
Journal of Computational Physics 230 (2011) 2004–2020
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Efficient parallel resolution of the simplified transport equations
in mixed-dual formulation

M. Barrault a, B. Lathuilière a,⇑, P. Ramet b, J. Roman c

a EDF R&D, Département SINETICS, Clamart, France
b PRES de Bordeaux, INRIA Bordeaux - Sud-Ouest, CNRS (LaBRI UMR 5800), Equipe-Projet Bacchus, France
c INRIA Bordeaux - Sud-Ouest, PRES de Bordeaux, CNRS (LaBRI UMR 5800), Equipe-Projet HiePACS, France
a r t i c l e i n f o

Article history:
Received 26 February 2010
Received in revised form 18 November 2010
Accepted 30 November 2010
Available online 10 December 2010

Keywords:
Simplified transport equation
Raviart–Thomas finite element
HPC
Parallelism
Domain decomposition method
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.11.047

⇑ Corresponding author.
E-mail addresses: maxime.barrault@edf.fr (M. Ba

Roman).
1 Pressurized Water Reactor.
2 These equations are called SPn.
3 Like pin-by-pin discretization of SP3/SP5 equatio
a b s t r a c t

A reactivity computation consists of computing the highest eigenvalue of a generalized
eigenvalue problem, for which an inverse power algorithm is commonly used. Very fine
modelizations are difficult to treat for our sequential solver, based on the simplified trans-
port equations, in terms of memory consumption and computational time.

A first implementation of a Lagrangian based domain decomposition method brings to a
poor parallel efficiency because of an increase in the power iterations [1]. In order to obtain
a high parallel efficiency, we improve the parallelization scheme by changing the location
of the loop over the subdomains in the overall algorithm and by benefiting from the char-
acteristics of the Raviart–Thomas finite element. The new parallel algorithm still allows us
to locally adapt the numerical scheme (mesh, finite element order). However, it can be sig-
nificantly optimized for the matching grid case. The good behavior of the new paralleliza-
tion scheme is demonstrated for the matching grid case on several hundreds of nodes for
computations based on a pin-by-pin discretization.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The operation of a PWR-based1 nuclear plant requires its fuel to be changed every 18 months. This must be done while
ensuring the safety and the productivity of the plant in service. More precisely, in our context, EDF uses the numerical simu-
lation of the neutron transport inside a nuclear reactor. Hence, EDF has developed a fast sequential solver [2] based on the sim-
plified transport equations [3,4].2

The mid-term goal is to run efficiently large scale simulations3 based on the simplified transport equations. In this context,
the sequential algorithm suffers of two limitations. On the one hand, we are not able to run efficiently large scale computations
due to memory consumption and/or computational time. On the other hand, it is necessary to refine a large part of the mesh
when a better numerical approximation is needed in a local part of the reactor core. So, to tackle these problems, in [1,5] we
adapted a non-overlapping domain decomposition method based on Lagrange multipliers to the simplified transport equations.
In order to get the most generic algorithm, an approach with multigroup solver was chosen. As this approach leads to a signif-
icant increase in the number of power iterations, a good scalability could not be obtained. In the present article, we obtain a very
good parallel efficiency while improving the parallelization scheme of Lagrangian domain decomposition method applied to the
. All rights reserved.
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sequential power algorithm made of four nested loops. First, we change the location of the loop over the subdomains to obtain
the same number of power iterations as the sequential algorithm. Secondly, we benefit from the characteristics of the Raviart–
Thomas finite element to optimize the implementation of the new parallel algorithm.

In Section 2, the diffusion equation and the sequential algorithm based on the same algorithm as used by the Minos solver
[6,7], are presented. As the domain decomposition strategy proposed in this paper is performed at the level of one diffusion
system, the presentation is performed on the diffusion equation instead of SPn equations. Then in Section 3, after an over-
view of previous works on the parallelization of the sequential algorithm, the Lagrange multipliers domain decomposition
method and our new parallel algorithm are introduced. In Section 4, the characteristics of Raviart–Thomas finite elements
are used in the case of matching grids to get an efficient parallel implementation. Finally, in Section 5, numerical results on
the IAEA-3D benchmark and on data from real core computations are provided and analyzed; compared to the previous ap-
proach described in [1], the performance improvement factor is between 5 and 20, depending on the test case.

2. Background on SPn equations

The neutron flux is the solution of the Boltzmann transport equation which expresses the neutron balance between
streaming, scattering and absorption. The flux depends on seven variables (one for the time, one for the energy,4 two for
the direction and three for the space position). For the time variable, the steady state case is considered; it leads to a reactivity
computation which consists of computing the highest eigenvalue of a generalized eigenvalue problem.

Numerical approximations are required to solve the Boltzmann equation. The discretization of the energy is done with the
multigroup theory [8]: the energy variable is decomposed on Ng energy intervals (called energy groups). For the angular var-
iable, several approximations can be used. Two of them are

� the Pn approximation: the flux is expanded on a basis of spherical-harmonics functions up to the order n. The method
requires to compute (n + 1)2 spatial scalar fields for each energy group;
� the diffusion approximation: the Fick’s law introduces a diffusion coefficient that links the flux to his gradient. This

method requires to compute 4 spatial scalar fields for each energy group.

As the Pn approximation is expensive in terms of computational time, the simplified transport equations (SPn) have been
developed [3,4]. To obtain these equations, the neutron flux is supposed locally plane and is expanded on the 1D spherical-
harmonics basis. The SPn equations lead to nþ1

2 coupled diffusion systems5 for each energy group. For the SP1 case, which is
equivalent to the P16 case, a single diffusion system is obtained for each energy group. As the domain decomposition strategy
proposed in this paper is performed at the level of one diffusion system, the presentation is performed on the multigroup dif-
fusion equation. The method can be generalized without any difficulties to SPn equations (in Section 5, results with SP1 and SP3
equations are presented).

2.1. Multigroup diffusion equation

To study the existence of a solution of the steady state case, the following multigroup eigenvalue problem [8] has to be
solved.

Problem 1. Find keff the highest positive eigenvalue such that it exists Ng strictly positive functions w ¼ ð/1; . . . ;/Ng
Þ

satisfying the following coupled system for each 1 6 g 6 Ng:� �
4 The
5 nþ1

2
6 In t

equatio
�div Dg
~r/g

� �
þ Rt;g/g �

X
g0

Rg0!g
s /g0

� �
¼ 1

keff

X g

4p
:
X

g0
mRf ;g0/g0
� �

; ð1Þ
where:

� keff is the effective multiplicative coefficient which characterizes the criticity of the nuclear core. keff = 1 means that there
exists a solution to the steady state case. From a physical point of view, this means that the chain reaction is stable. keff < 1
(respectively keff > 1) means the problem is no longer steady state, as the number of neutrons is decreasing (respectively
increasing);
� /g is the neutron flux in the group g;
� Dg is the diffusion coefficient in the group g;
� Rt,g is the total cross section in the group g;
� Rg0!g

s is the scattering cross section from group g0 to group g;
� X g is the fission spectrum;
� mRf,g is the fission production in the group g.
energy of a neutron is directly linked to its speed.
is the number of harmonics.
he following, we prefer to use SP1 denomination to P1 because for n P 3 the domain decomposition method described in this paper applies to SPn
ns but not for Pn equations.
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By denoting the fission operator by F and the transport operator by H:
7 Let
side Sp

8 In [
F :

/1

..

.

/Ng

0BB@
1CCA! 1

4p
�
X

g0
mRf ;g0/g0

 ! X1

..

.

XNg

0BB@
1CCA; H :

/1

..

.

/Ng

0BB@
1CCA!

�div D1
~r/1

� �
þ Rt;1/1 �

P
g0

Rg0!1
s /g0

..

.

�div DNg
~r/Ng

� �
þ Rt;Ng /Ng

�
P
g0

Rg0!Ng
s /g0

0BBBBB@

1CCCCCA;
the Ng Eq. (1) can be written as:
Hw ¼ 1
keff
Fw: ð2Þ
A Generalized Power Inverse Iteration algorithm [8] is used to solve (2), which implies solvingHwpþ1 ¼ Sp at each power iter-
ation p. These systems are solved by a Gauss–Seidel algorithm which requires to solve several systems Hg/g ¼ qg for each
group g with:

� Hg : /g ! �divðDg
~r/gÞ þ ðRt;g � Rg!g

s Þ/g;
� qg a function of the right hand side Sp and of the result of the Gauss–Seidel iterations.7

2.2. Spatial discretization

For the spatial discretization, the same approach as in [7] is used: for each power iteration, for each energy group, the
following diffusion problem written with the mixed formulation (which implies the introduction of a new variable Jg

!
called

current) is solved.

Problem 2. Find /g and Jg

!
, respectively the flux and the current, such that:
divðJg

!
Þ þ Rg/g ¼ qg in X;

Jg

!

Dg
þ ~r/g ¼ ~0 in X;

/ ¼ 0 on @X;

8>>><>>>: ð3Þ
where Rg ¼ Rt;g � Rg!g
s .
Remark. In the following of the paper, g will be ignored to simplify the notations.
A Cartesian mesh8 is used to discretize Eq. (3). For each mesh cell Km, the value Dm (resp. Rm) of the function D (resp. R) is

computed. The Raviart–Thomas finite element (RTk) defines the approximation spaces Vh and Wh [11,12]. The discrete mixed
dual variational formulation of (3) is:

Problem 3. Find ð/; J
!
Þ 2 Vh �Wh such that:
ahð J
!
; ~wÞ � bhð/; ~wÞ ¼ 0 8~w 2Wh

bhðv; J
!
Þ þ thð/;vÞ ¼ qhðvÞ 8v 2 Vh

8<: with

ahð J
!
; ~wÞ ¼

P
m

1
Dm

R
Km

J
!
�~wdX;

bhð/; ~wÞ ¼
R

X /divð~wÞdX;

thð/; vÞ ¼
P
m

Rm
R

Km
/v dX;

qhðvÞ ¼
R

X qv dX:

������������

The Raviart–Thomas finite element properties lead to a very sparse algebraic system (see Fig. 2). The following unknowns

and coupling terms (see Fig. 1) are defined as follows:

� the vector / represents the degrees of freedom of the flux;
� the vector Jd represents the degrees of freedom of the current in direction d (d = x, y or z);
� the vector Q is associated to the linear form qh and contains the source terms;
us denote qðiÞg (respectively /ðiÞg ) the value of qg (respectively /g) at the ith Gauss–Seidel iteration and let us denote Sp
g the restriction of the right hand

to the group g. With these notations, qðiÞg is obtained as following qðiÞg ¼ Sp
g �

P
g0<gHg0!g /ðiÞg0 �

P
g0>gHg0!g /ði�1Þ

g0 .
9,10], the method has been adapted for hexagonal meshes.



Fig. 1. Mesh, degrees of freedom (DoF) and coupling terms with the RT0 finite element for a 2D case.
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� the matrix diag(Ax,Ay,Az) is associated to the bilinear form ah. It is a block diagonal matrix, as there are no coupling term
between the directions. Ad is a symmetric positive definite band matrix (tridiagonal with RT0 approximation and penta-
diagonal with RT1 approximation);
� the positive-definite diagonal matrix T is associated to the bilinear form th;

� the sparse rectangular matrix
Bx

By

Bz

0@ 1A is associated to the bilinear form bh. Bd contains the coupling terms between Jd and /.

So for a 2D case with a the spatial domain X, a linear system of the following form has to be solved:
Ax �Bx

Ay �By

tBx
tBy T

0B@
1CA Jx

Jy

/

0B@
1CA ¼ 0

0
Q

0B@
1CA: ð4Þ
The flux / = T�1(Q � tBxJx � tByJy) is eliminated to solve the system (4). Hence the current unknowns are obtained by a
Block Gauss Seidel algorithm applied to the following symmetric positive definite system:
Wx BxT�1tBy

ByT�1tBx Wy

 !
Jx

Jy

 !
¼ BxT�1Q

ByT�1Q

 !
with 8d 2 fx; yg; Wd ¼ Ad þ BdT�1tBd:

���

The matrices Wd and Ad have the same pattern. The resolution of the linear systems involving Wd is based on a Cholesky fac-
torization. The matrices BdT�1tBd0 are not stored in memory as their products are computed by three successive sparse
products.
2.3. Overall algorithm

The overall algorithm (see Algorithm 1) is made of three nested convergence loops (one for the power inverse algorithm
and two for the inner Gauss–Seidel algorithm). In our applications, we obtain for a given accuracy the best performance in
terms of CPU time by fixing the number of iterations of all Gauss–Seidel loops to one [6]. In the general SPn case, one level of
iterations is added to solve the coupled diffusion systems by block Gauss–Seidel loops over the harmonics.
3. Description of the domain decomposition algorithm

In this section we first describe the previous attempt to parallelize this specific algorithm based on an alternating direc-
tion method. Then, we describe the common part between our previous work and the present work. Indeed, the two works



Fig. 2. Matrix of the diffusion system.
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are based on a common numerical methodology using Lagrange multipliers. The two works differs by the parallelization
scheme, which has a crucial influence on numerical stability and parallel efficiency. Hence to conclude this section, we pres-
ent the characteristics of our new approach.

3.1. State of the art

To get the first parallelization of the algorithm presented in Section 2, the author of [13] used the independence of each
current line of Jd (see Fig. 1). From an algebraic point of view, the band matrices Wd are block diagonal; each block can be
treated in parallel. Due to the structure of the coupling matrix By (see Fig. 2), which implies a global vector reordering, a large
amount of communication is required. As the performance of the computers and the size of the problem to be solved have
changed since 1999, it is difficult to estimate the speed-up we could obtain now. However the communication speed in-
creases more slowly than computational speed, and as the method was already limited by the amount of communications,
we could not expect to reach good performance with such a parallelization scheme.

To avoid these global communications, domain decomposition methods are well suited. As the problem to solve is an
eigenvalue problem, the first attempts to use domain decomposition were based on modal synthesis: in each subdomain
several eigen modes have to be computed for each energy group. These modes are used to build the approximation space
and its basis. The dimension of the approximation space is small. The resulting small eigenvalue problem is solved sequen-
tially. In [14], an approach with overlapping subdomains called CMS9 was developed to avoid the difficulties due to the choice
of interface modes [13]. To reduce the number of modes to compute, the method was improved with FCMS.10 Only the first
mode is computed; the following modes are replaced by the products of the first mode by sinusoidal functions. Due to the over-
lap, 8 processors are required to be as efficient as the sequential Minos solver. The algorithm is not very scalable as:

� the size of the overlap increases with the number of subdomains;
� the global eigenvalue problem is treated sequentially and its size increases with the number of subdomains.

So the next attempts were to solve only the linear systemsHwpþ1 ¼ Sp by a domain decomposition strategy. A success was
obtained with a domain decomposition method based on a Schwarz multiplicative algorithm with Robin transfer conditions
[14]. Some pretreatment steps were not yet parallelized. So for a 3D PWR, and by using between 2 and 18 processors, an
efficiency between 60% and 80% were reached. The author expected an efficiency near 100% once the pre-treatment part par-
allelized. A first drawback of this method is the introduction of a small overlap of one cell between subdomains due to the
discontinuity of the flux on the interface.11 The second and main drawback of this algorithm comes from the need for a good
estimation of the parameter involved in the Robin transfer conditions. Trial and error is the only known method to choose this
parameter in a good way.

3.2. Preliminary study

In order to overcome these difficulties, we studied a non-overlapping domain decomposition method based on Lagrange
multipliers [5,1] such that
9 Component Mode Synthesis.
10 Factorized Component Mode Synthesis.
11 Coming from the use of the Finite Element RTk.
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� it does not introduce new parameters;
� the local solvers are identical to the global sequential solver: in terms of code reusability this is a key point because we do

not need to develop and maintain a new solver;
� it allows to deal with non-matching grids.

To get the most generic implementation, we chose an approach with an application of the multigroup solver for each subdomain
(see Algorithm 3). The numerical results obtained with cross sections coming from a real industrial application show an increase
in the number of the outer power iterations. Thus, the parallel efficiency was clearly not sufficient. Therefore, we propose an
other location of the domain decomposition loop to benefit from the characteristics of the alternating direction method. Before
we introduce our the new approach, the common numerical characteristics between the both approaches are described.

The space X is cut into two non-overlapping subdomains12 X1 and X2 such that X = X1 [X2 and C = @X1 \ @X2 = X1 \X2.
The interface C is directed by the normal vector~n. To obtain the continuous multidomain formulation (Problem 4), the equations
(3) are rewritten in each subdomain with a new boundary condition on the interface C. ð/1; J1

!
Þ (respectively ð/2; J2

!
Þ) represents the

flux and the current unknowns in the subdomain X1 (respectively X2). /C represents the flux on the interface. To get the equiv-
alence with Problem 2, the boundary condition (6) is added to ensure the continuity of the normal component of the current J

!
.

Problem 4. Find ð/1; J1

!
Þ and ð/2; J2

!
Þ such that:
12 For
divðJ1

!
Þ þ R/1 ¼ q in X1

J1
!

D þ ~r/1 ¼~0 in X1

/1 ¼ /C on C

/1 ¼ 0 on @X1 \ @X

8>>>>><>>>>>:
divðJ2

!
Þ þ R/2 ¼ q in X2;

J2
!

D þ ~r/2 ¼~0 in X2;

/2 ¼ /C on C;

/2 ¼ 0 on @X2 \ @X;

8>>>>><>>>>>:
ð5Þ

J1

!
�~n ¼ � J2

!
�~n on C: ð6Þ
The new variable /C in (5) leads commonly [15–17] to the introduction of Lagrange multipliers K. So the variational formu-
lation of Problem 4 is Problem 5. In [18,19], this formulation is called mixed-dual hybrid method, but it was not used to ob-
tain an efficient parallel domain decomposition algorithm.

Problem 5. Find ð/1; J1

!
Þ 2 L2ðX1Þ � Hðdiv;X1Þ; ð/2; J2

!
Þ 2 L2ðX2Þ � Hðdiv;X2Þ and K 2 H1/2(C) such that:
R

X1
divð J

!
1Þv1dX1 þ

R
X1

R1/1v1dX1 ¼
R

X1
q1v1dX1 8v1 2 L2ðX1Þ;R

X1

J
!

1
D1
� ~w1dX1 �

R
X1

/1 divð~w1ÞdX1 þ
R

C K~w1 �~ndC ¼ 0 8~w1 2 Hðdiv;X1Þ;

R
X2

divð J
!

2Þv2dX2 þ
R

X2
R2/2v2dX2 ¼

R
X2

q2v2dX2 8v2 2 L2ðX2Þ;R
X2

J
!

2
D2
� ~w2dX2 �

R
X2

/2divð~w2ÞdX2 �
R
C K~w2 �~ndC ¼ 0 8~w2 2 Hðdiv;X2Þ;

R
C J

!
1 � J

!
2

� �
�~nldC ¼ 0 8l 2 H1=2ðCÞ:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

Each subdomain is now discretized on a Cartesian mesh. On each cell Ki

m;Di (resp. Ri) has the constant value Dm
i (resp.

Rm
i ). Problem 5 becomes after discretization:

Problem 6. Find ð/1; J1

!
Þ 2 V1

h �W1
h; ð/2; J

!

2
Þ 2 V2

h �W2
h and Kh 2 VC

h such that:
ah
1ðJ1

!
;w1
!
Þ � bh

1ð/1;w1
!
Þ ¼ �ch

1ðKh;w1
!
Þ 8w1

!
2W1

h;

bh
1ðv1; J1

!
Þ þ th

1ð/1; v1Þ ¼ qh
1ðv1Þ 8v1 2 V1

h;

ah
2ðJ2

!
;w2
!
Þ � bh

2ð/2;w2
!
Þ ¼ �ch

2ðKh;w2
!
Þ 8w2

!
2W2

h;

bh
2ðv2; J2

!
Þ þ th

2ð/2; v2Þ ¼ qh
2ðv2Þ 8v2 2 V2

h;

ch
1ðlh; J1

!
Þ þ ch

2ðlh; J2

!
Þ ¼ 0 8lh 2 VC

h

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
with

ah
i ðJi

!
;wi
!
Þ ¼

P
m

1
Di

m

R
Ki

m
Ji

!
:wi
!

dX

bh
i ð/i;wi

!
Þ ¼

R
Xi

/i divðwi
!
ÞdX

th
i ð/i;v iÞ ¼

P
m

Ri
m

R
Ki

m
/iv idX

qh
i ðv iÞ ¼

R
Xi

qiv idX

ch
i ðKh;wi

!
Þ ¼ ð�1Þiþ1 R

C Kh~wi �~ndC

��������������������

:

the sake of simplicity, the presentation of the method is limited to two subdomains. The generalization to more subdomains is pretty obvious.
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The approximation spaces Vi
h and Wi

h come from the finite element discretization scheme. In case of matching grids (and
with the same finite element order used in each subdomain), VC

h is chosen as the trace of Wi
h. This choice provides the equiv-

alence between Problems 3 and 6. In case of non-matching grids, a Mortar technique [16,20] is used: VC
h is the trace of W1

h or
W2

h; the chosen subdomain is called the master subdomain. In our case, the master subdomain is the subdomain with the
finest mesh and the highest finite element order. The numerical applications presented in this paper concern only matching
grid cases.

In each subdomain Xi, the same matrices and vectors are defined as with the monodomain approach:

� the vector Jd
i contains the current degrees of freedom of Xi in direction d;

� the vector /i contains the flux degrees of freedom of Xi;
� the vector Qi contains the source terms of Xi;
� the matrix diagðAx

i ;A
y
i ;A

z
i Þ is associated to the bilinear form ah

i ;
� the positive definite diagonal matrix Ti is associated to the bilinear form th

i ;

� the sparse rectangular matrix
Bx

i
By

i
Bz

i

0@ 1A is associated to the bilinear form bh
i .

New vectors and matrices are introduced to couple the subdomains:

� the vector Kd contains the degrees of freedom of the Lagrange multipliers situated on Cd (the part of interface directed by
the normal vector nd

!
);

� the sparse rectangular matrix diagðCx
K!i;C

y
K!i; C

z
K!iÞ is associated to the bilinear form ch

i � C
d
K!i contains the coupling term

between Kd and Jd
i . As the coupling terms between the degrees of freedom inside Xi and Kd are null, these matrices are

sparse.

So, Problem 6, in a 2D case, leads to the following algebraic system:
ð7Þ
3.3. The new approach

In this section, we adopt a different strategy from [1], where the authors tried to get a more generic approach by using a
multigroup solver in each subdomain.

In the same way as the sequential solver, we benefit from the specificity of Raviart Thomas finite element to perform the
flux elimination in each subdomain:
/i ¼ T�1
i ðQ i � tBx

i Jx
i � tBy

i Jy
i Þ: ð8Þ
Hence, the currents Jd
i satisfy the following equations:
Ad
i þ Bd

i T�1
i

tBd
i

� �
Jd

i þ Bd
i T�1

i
tBd0

i

� �
Jd0

i þ Cd
K!iKd ¼ Bd

i T�1
i Q i:
By letting Wd
i ¼ Ad

i þ Bd
i T�1

i
tBd

i and Wd;d0

i ¼ Bd
i T�1

i
tBd0

i , we obtain the following system:
ð9Þ
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Through a matrix reordering, (9) becomes:
13 In 3
14 The
This 2 � 2 block matrix13 is solved by a block Gauss–Seidel algorithm. As the extra-diagonal blocks are block diagonal, the
multiplication by these blocks can easily be computed in parallel. The remaining issue is to solve the following linear system
(the right hand side comes from the Gauss–Seidel algorithm) for each direction d:
Wd
1 Cd

K!1

Wd
2 Cd

K!2

tCd
K!1

tCd
K!2

0BB@
1CCA Jd

1

Jd
2

Kd

0B@
1CA ¼ Fd

1

Fd
2

0

0B@
1CA: ð10Þ
We introduce the notations14:
cW d ¼
Wd

1

Wd
2

 ! bC d ¼
Cd

K!1

Cd
K!2

 ! bJd ¼
Jd

1

Jd
2

 ! bF d ¼
Fd

1

Fd
2

 !
:

In each direction, we have to solve the saddle point system:
cW d bCd

tbCd

 ! bJd

Kd

 !
¼

bF d

0

 !
: ð11Þ
In this way, the new domain decomposition strategy leads to a mono-dimensional domain decomposition for each matrix Wd.

Remark. In the following of the paper, the indices d are ignored.
K is the solution of the interface system
ðt bCcW�1bCÞK ¼ tbCcW�1bF ; ð12Þ

which is solved with a Preconditioned Conjugate Gradient algorithm. Then bJ is computed by bJ ¼ cW�1ðbF � bCKÞ. Algorithm 2
describes these two operations. This iterative algorithm is initialized by K0 which is the value of the Lagrange multipliers K
at the previous iteration of the outer algorithm.
D, it is a 3 � 3 block matrix.
upper-script symbolˆ distinguishes the assembled matrix W on the domain X and the matrix cW which contains all local Wi matrices.



Fig. 3. X is partitioned in N = 4 subdomains into the direction x. As we are interested in solving by domain decomposition the problem in the direction x
after flux elimination, the flux /i, the current Jy

i , the coupling terms Bd
i and Ay

i are ignored.

2012 M. Barrault et al. / Journal of Computational Physics 230 (2011) 2004–2020
Let us now introduce the multidomain version to present the preconditioner. With a partition in N subdomains in one
direction (illustrated by Fig. 3 in the RT0 case), the matrices and vectors cW ; bJ; bF ; bC and K are rewritten as following:
cW ¼

W1

W2

. .
.

WN

0BBBB@
1CCCCA bJ ¼

J1

J2

..

.

JN

0BBBB@
1CCCCA bF ¼

F1

F2

..

.

FN

0BBBB@
1CCCCA bC ¼

CK2
1!1

CK2
1!2

. .
.

. .
.

CKN
N�1!N�1

CKN
N�1!N

0BBBBBBB@

1CCCCCCCA K ¼

K2
1

K3
2

..

.

KN
N�1

0BBBBB@

1CCCCCA:
j j
� Ki denotes the degrees of freedom of the Lagrange multipliers of the interface Ci between the subdomains Xi and Xj;
� CKj

i
!i is the matrix that contains the coupling terms between the Lagrange multipliers Kj

i and the subdomain Xi.

With Sk
i!j ¼ tbCKj

k
!j
cW�1

j
bCKj

i
!j the matrix involved in (12) called S is:
S ¼ tbCcW�1bC ¼
S1

1!2 þ S2
2!1

� �
S1

3!2

S3
1!2

. .
. . .

.

. .
. . .

.
SN�2

N!N�1

SN
N�2!N�1 ðSN�1

N�1!N þ SN
N!N�1Þ

0BBBBBBB@

1CCCCCCCA:
We choose as preconditioner the block diagonal preconditioner:
P�1 ¼

S1
1!2 þ S2

2!1

� �
. .

.

SN�1
N�1!N þ SN

N!N�1

� �
0BBBB@

1CCCCA:
Usually this preconditioner is expensive in terms of computational time or memory consumption, because all the diagonal
blocks are dense. By using the Raviart–Thomas properties, an effective implementation of this preconditioner is provided in
Section 4.2.

3.4. Summary

Let us reconsider the algorithm of the previous approach [1,5]. Compared to the sequential monodomain algorithm, a new
loop is added to solve the saddle point system induced by domain decomposition (see Algorithm 3). This loop was put be-
tween the power algorithm and the loop over the energy groups. As the inner loops (iterative algorithms in each subdo-
mains) are fixed point algorithms with only one iteration, we also used a fixed point method to solve the saddle point
system (Uzawa-MR algorithm was chosen). The previous approach was more generic than the new one, but the increase
in the number of outer iterations for real industrial cases was not satisfying.

In the new approach, as in the previous one, one loop is added to Algorithm 4 to get convergence of the iterative algorithm
used to solve the interface systems. In our new approach the domain decomposition loop is under the alternate direction
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computations and use the solver in each spatial direction. Hence we can benefit from a direct solver in each subdomain. In
the following, we consider a fixed number i of iterations: the algorithm is called PCGi. In the same way as the sequential
monodomain solver, the iteration loop of the outer algorithm is used to get convergence. The new approach enables some
new implementation optimizations which are described in the following section.

The both approaches are compared in the manuscript [21] of the PhD which is at the origin of this article.
4. Optimized implementation on matching grids

The optimizations presented in this section are based on the sparse pattern of the matrices Sk
i!j. A call to the local matrix

W�1
j is usually required to compute the multiplication by the matrix Sk

i!j. So the computation complexity is linear with the
number of current degrees of freedom. With matching grids, all current lines are independent (see Fig. 3), so the matrices Sk

i!j

are diagonal.15 By storing these matrices, the complexity of a product is linear with the number of degrees of freedom of the
Lagrange multipliers between the subdomain Xi and Xj. To build these matrices, their products by 1, the interface vector filled
of 1, are computed by performing a forward/backward substitution. These matrices are computed once at the first iteration of
the power inverse iteration algorithm. So the cost of this computation is reduced with the number of power inverse iterations.

The method detailed in this section could be generalized to the non-matching grid case; in the case where the finest mesh
is included in the coarse mesh with a ratio r, the matrices Sk

i!j are band with 2rDim � 1 bandwidth.

4.1. Product by the interface matrix

To compute Sx (line 6 of Algorithm 2), the product of S by the interface vector x ¼ tðx2
1;x3

2; . . . ;xN
N�1Þ, it is necessary to

compute four terms for each interface. For an interface Cr
l between the left subdomain Xl and the right subdomain Xr, the

component ðSxÞrl is decomposed in two parts coming from the contribution of the two subdomains in order to reduce the
number of communications. If l0 denotes the subdomain l � 1 and r0 denotes the subdomain r + 1, we have:
15 Wit
h the previous approach there were dense.



16 Eve
17 Per
18 The
19 Usu
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ðSxÞrl ¼ Sl
l!l0x

l0

l þ Sl
l!r þ Sr

r!l

� �
xr

l þ Sr
r0!rx

r0
r ¼ Sl

l!l0x
l0

l þ Sl
l!rx

r
l

� �
þ Sr

r!lx
r
l þ Sr

r!r0x
r0
r

� �
: ð13Þ
As the matrices Sk
i!j are stored, the call to the local matrix W�1

i is avoided and the computational cost is linear with the num-
ber of interface degrees of freedom.

4.2. The preconditioner

As P�1, and so P, are diagonal matrices, the block diagonal preconditioner is the diagonal preconditioner. Only one inter-
face vector is necessary to store P and the application of P (line 3 and 10 of Algorithm 2) is almost free as it consists in term by
term products. Then for each interface Cj

i, the two contributions coming from Si
i!j and Sj

j!i are added to obtain P�1. So the
computational cost is low since the complexity is linear with the number of interface degrees of freedom. It is not necessary
to introduce a more sophisticated preconditioner. We use only PCG1 as numerical experiments have shown that it is suffi-
cient in practice. We can imagine to use a higher number of iterations to by-pass possible convergence difficulties.16 Indeed
an additional iteration is not very costly, as the product by the interface matrices S is almost free in terms of computational time.

4.3. Solution rebuilding

The expensive call to the local matrix W�1
i usually implied by the interface matrix (line 6 of Algorithm 2) is already avoided.

As a very small number of iterations is required for practical cases, we are interested in reducing the computational cost of the
solution rebuilding (line 14 of Algorithm 2). The operation is decomposed in two parts, one already computed (line 1 of Algo-
rithm 2) and one that takes into account the modifications of the Lagrange multiplier K (line 8 of Algorithm 2):
bJ ¼ cW�1 bF � bCK0

� �
þ cW�1bCD with D ¼ K0 �K:
The second term eJ ¼ cW�1bCðDÞ can be computed efficiently as it requires to compute in each subdomain Xi (with a left sub-
domain l and a right subdomain r) the following term:
eJ i ¼ ðW�1

i CKl
i!iÞD

l
i þ ðW

�1
i CKr

i!iÞDr
i : ð14Þ
For a current line indiced by c the restriction of a vector V to this current line is noted Vjc and for an interface vector x this
restriction is a scalar denoted x[c]. Thanks to the current lines independence, (14) is equivalent to:
8c; eJi jc ¼ Dl
i½c�:ðW

�1
i CKl

i!i1Þjc þ Dr
i ½c�:ðW

�1
i CKr

i!i1Þjc: ð15Þ
So the computation of bJ (line 14 of Algorithm 2) done by forward and backward substitutions using Cholesky factorization
in each subdomain is replaced by a linear combination of three vectors in each subdomain. The overhead cost of computing
the vector ðW�1

i CKj
i
!i1Þ is zero as these vectors are required to compute the matrix Si

i!j.

4.4. The parallel communication scheme

The spatial domain X is divided into Nx � Ny subdomains for a 2D case. Each process stores the data of its subdomain for
each energy group and for each harmonic in order to avoid communication of complete spatial fields. The interface vectors
are duplicated: each adjacent subdomain has its own storage, such that the two versions of a vector are numerically exactly
equivalent. The computations on the interface vectors (lines 8, 9 and 12 of Algorithm 2) are duplicated17 in order to minimize
the communications.

The communication scheme is based on two communication types:

� point to point communications, which are necessary to exchange data across the interfaces. It is only necessary to transfer
interface vectors. As the preconditioner P is also duplicated, the only point to point communications come from the prod-
uct by t bC (line 2 of Algorithm 2) and from the product by the interface matrix (line 6). Algorithm 5 describes the first
operation using asynchronous communications. The second operation uses the same communication scheme.18

� global communications, which are necessary to compute dot products. Two families of communicators are involved:
– The communicator CommWorld19 contains all the Nx � Ny processors. This communicator is used to compute the dot

products of the outer algorithms, through a reduction operation such as MPI_Allreduce. The outer Gauss–Seidel algo-
rithm (over energy groups) may require dot products to evaluate the stopping criteria. The inverse power algorithm
requires also dot products to compute the eigenvalue keff, to perform Chebyshev acceleration and to evaluate the stopping
criteria.
n on industrial cases with heterogeneous data, we did not encounter this kind of difficulties.
formed on two subdomains.

line 8 is modified to take into account the terms coming from (13).
ally called MPI_COMM_WORLD.



Fig. 4. X4 communicators: X is decomposed in six subdomains (three in the direction x and two in the direction y). The different communicators involved
by the subdomain X4, are CommX, CommY and CommWorld.
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– In each process, a communicator is created for each space direction. For a 2D case, these communicators are called
CommX and CommY (see Fig. 4). CommX (respectively CommY) contains Nx (respectively Ny) MPI processes. Indeed, as
all current lines are independent, the Conjugate Gradient algorithm can be applied to a current line or to a group of
lines. In order to minimize the size of communications and the size of the communicators, the Conjugate Gradient
algorithm is applied to the group of current lines induced by the Cartesian domain partition. So the communicator
CommX (respectively CommY) regroups these lines in the direction x (respectively y). If all current lines were regrouped,
the communicator (usually CommWorld) would be larger. If the Conjugate Gradient algorithm is applied independently
on each current line, the MPI_Allreduce is applied on a vector. Its size is the number of current lines in the commu-
nicator CommX (or CommY).
5. Numerical validation

In this section, numerical results are provided:

� for the academic 3D IAEA-BenchMark [22] in Section 5.1;
� for cross-sections provided by a real industrial application in Section 5.2. With this test case, we want to evaluate the

behavior of the method with non-homogeneous data (each pin in an assembly has its own section).
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The tests have been performed in double precision on a cluster with 208 nodes (each one consists in two Intel Xeon pro-
cessors, 3.40 GHz, 2 MB Cache and with 4 GB PC3200 DDR2). The used MPI implementation is MPICH 1.2.7 with an Infini-
band (openib-2.0.5) network. For time measurement, during batch submissions, one node is assigned to each subdomain
to avoid concurrent memory accesses. The current implementation of the algorithm is adapted to a distributed-memory con-
text, with one subdomain per node. Hence the performance analysis is performed up to 169 subdomains (see Figs. 5(d) and
(e), 6(d) and (e) and 7). To get numerical results such as the number of iterations of the power inverse algorithm (see
Figs. 5(a) and 6(a)), or a comparison to monodomain solver (see Figs. 5(b) and (c) and 6(b) and (c)), several subdomains
per nodes can be used. So the numerical analysis is performed until 961 subdomains.

Between two and eight subdomains, the domain is partitioned in the direction x. For more subdomains the partition is
balanced as much as possible between the direction x and the direction y. The domain is not partitioned into the direction
z as:
Fig. 5. BenchMark IAEA.



Fig. 6. Real industrial case.
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� there are few cells (38 or 40) in the direction z;
� the number of subdomains should divide the number of cells to keep a good load balance. Results with tridimensional

partitions of 36 and 144 subdomains are provided for the second test case (Section 5.2) which uses 40 cells in direction z.
� a coupling with monodimensional thermo-hydraulic module will be the next step. The flow is considered as axial (into

the direction z), so no radial communication (into the direction x and y) will be required by this module.

For the two cases, the solution obtained by the multi-domain solver is compared to the reference solution ðwref ; kref
eff Þ ob-

tained by the sequential solver set up with a large number (2000) of outer iterations. The solution is also compared to
ðwmono; kmono

eff Þ the solution obtained by the sequential solver with the same stopping criteria as the multi-domain solver. This
stopping criteria for the inverse power algorithm is:
kSp � Sp�1k
kSpk

< �S and
jkp � kp�1j
jkpj < �k; ð16Þ



Fig. 7. Efficiency with SP1/SP3 equations and RT0/RT1 finite element.
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where Sp and kp are respectively the source of fission Fwp and the estimated eigenvalue keff at iteration p. To perform a com-
parison of eigenvectors, each vector is normalized with the euclidean norm.
5.1. 3D IAEA BenchMark

To validate our method, the two groups homogeneous IAEA-3D BenchMark [22] is first considered. The stopping criteria is
set to �k = �S = 10�6. For a SP1-RT0 pin-by-pin computation, the mesh consists of 289 � 289 � 38 cells; this leads to:

� 3,173,798 degrees of freedom for the flux for each energy group;
� 9,626,879 degrees of freedom for the current for each energy group;
� 25,601,354 degrees of freedom for the overall system.

5.1.1. Numerical behavior
For the majority of domain partitions, the power algorithm satisfies the stopping criteria with a reasonable number of

iterations like the sequential mono-domain solver did (see Fig. 5(a)); for partitions between 1 and 121 subdomains, with
PCG1 and PCG2, the outer algorithm satisfies the stopping criteria with 78 iterations (like the sequential solver). Between
144 and 625 subdomains a small increase (<12%) is observed with PCG1, and with PCG2 the number of iterations remains
constant. For more than 625 subdomains the algorithm does not converge with a reasonable number of iterations (150) with
PCG1. By using PCG2 the convergence properties are improved: the power inverse algorithm converges with less than 88
iterations up to 961 subdomains.

For a given stopping criteria, the accuracy of the multi-domain solution is the same as the accuracy of the mono-domain
solver20 (see Fig. 5(b) and (c)). As expected, the use of PCG2 provides a solution closer to the mono-domain solver but not closer
to the reference solver.
5.1.2. Computational efficiency
Once the accuracy verified, the performance of the method can be analyzed. With the implementation described in the

previous section, the computational overhead compared to the sequential solver is small. At each inner iteration, this over-
head consists of a linear combination of three current vectors (15) and interface vector operations. So we can expect a par-
allel efficiency near 100%. Fig. 5(d) shows this efficiency. The algorithm PCG1 leads to excellent results with an efficiency
higher than the theoretical 100% as it can benefit from cache effects. The algorithm PCG2 is less efficient, as there is the same
number of outer iterations. As the implementation of the product by the interface matrix is efficient, the difference remains
small. So, all performance analysis are performed with PCG1 algorithm, since the number of subdomains (available number
of nodes) is limited to 169. Fig. 5(e) shows the time repartition between:

� the forward–backward substitutions involved by the local matrices cW�1. In the first node the local matrix is noted W�1
0 ;

� the computations involving the matrices Bd
i . These contain the flux rebuilding (8) and the right-hand side bF which comes

from the alternating direction algorithm based on a Gauss–Seidel algorithm;
� the communications.
20 The difference between this accuracy and the stopping criteria is acceptable for our application.



Table 1
Influence of the domain partition.

Partition Outer iterations Time (s) jkeff � kref
eff j kw � wrefk2

(6,6,1) 88 6.680 2.64 � 10�7 1.63 � 10�3

(4,9,1) 88 6.749 2.66 � 10�7 1.63 � 10�3

(9,4,1) 88 6.731 2.64 � 10�7 1.62 � 10�3

(36,1,1) 830 70.17 4.42 � 10�7 2.38 � 10�3

(1,36,1) 826 68.89 4.59 � 10�7 2.42 � 10�3

(6,3,2) 88 6.912 2.63 � 10�7 1.63 � 10�3

(3,6,2) 88 6.884 2.63 � 10�7 1.63 � 10�3

(9,1,4) 88 7.144 2.60 � 10�7 1.62 � 10�3

(1,9,4) 88 7.271 2.61 � 10�7 1.62 � 10�3

(3,3,4) 88 7.090 2.63 � 10�7 1.63 � 10�3

(12,12,1) 88 1.548 2.92 � 10�7 1.54 � 10�3

(8,9,2) 88 1.588 2.60 � 10�7 1.62 � 10�3

(9,8,2) 88 1.606 2.59 � 10�7 1.61 � 10�3

(6,6,4) 88 1.695 2.63 � 10�7 1.63 � 10�3
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The super-linearity comes from the computation of the multiplications by the matrices Bd and tBd, necessary to compute
the right-hand side bF and the flux /i. Indeed, the ordering of the current unknowns Jd, which is very efficient for the matrices
Wd, requires non-contiguous memory accesses during operations with Bd and tBd. With more than 32 nodes, the subdomains
are sufficiently small to benefit from cache effects. The results are very good but we can not expect to maintain this efficiency
with many more than 169 nodes. Above 169 nodes, the communications can become a significant bottleneck.

5.2. Real industrial case

We consider cross-sections provided by a real industrial application with two energy groups. The stopping criteria is set
up with �k = �S = 10�5. SP1 equations with a pin-by-pin discretization (289 � 289 � 40 cells) and RT0 finite element lead to:

� 3,340,840 degrees of freedom for the flux for each energy group;
� 10,129,161 degrees of freedom for the current for each energy group;
� 26,940,002 degrees of freedom for the overall system.

These cross sections are identical to those in [1] where the algorithm strongly suffers from convergence difficulties.
In Fig. 6, the same behavior as for the IAEA BenchMark is observed. It is a great improvement compared to the results

obtained in [1] (an efficiency higher than 100% is measured now where an efficiency near 5% was obtained before). The fact
that the number of outer iterations is equal, or almost equal, to the sequential case proves that it is not useful to study more
complex preconditioners. Indeed, even with an optimal preconditioner, we can not expect to further reduce the outer iter-
ations number compared to a direct solver.

Compared to the IAEA BenchMark, one difference can be noted: with PCG1 the error of the eigenvalue keff increases slowly
with the number of subdomains (see Fig. 6(b)). Actually this issue has no effect for our application where an accuracy of the
order 10�4 is sufficient. With a large number of subdomains, the number of power inverse iterations is almost equal to num-
ber of iterations of the sequential solver (see Fig. 6(a)).

Table 1 shows the performance with different partitions for 36 and 144 subdomains. With monodimensional partitions
convergence is difficult: more than 800 power iterations are required to satisfy the stopping criteria. So bidimensional and
tridimensional partitioning have to be considered. The experiment shows that it is not efficient to partitioned the domain in
the direction z. Indeed, with a tridimensional partition the size of the interface vectors and the number of communications
increase. The basic partitions (6,6,1) and (12,12,1) give the best results for this experiment. The number of outer iterations
and the execution time is not necessary equivalent for symmetric partitions. Indeed the Gauss–Seidel algorithm of the alter-
nating direction method introduces an asymmetry.

The method works perfectly well with the SP3 Eqs. (2 harmonics) and with RT1 finite element. The efficiency21 is plotted
in Fig. 7 for SP1/RT0 (26,940,002 dof), SP1/RT1 (214,666,888 dof) and SP3/RT0 (53,880,004 dof). The results with SP3/RT1
(429,333,776 dof) are not presented as we are not able to run the sequential reference even on a special node with 16 Go of
memory.

With the RT1 discretization, the efficiency is less impressive but remains high. The RT0 implementation can benefit from
the super linearity of the reshuffle operations with more than 32 processors. So, with the RT1 finite element, this gain can be
excepted with at least 32 � 23 = 256 processors. We need to perform experiments on a larger cluster22 to confirm this
explanation.
21 The sequential reference time is obtained on a special node with 16 Go of memory.
22 Or on a cluster with a larger cache size.
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With SP3 equations a better efficiency is measured. We explain that by the larger number of multiplications by Bd and tBd

matrices which are used to couple the two diffusion systems for each energy group. So the super-linearity effects are more
effective.

6. Conclusions

The proposed domain decomposition method in the difficult context of an approximate resolution of the linear system at
each inverse power iteration reveals very reliable and efficient on SP1/SP3 pin-by-pin computation coming from the IAEA
benchmark and from industrial cases. The method satisfies two criteria: memory requirement and parallel efficiency. Com-
pared to [1], the parallel efficiency is improved by a factor 20. The method is as least as efficient as the result obtained in
[14] and avoids the difficulties resulting from:

� the choice of the Robin transfer coefficient;
� the introduction of an additional approximation and a small overlap due to the Robin transfer conditions with a mixed

dual formulation.

As the numerical behavior of the method is very satisfactory with a large number of subdomains, a next step will be a
hybrid implementation (shared and distributed memory). Such an implementation will enable us to use more efficiently
a multi-core architecture. This step is needed to get an efficient non-matching grid implementation, since for non-matching
grids more flexibility is required to balance the load between the nodes.

Hardware accelerators such as Graphic Processor Units suffer from insufficient memory size but can be very relevant in
terms of computational time. In [23], the authors obtained a speed-up of 30 for the monodomain solver. So, it seems natural
to use the domain decomposition algorithm on a GPU cluster in order to take advantage of GPU acceleration without mem-
ory limitation.

The next step is the integration of this parallel algorithm in the industrial platform. Hence it will be possible to perform
studies with a large number of groups and with pin-by-pin discretizations.
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