

However, it does not have a data-reuse policy on CPU-

shared memory systems, resulting in lower efficiency when

no GPUs are used, compared to the data-reuse heuristic

of PARSEC. At the practical level, PARSEC supports

multiple streams to manage the CUDA devices, allowing

partial overlap between computing tasks, maximizing the

occupancy of the GPU. On the other hand, STARPU allows

data transfers directly between GPUs without going through

central memory, potentially increasing the bandwidth of data

transfers when data is needed by multiple GPUs.

V. SUPERNODAL FACTORIZATION OVER DAG

SCHEDULERS

Similarly to dense linear algebra, sparse direct factoriza-

tion relies on three types of operations: the factorization

of the diagonal block (POTRF), the solve on off-diagonal

blocks belonging to the same panel (TRSM), and the trailing

panels updates (GEMM). Whereas the task dependency

graph from a dense Cholesky factorization [4] is extremely

regular, the DAG describing the supernodal method contains

rather small tasks with variable granularity and less uniform

ranges of execution space. This lack of uniformity makes

the DAG resulting from a sparse supernodal factorization

complex, accruing the difficulty to efficiently schedule the

resulting tasks on homogeneous and heterogeneous comput-

ing resources.

The current scheduling scheme of PASTIX exploits a 1D-

block distribution, where a task assembles a set of operations

together, including the tasks factorizing one panel (POTRF

and TRSM) and all updates generated by this factorization.

However, increasing the granularity of a task in such a

way limits the potential parallelism, and has a growing

potential of bounding the efficiency of the algorithm when

using many-core architectures. To improve the efficiency

of the sparse factorization on a multi-core implementation,

we introduced a way of controlling the granularity of the

BLAS operations. This functionality dynamically splits up-

date tasks, so that the critical path of the algorithm can be

reduced. In this paper, for both the PARSEC and STARPU

runtimes, we split PASTIX tasks into two sub-sets of tasks:

• the diagonal block factorization and off-diagonal blocks

updates, performed on one panel;

• the updates from off-diagonal blocks of the panel to

one other panel of the trailing sub-matrix.

Hence, the number of tasks is bound by the number of blocks

in the symbolic structure of the factorized matrix.

Moreover, when taking into account heterogeneous archi-

tectures in the experiments, a finer control of the granularity

of the computational tasks is needed. Some references for

benchmarking dense linear algebra kernels are described

in [24] and show that efficiency could be obtained on GPU

devices only on relatively large blocks – a limited number

of such blocks can be found on a supernodal factorization

only on top of the elimination tree. Similarly, the amalgama-

tion algorithm [25], reused from the implementation of an

incomplete factorization, is a crucial step to obtain larger

supernodes and efficiency on GPU devices. The default

parameter for amalgamation has been slightly increased to

allow up to 12% more fill-in to build larger blocks while

maintaining a decent level of parallelism.

In the remaining of the paper, we present the extensions

to the solver to support heterogeneous many-core architec-

tures. These extensions were validated through experiments

conducted on Mirage nodes from the PLAFRIM cluster at
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Figure 2: CPU scaling study: GFlop/s performance of the factorization step on a set of nine matrices with the three schedulers.

INRIA Bordeaux. A Mirage node is equipped with two hexa-

core Westmere Xeon X5650 (2.67 GHz), 32 GB of memory

and 3 Tesla M2070 GPUs. PASTIX was built without MPI
support using GCC 4.6.3, CUDA 4.2, Intel MKL
10.2.7.041, and SCOTCH 5.1.12b. Experiments were

performed on a set of nine matrices, all part of the University

of Florida sparse matrix collection [26], and are described

in Table I. These matrices represent different research fields

and exhibit a wide range of properties (size, arithmetic,

symmetry, definite problem, etc). The last column reports

the number of floating point operations (Flop) required to

factorize those matrices and used to compute the perfor-

mance results shown in this section.

Matrix Prec Method Size nnzA nnzL TFlop
Afshell10 D LU 1.5e+6 27e+6 610e+6 0.12
FilterV2 Z LU 0.6e+6 12e+6 536e+6 3.6

Flan D LLT 1.6e+6 59e+6 1712e+6 5.3

Audi D LLT 0.9e+6 39e+6 1325e+6 6.5
MHD D LU 0.5e+6 24e+6 1133e+6 6.6

Geo1438 D LLT 1.4e+6 32e+6 2768e+6 23

Pmldf Z LDLT 1.0e+6 8e+6 1105e+6 28
Hook D LU 1.5e+6 31e+6 4168e+6 35

Serena D LDLT 1.4e+6 32e+6 3365e+6 47

Table I: Matrix description (Z: double complex, D: double).

A. Multi-core Architectures

As mentioned earlier, the PASTIX solver has already been

optimized for distributed clusters of NUMA nodes. We use

the current state-of-the-art PASTIX scheduler as a basis,

and compare the results obtained using the STARPU and

PARSEC runtimes from there. Figure 2 reports the results

from a strong scaling experiment, where the number of com-

puting resources varies from 1 to 12 cores, and where each

group represents a particular matrix. Empty bars correspond

to the PASTIX original scheduler, shaded bars correspond to

STARPU, and filled bars correspond to PARSEC. The figure

is in Flop/s, and a higher value on the Y-axis represents

a more efficient implementation. Overall, this experiment

shows that on a shared memory architecture the performance

obtained with any of the above-mentioned approaches are

comparable, the differences remaining minimal on the target

architecture.

We can also see that, in most cases, the PARSEC imple-

mentation is more efficient than STARPU, especially when

the number of cores increases. STARPU shows an overhead

on multi-core experiments attributed to its lack of cache

reuse policy compared to PARSEC and the PASTIX internal

scheduler. A careful observation highlights the fact that both

runtimes obtain lower performance compared with PASTIX

for LDLT on both PmlDF and Serena matrices. Due to its

single task per node scheme, PASTIX stores the DLT matrix

in a temporary buffer which allows the update kernels to call

a simple GEMM operation. On the contrary, both STARPU

and PARSEC implementations are using a less efficient

kernel that performs the full LDLT operation at each update.

Indeed, due to the extended set of tasks, the life span of

the temporary buffer could cause large memory overhead.

In conclusion, using these generic runtimes shows similar

performance and scalability to the PASTIX internal solution

on the majority of test cases, while providing a suitable

level of performance and a desirable portability, allowing

for a smooth transition toward more complex heterogeneous

architectures.

B. Heterogeneous Architectures Implementation

While obtaining an efficient implementation was one of

the goals of this experiment, it was not the major one.
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The ultimate goal was to develop a portable software en-

vironment allowing for an even transition to accelerators,

a software platform where the code is factorized as much

as possible, and where the human cost of adapting the

sparse solver to current and future hierarchical complex het-

erogeneous architectures remains consistently low. Building

upon the efficient supernodal implementation on top of DAG

based runtimes, we can more easily exploit heterogeneous

architectures. The GEMM updates are the most compute-

intensive part of the matrix factorization, and it is important

that these tasks are offloaded to the GPU. We decide not

to offload the tasks that factorize and update the panel to

the GPU due to the limited computational load, in direct

relationship with the small width of the panels. It is common

in dense linear algebra to use the accelerators for the update

part of a factorization while the CPUs factorize the panel; so

from this perspective our approach is conventional. However,

such an approach combined with look-ahead techniques

gives really good performance for a low programming effort

on the accelerators [27]. The same solution is applied in this

study, since the panels are split during the analysis step to

fit the classic look-ahead parameters.

It is a known fact that the update is the most compute

intensive task during a factorization. Therefore, generally

speaking, it is paramount to obtain good efficiency on the

update operation in order to ensure a reasonable level of

performance for the entire factorization. Due to the em-

barrassingly parallel architecture of the GPUs and to the

extra cost of moving the data back and forth between the

main memory and the GPUs, it is of greatest importance to

maintain this property on the GPU.
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Figure 3: Multi-stream performance comparison on the

DGEMM kernel for three implementations: CUBLAS li-

brary, ASTRA framework, and the sparse adaptation of the

ASTRA framework.

As presented in Figure 1, the update task used in the

PASTIX solver groups together all outer products that are

applied to a same panel. On the CPU side, this GEMM

operation is split in two steps due to the gaps in the

destination panel: the outer product is computed in a con-

tiguous temporary buffer, and upon completion, the result

is dispatched on the destination panel. This solution has

been chosen to exploit the performance of vendor provided

BLAS libraries in exchange for constant memory overhead

per working thread.

For the GPU implementation, the requirements for an

efficient kernel are different. First, a GPU has significantly

less memory compared with what is available to a traditional

processor, usually in the range of 3 to 6 GB. This forces

us to carefully restrict the amount of extra memory needed

during the update, making the temporary buffer used in

the CPU version unsuitable. Second, the uneven nature of

sparse irregular matrices might limit the number of active

computing units per task. As a result, only a partial number

of the available warps on the GPU might be active, leading

to a deficient occupancy. Thus, we need the capability to

submit multiple concurrent updates in order to provide the

GPU driver with the opportunity to overlap warps between

different tasks to increase the occupancy, and thus the overall

efficiency.

Many CUDA implementations of the dense GEMM ker-

nel are available to the scientific community. The most

widespread implementation is provided by Nvidia itself in

the CUBLAS library [28]. This implementation is extremely

efficient since CUDA 4.2 allows for calls on multiple

streams, but is not open source. Volkov developed an

implementation for the first generation of CUDA enabled

devices [24] in real single precision. In [29], authors propose

an assembly code of the DGEMM kernel that provides a

20% improvement on CUBLAS 3.2 implementation. The

MAGMA library proposed a first implementation of the

DGEMM kernel [30] for the Nvidia Fermi GPUs. Later,

an auto-tuned framework, called ASTRA, was presented

in [31] and included into the MAGMA library. This im-

plementation, similar to the ATLAS library for CPUs, is a

highly configurable skeleton with a set of scripts to tune the

parameters for each precision.

As our update operation is applied on a sparse representa-

tion of the panel and matrices, we cannot exploit an efficient

vendor-provided GEMM kernel. We need to develop our

own, starting from a dense version and altering the algorithm

to fit our needs. Due to the source code availability, the

coverage of the four floating point precisions, and it’s tuning

capabilities, we decided to use the ASTRA-based version

for our sparse implementation. As explained in [31] the

matrix-matrix operation is performed in two steps in this

kernel. Each block of threads computes the outer-product

tmp = AB into the GPU shared memory, and then the

addition C = βC + αtmp is computed. To be able to

compute directly into C, the result of the update from one

panel to another, we extended the kernel to provide the

structure of each panel. This allows the kernel to compute
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the correct position directly into C during the sum step. This

introduces a loss in the memory coalescence and deteriorates

the update parts, however it prevents the requirement of an

extra buffer on the GPU for each offloaded kernel.

One problem in the best parameters used in the MAGMA

library for the ASTRA kernel is that it has been deter-

mined that using textures gives the best performance for

the update kernel. The function cudaBindTexture and

cudaUnbindTexture are not compatible with concurrent

kernel calls on different streams. Therefore, the textures have

been disabled in the kernel, reducing the performance of the

kernel by about 5% on large square matrices.

Figure 3 shows the study we made on the GEMM

kernel and the impact of the modifications we did on the

ASTRA kernel. These experiments are done on a single

GPU of the Mirage cluster. The experiments consist of

computing a representative matrix-matrix multiplication of

what is typically encountered during sparse factorization.

Each point is the average performance of 100 calls to the

kernel that computes: C = C − ABT , with A, B, and C,

matrices respectively of dimension M -by-N , K-by-N , and

M -by-N . B is taken as the first block of K rows of A
as it is the case in Cholesky factorization. The plain lines

are the performance of the CUBLAS library with 1 stream

(red), 2 streams (green), and 3 streams (red). The black line

represents the peak performance obtained by the CUBLAS

library on square matrices. This peak is never reached with

the particular configuration case studied here. The dashed

lines are the performance of the ASTRA library in the same

configurations. We observe that this implementation already

looses 50GFlop/s, around 15%, against the CUBLAS library,

and that might be caused by the parameters chosen by the

auto-tuning framework which has been run only on square

matrices. Finally, the dotted lines illustrate the performance

of the modified ASTRA kernel to include the gaps into the

C matrix. For the experiments, C is a panel twice as tall

as A in which blocks are randomly generated with average

size of 200 rows. Blocks in A are also randomly generated

with the constraint that the rows interval of a block of A
is included in the rows interval of one block of C, and no

overlap is made between two blocks of A. We observe a

direct relationship between the height of the panel and the

performance of the kernel: the taller the panel, the lower the

performance of the kernel. The memory loaded to do the

outer product is still the same as for the ASTRA curves, but

memory loaded for the C matrix grows twice as fast without

increasing the number of Flop to perform. The ratio Flop

per memory access is dropping and explains the decreasing

performance. However, when the factorization progresses

and moves up the elimination trees, nodes get larger and

the real number of blocks encountered is smaller than the

one used in this experiment to illustrate worst cases.

Without regard to the kernel choice, it is important to

notice how the multiple streams can have a large impact on

the average performance of the kernel. For this comparison,

the 100 calls made in the experiments are distributed in a

round-robin manner over the available streams. One stream

always gives the worst performance. Adding a second stream

increases the performance of all implementations and espe-

cially for small cases when matrices are too small to feed

all resources of the GPU. The third one is an improvement

for matrices with M smaller than 1000, and is similar to

two streams over 1000.

This kernel is the one we provide to both runtimes to

offload computations on GPUs in case of Cholesky and LU

factorizations. An extension of the kernel has been made to

handle the LDLT factorization that takes an extra parameter

to the diagonal matrix D and computes: C = C − LDLT .

This modified version decreases the performance by 5%.

C. Heterogeneous experiments

Figure 4 presents the performance obtained on our set of

matrices on the Mirage platform by enabling the GPUs in

addition to all available cores. The PASTIX run is shown

as a reference. STARPU runs are empty bars, PARSEC

runs with 1 stream are shaded and PARSEC runs with 3

streams are fully colored. This experiment shows that we can

efficiently use the additional computational power provided

by the GPUs using the generic runtimes. In its current

implementation, STARPU has either GPU or CPU worker

threads. A GPU worker will execute only GPU tasks.

Hence, when a GPU is used, a CPU worker is removed.

With PARSEC, no thread is dedicated to a GPU, and they

all might execute CPU tasks as well as GPU tasks. The

first computational threads that submit a GPU task takes the

management of the GPU until no GPU work remains in the

pipeline. Both runtimes manage to get similar performance

and satisfying scalability over the 3 GPUs. In only two

cases, MHD and pmlDF, STARPU outperforms PARSEC

results with 3 streams. This experimentation also reveals

that, as was expected, the computation takes advantage of

the multiple streams that are available through PARSEC.

Indeed, the tasks generated by a sparse factorization are

rather small and won’t use the entire GPU. This PARSEC

feature compensates for the prefetch strategy of STARPU

that gave it the advantage when compared to the one stream

results. One can notice the poor performance obtained on

the afshell test case: in this case, the amount of Flop

produced is too small to efficiently benefit from the GPUs.

VI. CONCLUSION

In this paper, we have presented a new implementation of

a sparse direct solver with a supernodal method using a task-

based programming paradigm. The programming paradigm

shift insulates the solver from the underlying hardware. The

runtime takes advantage of the parallelism exposed via the

graph of tasks to maximize the efficiency on a particular
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Figure 4: GPU scaling study: GFlop/s performance of the factorization step with the three schedulers on a set of 10 matrices.

Experiments exploit twelve CPU cores and from zero to three additional GPUs.

platform, without the involvement of the application de-

veloper. In addition to the alteration of the mathematical

algorithm to adapt the solver to the task-based concept, and

to provide an efficient memory-constraint sparse GEMM

for the GPU, contributions to both runtimes (PARSEC and

STARPU) were made such that they could efficiently support

tasks with irregular duration, and minimize the non-regular

data movements to, and from, the devices. While the current

status of this development is already significant in itself,

the existence of the conceptual task-based algorithm opened

an astonishing new perspective for the seamless integration

of any type of accelerator. Providing computational kernels

adapted to specialized architectures has become the only

obstruction to a portable, efficient, and generic sparse direct

solver exploiting these devices. In the context of this study,

developing efficient and specialized kernels for GPUs al-

lowed a swift integration on hybrid platforms. Globally, our

experimental results corroborate the fact that the portability

and efficiency of the proposed approach are indeed available,

elevating this approach to a suitable programming model for

applications on hybrid environments.

Future work will concentrate on smoothing the runtime

integration within the solver. First, in order to minimize

the scheduler overhead, we plan to increase the granularity

of the tasks at the bottom of the elimination tree. Merging

leaves or subtrees together yields bigger, more computation-

ally intensive tasks. Second, we will pursue the extension

of this work in distributed heterogeneous environments. On

such platforms, when a supernode updates another non-local

supernode, the update blocks are stored in a local extra-

memory space (this is called “fan-in” approach [32]). By

locally accumulating the updates until the last updates to the

supernode are available, we trade bandwidth for latency. The

runtime will allow for studying dynamic algorithms, where

the number of local accumulations has bounds discovered

at runtime. Finally, the availability of extra computational

resources highlights the potential to dynamically build or

rebuild the supernodal structures according to the load on

the cores and the GPUs.
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