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Abstract

This paper presents an efficient parallel method for the deterministic solution of
the 3D stationary Boltzmann transport equation applied to diffusive problems
such as nuclear core criticality computations. Based on standard MultiGroup-
Sn-DD discretization schemes, our approach combines a highly efficient nested
parallelization strategy [1] with the PDSA parallel acceleration technique [2]
applied for the first time to 3D transport problems. These two key ingredi-
ents enable us to solve extremely large neutronic problems involving up to 1012

degrees of freedom in less than an hour using 64 super-computer nodes.

1. Introduction

This paper presents an efficient parallel deterministic solution of the station-
ary Boltzmann Transport Equation (BTE) applied to 3D diffusive problems.

1.1. Deterministic 3D stationary Boltzmann transport equation solver
The BTE governs the statistical evolution of gas-like collections of neutral

particles described by phase-space densities f(~r, ~p, t) proportional to the number
of particles at a position ~r, with momentum ~p at a given time t. This one-body
description is widely used to simulate the transport of particles like neutrons
or photons through inhomogeneous reactive media. The material properties of
the media are characterized by cross-sections that measure the probability of
various particle interactions: absorption, diffusion, emission, etc.

Lying in a six-dimensional (6D) space (3 for space and 3 for momentum),
a precise mesh-based discretization of the stationary BTE solutions f(~r, ~p) can
be very large for true 3D cases where the considered physical problem offers
no particular spatial symmetry. As an example, using a Cartesian 6D Mesh
with 100 points per axis leads to 1012 phase-space cells which contain several
Degrees Of Freedom (DOFs). Considering the scale of a BTE solution, one
can easily infer that its solving procedure may rapidly exhaust the capability of
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the largest supercomputers. As a consequence, probabilistic methods (Monte-
Carlo) that avoid the phase-space mesh problems, were the only approaches able
to deal with true 3D cases until the beginning of this century. Unfortunately,
probabilistic methods converge slowly with the number N of pseudo-particles
(∝ N−1/2) and the computational demand increases strongly with the desired
accuracy. During the last two decades the peak performance of super-computers
has been multiplied by a factor of 104. Modern supercomputer capabilities
have made deterministic methods a credible alternative to probabilistic methods
for 3D problems and has allowed for unprecedented accuracy levels for BTE
approximate solutions.

1.2. Reference criticality computations for nuclear diffusive problems
BTE solvers are used in different physical contexts and optimal numerical

methods differ from one application to another. In this paper we address the
specific problem of solving the stationary BTE in diffusive media. Diffusive
problems arise when the mean-free path of particles becomes small compared
to the characteristic scale of the considered problem. For such media, and
considering an optically thick enough geometry, one may neglect the advective
part of the transport and replace the original BTE by the much simpler diffusion
equation.

This work takes place in the context of nuclear reactor simulations. We
consider the transport of neutrons inside nuclear reactor cores which contain
optically thick diffusive media. More specifically, we address the problem of
nuclear core criticality computations. Because nuclear cross-sections mainly de-
pend on the particle energy, the phase-space density variable f(~r, ~p) is replaced
by the angular neutron flux ψ(~r,E, ~Ω) = vf(~r, ~p) where ~Ω stands for the particle
momentum direction, v its velocity and E its kinetic energy. Nuclear operators
need to complete many criticality computations that correspond to stationary
BTE solutions. Industrial routine computations, which are primarily used to
conduct operational and safety studies and to optimize nuclear reactor core
designs, are often based on the diffusion equation approximation. In order to
assess this approximation, the solution of the original BTE problem is required.
More generally, nuclear operators need accurate reference transport solutions in
order to control the accuracy of their simulations.

1.3. Starting from a classical numerical scheme
The proposed method is based on nested algorithms classically used for nu-

clear criticality computations. The external loop is a Chebyshev accelerated
Power Iteration (PI) that solves the eigenvalue problem Hψ = k−1Fψ where
H is the transport operator and F the fission operator. The kinetic energy of
neutrons is discretized in well chosen slices called energy groups and, for each
PI iteration, an iterative Gauss-Seidel (GS) algorithm is used to solve the multi-
group linear problem. For each energy group, the angular variable is treated
with the discrete ordinates method (SN ) and a Source Iteration (SI) algorithm
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deals with the coupling between angular components of the flux. For diffu-
sive problems the SI procedure converges slowly and is classically accelerated
by the Diffusion Synthetic Acceleration method (DSA) [3]. In this paper, we
introduce a parallel extension of the DSA method (PDSA) where an efficient
single-domain diffusion solver is required. Finally, the space is discretized over
3D Cartesian meshes, and all the examples of the paper use the lowest order
Diamond Differencing spatial discretization scheme (DD0), which appears to be
efficient for diffusive nuclear core simulations [4]. Note that the PDSA method
does not depend on the DD0 choice and a higher order numerical scheme could
have been used. The only condition is that these alternative schemes must be
consistent with the single-domain DSA solver.

1.4. New metrics for efficient numerical algorithms
The tremendous peak power of modern supercomputers, that commonly ex-

ceeds 1016 floating point operations per second (FLOPS), is accompanied by a
high architecture complexity. Indeed, recent architectures exhibit a hierarchical
organization (cluster of nodes of multicore processors with vector units) which
requires a mix of different parallel programming paradigms (Message Passing,
Multi-Threading, SIMD) to achieve optimal efficiency. In addition to this mix-
ture of parallel programming models, a new constraint on the data movements
has emerged and plays a dominant role in computation efficiency. A direct
consequence of this machine evolution is that numerical algorithms should no
longer be evaluated upon their parallel scalability (i) alone. The computational
density (ii) which measures the ratio between the number of floating point (FP)
operations and the number of data movements from the off-chip memory to
CPU registers is a new metric that must be considered to evaluate the effi-
ciency of a given algorithm. Finally, the vectorization potential (iii) of a given
algorithm will determine its ability to benefit from the ever increasing Single In-
struction Multiple Data (SIMD) width of dedicated CPU FP SIMD instructions
(SSE2, AVX, AVX512). The combination of these three algorithm characteris-
tics (i,ii,iii) will eventually result in an efficient numerical solver. In this paper
we put a particular focus on the efficiency of the proposed BTE solver and ex-
plain how parallel scalability, computational density and vectorization potential
are taken into account.

1.5. Paper contributions
In this paper we propose a parallel and efficient solution method for the

stationary BTE that allows one to carry out very large criticality computations
for diffusive problems on moderately large supercomputers. These affordable
full 3D transport computations result from an uncommonly high effective FP
performance that can exceed 20% of the available theoretical peak performance
of the computing nodes. As a representative example, we show that a 3D
PWR keff computation with 26 energy groups, 288 angular directions, and 578×
578 × 140 space cells, can be completed in less than an hour using 64 cluster
nodes. Two main ingredients are combined in the proposed method that has
been implemented in Domino [5, 6], our in-house neutron transport solver.
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• A very high performance sweep algorithm including 3 nested levels of
parallelism with good data locality and fine grained synchronization that
has been described in detail in [1].

• A novel scalable PDSA acceleration technique for diffusive problem intro-
duced in [2] and applied for the first time to 3D transport computations.
This method is easy to implement provided a fast single-domain shared-
memory diffusion solver. Hence PDSA allows one to avoid the complex
task of building fully distributed diffusion solvers as implemented in [7, 8].

Recently, important progress has been made for increasing the scalability
of BTE solvers. In [9] the authors replace the Power Iterations by advanced
eigenvalue algorithms and treat the energy groups in parallel. The scalability
of this approach is impressive and parallel computations involving more than
105 computing cores are presented. In this current paper we show that, for
a moderately high number of groups (≤ 26), the proposed method results in
fast criticality computations with more modest numbers of computing cores
(102 − 103) thereby making 3D stationary computation more affordable.

This result should have an impact on the acceleration strategies for other
kinds of BTE solvers like unstructured mesh based transport solvers or the ac-
celerated Monte-Carlo approach for criticality nuclear computations.

The paper is organized as follows. In Section 2, we describe the equations
to be solved, the different discretization schemes, the main algorithm and the
three nested levels of parallelism used in the sweep implementation described
in [1]. In Section 3, the PDSA algorithm and its implementation are described
and some details are given regarding the correct coupling between the Transport
DD0 discretization and the Finite Element method used in the PDSA. Section 4
describes the parallel performance achieved by Domino for different PWR crit-
icality computation configurations. Some conclusions and outlooks are given in
section 5.

2. The Discrete Ordinates Method for Neutron Transport Simulation

2.1. Source Iterations Scheme
We consider the monogroup transport equation as defined in equation (1).

#„Ω · #„∇ψ( #„r ,
#„Ω) + Σt( #„r ,

#„Ω)ψ( #„r ,
#„Ω)︸ ︷︷ ︸

Lψ( #„r ,
#„Ω)

−

R( #„r ,
#„Ω)︷ ︸︸ ︷∫

S2

d
#„Ω′Σs( #„r ,

#„Ω′ · #„Ω)ψ( #„r ,
#„Ω′) = Q( #„r ,

#„Ω),

(1)

whereQ( #„r ,
#„Ω) gathers both monogroup fission and inter-group scattering sources.

The angular dependency of this equation is resolved by looking for solutions on a
discrete set of carefully selected angular directions { #„Ωi ∈ S2, i = 1, 2, · · · , Ndir},
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called discrete ordinates; each one being associated to a weight wj . In general,
the discrete ordinates are determined thanks to a numerical quadrature formula
as defined in equation (2). For any summable function g over S2:

ḡ ≡
∫
S2

g( #„Ω)d #„Ω '
Ndir∑
j=1

wjg( #„Ωj). (2)

In Domino, we use the Level Symmetric [10] quadrature formula, which leads
to Ndir = N(N+2) angular directions, where N stands for the Level Symmetric
quadrature formula order.

Therefore, considering that the cross-sections are isotropic, equation (1) be-
comes:

#„Ωi ·
#„∇ψ( #„r ,

#„Ωi) + Σt( #„r )ψ( #„r ,
#„Ωi) =

S( #„r ,
#„Ωi)︷ ︸︸ ︷

Q( #„r ,
#„Ωi) + Σs( #„r )φ( #„r ),

(3)

where φ( #„r ) is the scalar flux and defined by:

φ( #„r ) ≡ ψ̄( #„r , ·) =
∫
S2

ψ( #„r ,
#„Ω)d #„Ω '

Ndir∑
j=1

wjψ( #„r ,
#„Ωj). (4)

Equation (3) is solved by iterating over the scattering source as described in
Algorithm 1.

Input : φk
Output: φk+ 1

2

while Non convergence do
for i = 1, . . . , Ndir do

S( #„r ,
#„Ωi) = Q( #„r ,

#„Ωi) + Σs( #„r )φk( #„r );
4 Lψk+ 1

2 ( #„r ,
#„Ωi) = S( #„r ,

#„Ωi);
φk+ 1

2 ( #„r ) =
∑Ndir
j=1 wjψ

k+ 1
2 ( #„r ,

#„Ωj);

Algorithm 1: Source iterations

Each source iteration (SI) involves the resolution of a fixed-source problem
(Line 4), for every angular direction. This is done by discretizing the spatial
variable #„r of the streaming operator L. In this work, we focus on a 3D reactor
core model, represented by a 3D Cartesian domain D, and L is discretized using
a Diamond Difference scheme (DD), as presented by A. Hébert in [11]. The
discrete form of the fixed-source problem is then solved by “walking” step by
step throughout the whole spatial domain and to progressively compute angular
fluxes in the spatial cells. In the literature, this process is known as the sweep
operation. The vast majority of computations performed in the SN method
are part of the sweep operation.
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2.2. Sweep Operation
The sweep operation is used to solve the space-angle problem on Line 4 of

Algorithm 1. It computes the angular neutron flux inside all cells of the spatial
domain, for a set of angular directions. These directions are grouped into four
quadrants in 2D (or eight octants in 3D). In the following, we focus on the first
quadrant (labeled I in Figure 1a). As shown in Figure 1b explanation, each cell
has two incoming dependencies ψL and ψB for each angular direction. At the
beginning, incoming fluxes on all left and bottom faces are known as indicated
in Figure 1c. Hence, the cell (0, 0) located at the bottom-left corner is the first
to be processed. The treatment of this cell allows for the updating of outgoing
fluxes ψR and ψT , that satisfy the dependencies of cells (0, 1) and (1, 0). These
dependencies on the processing of cells define a sequential nature throughout the
progression of the sweep operation: two adjacent cells belonging to successive
diagonals cannot be processed simultaneously. However, all cells belonging to a
same diagonal can be processed in parallel. Furthermore, treatment of a single
cell for all directions of the same quadrant can be done in parallel. Hence, step
by step, fluxes are evaluated in all cells of the spatial domain, for all angular
directions belonging to the same quadrant. The same operation is repeated for
all the four quadrants. When using vacuum boundary conditions, there are no
incoming neutrons to the computational domain and therefore processing of the
four quadrants can be done concurrently. This sweep operation is subject to
numerous studies regarding design and parallelism to reach highest efficiency
on parallel architectures.

III

III IV

(a) Angular quadra-
ture in 2D. Direc-
tions are grouped in
quadrants.

(b) In each direction, cells
have two incoming compo-
nents of the flux (Here, from
the left and bottom faces: ψL

and ψB), and generates two
outgoing components of the
flux (Here, on the right and
top faces: ψR and ψT ).

boundary conditions

(c) Domain decomposition
and boundary conditions.
The corner cell (0, 0) is the
first to be processed for a
quadrant, and its processing
then allows for the processing
of its neighbors (Here (0, 1)
and (1, 0)).

Figure 1: Illustration of the sweep operation over a 6×6 2D spatial grid for a single direction.
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2.3. Hierarchical Parallelization of the Sweep
In this section, we briefly describe the parallelization of the SN-sweep opera-

tion on distributed multicore-based architectures. A detailed description of the
Domino’s SN-sweep can be found in [1] and [12].

As one can see from Figure 1, a space cell ci,j with Cartesian indices i and j
can be processed as soon as both cells ci−1,j and ci,j−1 have been computed. In
order to reduce the cost of parallel communications, we do not consider individ-
ual cells but group them into MacroCells CI,J that correspond to rectangular
sets of cells. Let TI,J be the task corresponding to the sweep inside a MacroCell
CI,J . The dependency between all the tasks:

(TI−1,J , TI,J−1)→ TI,J

defines a Directed Acyclic Graph (DAG) which corresponds to the complete
sweep from one corner of the spatial mesh to the opposite corner. An illustration
of this DAG is presented in Figure 2a.

(a) A 2D single-quadrant
Sweep’s DAG over a 4x4 grid of
MacroCells.

(b) Snapshot of an execution of the Sweep opera-
tion implemented on top of PaRSEC. MacroCells
of similar colors are processed on the same node
and highlighted ones are those that are in the
process of being executed (at the time the snap-
shot was taken).

Figure 2: Sweep’s DAG and snapshot.

This DAG description, the task implementation and the data distribution
over the computing nodes, are passed to a parallel runtime system. Here, we
choose the PaRSEC [13] runtime system and its specific parameterized task
graph to describe the algorithm. This format corresponds well with the regular
pattern of our regular domain decomposition and allows the runtime system
to schedule the tasks in a fully distributed manner without discovering inte-
grally the graph of dependencies. In practice, PaRSEC exploits this pattern
regularity to automatically schedule all computations on a set of threads per
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node (usually one thread per core), and triggers communications through an
MPI layer when necessary. A snapshot of the execution on top of PaRSEC is
depicted in Figure 2b.

In the case of vacuum boundary conditions, all 4 (resp. 8) angular sweep
quadrants (resp. octants) are processed in parallel and again, handled via PaR-
SEC.

Finally, each task TI,J exhibits a third innermost level of parallelism based
on Single Instruction Multiple Data (SIMD). SIMD capabilities of modern com-
puting cores allow them to perform, at each clock cycle, several identical floating
point operations (+,∗,. . . ) on different floating point values. This SIMD par-
allelism is used to perform the sweep operations that correspond to different
angular directions of the same quadrant inside each spatial cell. A detailed
description of this vectorized implementation based on Eigen, a C++ template
library, can be found in [6].

3. Acceleration of Scattering Iterations using PDSA

In highly diffusive media (Σs ≈ Σt), the convergence of Algorithm 1 is very
slow, and therefore a numerical acceleration scheme must be combined with
this algorithm in order to speed-up its convergence. One of the widely used
acceleration schemes in this case, is Diffusion Synthetic Acceleration (DSA) [14].

3.1. Diffusion Synthetic Acceleration
Here we just recall the basics of this method, and the reader can refer to the

paper [14] for more details regarding its effectiveness and the Fourier analysis
characterizing its convergence properties. Let us define εk+ 1

2 = ψ − ψk+ 1
2 , as

the error of the solution obtained after the k + 1
2
th iteration of the SI scheme,

relative to the exact solution ψ, as defined by equation (3). The error ε satisfies
the following transport equation:

Lεk+ 1
2 ( #„r ,

#„Ωi) = Σt( #„r )ε̄k+ 1
2 + Σs( #„r )

(
φk+ 1

2 ( #„r )− φk( #„r )
)
, (5)

where ε̄ is the scalar field associated to ε and defined as in equation (2). How-
ever, equation (5) is as difficult to solve as the original fixed-source transport
problem (3). Nevertheless, if an approximation ε̃ of ε̄ was available, then the
scalar flux could be updated to:

φk+1( #„r ) = φk+ 1
2 ( #„r ) + ε̃k+ 1

2 ( #„r ).

The idea of the DSA method is then to use a diffusion approximation, yielding
ε̃, instead of solving the transport equation (5). In Domino, the diffusion
approximation is obtained using the Diabolo solver [15], which implements the
simplified PN (SPN) method as presented in [16], in a mixed-dual formulation.
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When approximating equation (5) with a diffusion operator, the problem solved
by Diabolo can be stated as the following mixed dual formulation:

Find (ε̃k+ 1
2 ,

#„
j k+ 1

2 ) ∈ L2(D)×H(D,div) such that:
div #„

j k+ 1
2 ( #„r ) + Σaε̃k+ 1

2 ( #„r ) = Σs( #„r )
(
φk+ 1

2 ( #„r )− φk( #„r )
)

in D,
1
D

#„
j k+ 1

2 ( #„r ) + #„∇ ε̃k+ 1
2 ( #„r ) = #„0 in D,

ε̃k+ 1
2 = 0 on ∂D,

(6)

in which we introduced the diffusion coefficientD and the neutronic current #„
j k+ 1

2

associated to ε̃k+ 1
2 . Within Diabolo, these equations are spatially discretized

using an RTk finite elements scheme [17, 18] (see Figure 3), which is consistent
with the DD scheme used for the discretization of the transport equation as
proven in [11]. Therefore, the stability of the acceleration scheme is ensured.

Figure 3: RT0 finite element in 2D: 5 DoFs (4 for the currents Jx, J ′
x, Jy , J ′

y and 1 for the
scalar flux φ). DSA is applied using an RT0 element.

However, when integrated into a parallelized transport solver, DSA may be-
come a bottleneck for the scalability of the transport solver if, for instance, a
serial implementation of the diffusion solver is used. On the other hand, if the
diffusion solver is parallelized, as presented in [7, 8] using a domain decompo-
sition method, the iteration count to the solution increases with the number of
subdomains, and can lead to a poor global scalability [19]. To remedy this issue,
a variant of the DSA scheme has been recently proposed by F. Févotte in [2].

3.2. Piecewise Diffusion Synthetic Acceleration
The general presentation and the convergence proof of the Piecewise Diffu-

sion Synthetic Acceleration (PDSA) method are given in [2]. We recall that the
purpose of this method is similar to that of DSA: evaluate an approximation,
ε̃k+ 1

2 , of the error on the scalar flux, ε̄k+ 1
2 , to be used for correcting the scalar

flux, φk+ 1
2 . In the following, iteration indices k+ 1

2 will be dropped for the sake
of readability.

We assume that the spatial domain D is split, along the 3 spatial dimensions,
into N = P ×Q×R non-overlapping subdomains DI such that: D = ∪I∈IDI ,
where

I = J1, P K× J1, QK× J1, RK.
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We set: ΓIJ = ∂DI∩∂DJ the non-empty interfaces between subdomains of index
I and J ; ΓI = ∂D ∩ ∂DI and nI the unit normal vector to ∂DI and ε̃I = ε̃|DI

and #„
j I = #„

j |DI
, the respective restrictions of ε̃ and #„

j to subdomain DI .
Unlike the DSA method which consists in solving a single SPN problem on

the global domain D, the PDSA method is based on successive resolutions of
two SPN problems on each of the subdomains DI . These SPN problems differ
on the boundary conditions applied on the subdomains: the first problem uses
homogeneous Neumann boundary conditions (equation (7)), and the second one
uses non-homogeneous Dirichlet boundary conditions (equation (8)). In both
equations, notations were shortened by using SI( #„r ) to denote the right-hand
side of equation (6).

div #„
j IN ( #„r ) + Σaε̃IN ( #„r ) = SI( #„r ) in DI

#„∇ ε̃IN ( #„r ) + 1
D

#„
j IN ( #„r ) = #„0 in DI

ε̃IN = 0 on ΓI
#„∇ε̃IN · nI = 0 on ΓIJ

(7)



div #„
j ID( #„r ) + Σaε̃ID( #„r ) = SI( #„r ) in DI

#„∇ ε̃ID( #„r ) + 1
D

#„
j ID( #„r ) = #„0 in DI

ε̃ID = 0 on ΓI

ε̃ID = ε̃IN + ε̃JN
2 on ΓIJ

(8)

As shown in [2], for sufficiently diffusive and optically thick problems, the PDSA
solution ε̃D is an approximation of the global DSA solution ε̃. The accelerated
SN flux is thus finally given by:

φk+1 = φk+ 1
2 + ε̃D.

On the practical side, it is important to note that the application of the
PDSA method using a classical diffusion solver does not require many changes.
Homogeneous Dirichlet boundary conditions used over ΓI are classically imple-
mented to simulate whole cores; homogeneous Neumann boundary conditions
used over ΓIJ in equation (7) are likewise featured by most diffusion solvers to
implement symmetric domains. However, the second PDSA step (8) requires
implementing a non-homogeneous Dirichlet boundary condition, which is not
standard. In our case we are using a mixed-dual formulation of the SPN equa-
tions, therefore these boundary conditions are natural and not essential and
their implementation is straightforward. An illustration of the processing of the
boundary conditions in the case of two subdomains is presented in Figure 4. This
is a major shift from the classical DSA method, as we are no longer required to
get the solution of the diffusion problem on the whole spatial domain. The first
advantage of this method is that the explicit global synchronizations between
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(a) The first step consists of solving two diffusion problems in parallel on
D1 and D2, with Neumann boundary conditions.

(b) The second step also solves two diffusion problems, but with non-
homogeneous Dirichlet boundary conditions: null flux boundary conditions
on the external boundary of the domain and an average value of the flux at
the inner interface.

Figure 4: Illustration of the PDSA method on a domain split in two.
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the resolutions of the piecewise diffusion problems are largely reduced, hence
allowing to fully parallelize the DSA method without efficiency loss. In addi-
tion, as we are going to see in section 4, the effectiveness of the PDSA method
is comparable to that of the classical DSA method on a class of benchmarks.

3.3. Parallelization of the PDSA Method
Figure 5 illustrates a parallel implementation of the PDSA method in 2D,

when the global domain is partitioned in two subdomains. The partitioning

Figure 5: Illustration of the communication pattern in the PDSA method on a domain split
in two. Two point-to-point communications are needed to exchange flux information at the
interface between the two subdomains.

of the global domain uses the same block data distribution as for the sweep
operation. As we mentioned previously in section 3.1, the diffusion problem on
each subdomain is solved using our SPN solver Diabolo which is parallelized
on shared memory systems using the Intel TBB framework.

Hence, by mapping each subdomain to a single process, the resolution of the
diffusion problems on D1 and D2, when applying the PDSA method, is naturally
performed in parallel. Moreover, for the first step, the use of Neumann boundary
conditions requires no communication with the neighboring processes. However,
in the second step, each process needs to have the average value of the scalar flux
at the interfaces between its neighbors. Therefore, each process must perform
send and receive operations to exchange data with its neighbors.

4. Performance of Domino

The performance and accuracy of the single-domain Domino implementa-
tion, based on standard DSA acceleration, has been assessed in [12] and [5]
where comparisons with both reference Monte-Carlo and deterministic solvers
have been conducted. In this section, we assess the performance of the present
multi-domain Domino implementation based on the PDSA method for solving
a set of PWR nuclear core benchmarks.

These benchmarks correspond to a PWR 900 MW core, and enable 2, 8
and 26 energy groups calculations to be performed. A full description of these
benchmarks is available in [20]. All benchmarks represent a simplified 3D PWR
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first core loaded with 3 different types of fuel assemblies characterized by differ-
ent Uranium-235 enrichment levels (low, medium and highly enriched uranium).
There are no control rods inserted in this core model. Along the z-axis, the 360
cm assembly is axially reflected with 30 cm of water which results in a total
core height of 420 cm. The 3 types of fuel assemblies appear on Figure 6a where
the central assembly corresponds to the lowest enrichment, while the last row
of fuel assemblies has the highest enrichment to flatten the neutron flux. Each
fuel assembly is a 17× 17 array of fuel pins, with a lattice pitch of 1.26 cm that
contains 264 fuel pins and 25 water holes. The boundary condition associated
with this benchmark problem is a pure leakage condition without any incom-
ing angular flux. The associated nuclear data, 2-group, 8-group and 26-group
libraries are derived from a fuel assembly heterogeneous transport calculation
performed with the cell code DRAGON [21]. As an example, figure 6b presents
a visualization of the thermal flux in the central radial plane, as obtained from
a 2-group calculation.

(a) Material Radial Map (b) Neutron Thermal Flux

Figure 6: Illustration of the 2-Group PWR 900 MW model [20]

Table 1 summarizes the discretization parameters for the considered bench-
marks, where the following notations are used:

• NG is the number of energy groups.

• Nx, Ny and Nz define the number of spatial cells along the three dimen-
sions of the spatial domain.

• Ndir is the number of angular directions according to the order of angular
quadrature in use.

• Ndof is the number of degrees of freedoms (DoFs). The calculation of
DoF numbers consider 3 DoFs per cell, per energy group and per angular
direction.

• Flops is the number of floating point operations required to perform a
single complete sweep operation, for all energy groups. Note that the
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sweep of a single spatial cell for a single angular direction requires 25 flops
(see [1]).

• Ax, Ay and Az define the MacroCell sizes along the three dimensions.
Experimentally, Ax,y,z = 16 was shown to be the most effective choice for
the 2-group benchmark.

• εkeff and εψ define the thresholds used to check the stopping criteria at
iteration n+1 of the power algorithm for the eigenvalue and on the fission
source respectively as follows:

|kn+1
eff − kneff|
kneff

< εkeff ,
||Fψn+1 −Fψn||

||Fψn||
< εψ. (9)

• Ig is the fixed number of Gauss-Seidel iterations for the multigroup prob-
lem.

NG Nx Ny Nz Ndir Ndof Flops Ax,y,z εkeff εψ Ig
×1012 ×1012

2 578 578 756 168 0.254 2.12 16 10−6 10−5 1
8 578 578 168 80 0.108 0.90 20 10−5 10−5 5
26 578 578 140 288 1.051 8.75 20 10−5 10−5 4

Table 1: Description of PWR benchmarks and calculation parameters.

Note that the spatial mesh used for the PWR benchmarks is based on a
pin-cell mesh in the x− y plane. Each pin-cell is then subdivided into 70 (resp.
84) slices in the z direction for the 26-group (resp. 2-group and 8-group). The
spatial mesh is then further refined by 2× 2× 2 for the 8-group and 26-group,
and by 2× 2× 9 for the 2-group. The larger spatial mesh for the 2-group case
enables the study of the strong scalability of our implementation at high core
count.

The experiments have been conducted on computing nodes (dual Intel Xeon
E5-2697v2 processors) of the athos cluster at EDF. The theoretical peak per-
formance of each node is 518 (resp. 1036) GFlop/s in double (resp. single)
precision (2× 12 AVX cores at 2.7 GHz). The following experiments were con-
ducted by launching one MPI process per computing node and as many threads
as available cores; keeping one core per node for the PaRSEC communication
thread. All experiments were conducted in single precision. Computation times
do not include setup (reading of cross-section files from the hard disk), but in-
clude all communications and stopping criterion checks. For all the experiments
presented in the following sections, the setup time is less than a minute.
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4.1. Strong scalability of 2-group PWR keff computation
In this section, we present full-core keff computations using the S12 2-group

3D PWR core model. From a preliminary study with a single subdomain, we
found that the optimal number of SPN iterations is one, for each of the three
benchmarks. Therefore, all the following results are obtained using this value.

Figure 7a compares the convergence of the standard DSA method with one
subdomain (P1, Q1, R1) and those of PDSA with 4, 16, 32 and 64 subdomains.
All the computations lead to the same keff (1.019574) and to the same fluxes.
The outer iteration number increases from 56 for one subdomain, to 71 for 64
subdomains. This small increase demonstrates that the PDSA method is a suit-
able parallel acceleration technique for PWR core problems. Table 2 summarizes
these DSA and PDSA results and compares them to the non-accelerated com-
putation which requires 315 outer iterations to reach the convergence criterion.
Figure 7b illustrates Domino’s strong scalability. The total computing time
evolution and its main components are displayed. The SPN time, which corre-
sponds to the time dedicated to solving all the PDSA diffusion subproblems in
all subdomains, scales perfectly and remains negligible for all the parallel range.
The global parallel efficiency decrease is mainly due to the scalability limitation
of the sweep. These results show that the PDSA method allows Domino to
achieve very good performance for PWR criticality computations.
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Figure 7: Convergence and elapsed CPU time of Domino using the 2-group PWR benchmark
for various multi-domain configurations. A (P,Q,R) configuration divides the spatial domain
in P (resp. Q,R) slices in the X (resp. Y ,Z) direction.

The distributed memory nodes are efficiently used by this domain decomposi-
tion approach. Each multi-core node parallel potential is efficiently exploited by
multi-threaded implementation of the sweep and mono-domain diffusion solvers.
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(P ,Q,R) (1, 1, 1) (1, 1, 1) (4, 2, 1) (4, 4, 1) (4, 4, 2) (4, 4, 4)
Accel No DSA DSA PDSA PDSA PDSA PDSA
Ncores 24 24 192 384 768 1536
Nouter 315 56 59 66 69 71
Tsweep (s) 3610 598.0 83.2 50.0 29.4 23.5
Tspn (s) - 114.7 14.6 8.0 4.2 2.2
TAccel (s) - 147.0 22.8 11.6 7.1 3.4
Ttotal (s) 4547 916.4 130.5 75.5 43.8 31.1

% sweep 79 65 64 66 67 75

Table 2: Solution times for a S12 2-group 3D PWR keff computation on the athos platform.

The core SIMD units, handling the third and innermost parallel level, are effi-
ciently used to simultaneously compute several components of the angular flux.
These three nested levels of parallelism allow Domino to exploit a large frac-
tion of the computing power of the parallel platform. For this S12 (resp. S16)
2-group PWR Benchmark running on 768 cores, the performance of the sweep
operation reaches 5.0 (resp. 6.6) TFlop/s which corresponds to 15% (resp. 20%)
of the peak performance of the corresponding 32 nodes.

4.2. PWR core mode with 8 and 26-groups
Table 3 presents performance results of S8 8-group and S16 26-group 3D

PWR keff computations using 64 computing nodes of the athos cluster, par-
titioned into (4, 4, 4). The convergence on the 8-group benchmark is reached

3D PWR Nouter Tsweep (s) Tspn (s) T comm
PDSA (s) Ttotal (s)

S8 8-group 65 91.53 7.84 0.86 128.85
S16 26-group 126 2226.42 56.56 147.2 2763.52

Table 3: Solution times for a S12 8-group and S16 26-group 3D PWR keff computation on 64
cluster nodes (4,4,4).

in 65 external iterations, and the obtained eigenvalue is keff = 1.009408. This
number of external iterations is similar to what was obtained for a run with
a single subdomain. The total computation time is 128.85 s of which 91.53 s
comes from the sweep operation, illustrating that the sweep operation is still
dominant (71% of the total time).

For the 26-group case, the convergence is reached in 126 outer iterations, for
a global solver time of 2763.52 s. The obtained eigenvalue is keff = 1.008358.
As in the case with 8-groups, we did not observe any increase in the number
of external iterations as compared to a run with a single domain. This is a
remarkable result, highlighting the perfect efficiency of the PDSA method on
representative benchmarks of our target applications.
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5. Conclusion

In this paper, we studied the performance of our massively parallel approach
for solving the neutron transport equation according to the discrete ordinates
method. We first presented our task-based implementation of the sweep with
PaRSEC, as implemented in the Domino solver. Then we presented an appli-
cation of PDSA, a new piecewise diffusion acceleration scheme for the scattering
iterations. This is required to speed-up the convergence for strongly diffusive
problems. The efficiency of the massively parallel PDSA approach has shown
to be perfectly effective on different PWR nuclear core criticality computations
where it matches the standard DSA convergence rate. The Cartesian transport
solver Domino, implementing the PDSA scheme, exhibits three nested levels of
parallelism and exploits a large fraction of the theoretical peak performance of
thousands of SIMD computing cores. As a result, Domino can complete very
large and accurate criticality computations involving more than 1012 degrees of
freedom in less than an hour using 64 super-computer nodes.

This result allows us now to consider future fast and accurate 3D time-
dependent transport solutions for diffusive problems.
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