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Abstract

Solving large sparse symmetric positive definite systems of linear equations is a crucial and

time-consuming step, arising in many scientific and engineering applications. The block parti-

tioning and scheduling problem for sparse parallel factorization without pivoting is consid-

ered. There are two major aims to this study: the scalability of the parallel solver, and the

compromise between memory overhead and efficiency. Parallel experiments on a large collec-

tion of irregular industrial problems validate our approach. � 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Solving large sparse symmetric positive definite systems Ax ¼ b of linear equations
is a crucial and time-consuming step, arising in many scientific and engineering ap-
plications. Consequently, many parallel technics for sparse matrix factorization have
been studied and implemented; see [12] for a complete survey on high performance
sparse factorization.
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From a practical point of view, we have mainly worked on the parallelization of
an industrial vectorized code for structural mechanics, which is a 2D and 3D finite
element code and nonlinear in time. This computational finite element code solves
plasticity (or thermo-plasticity, possibly coupled with large displacements) problems.
Since the matrices of these systems do not have good properties, classical iterative
methods do not behave well. Therefore, as we want to obtain an industrial software
tool that would be robust and versatile, we must use high-performance direct sparse
solvers; moreover, as we need to solve very large sparse systems (more than one mil-
lion unknowns for 3D problems), parallelism is necessary for reasons of memory ca-
pabilities and acceptable solving time [17, and included references].

In this paper, we focus on the block partitioning and scheduling problem for high
performance sparse LDLT factorization without pivoting on parallel architectures; in
fact, our strategy is suitable for general distributed heterogeneous architectures
whose computation and communication performances are predictable in advance.
We use LDLT factorization in order to solve some electro-magnetism problems that
lead to symmetric nonsingular systems with complex coefficients.

In order to achieve efficient parallel sparse factorization, we perform three sequen-
tial pre-processing phases:

Fig. 1. Block data structure of a factorized matrix.
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• The ordering phase, which computes a symmetric permutation of the initial matrix
A such that factorization process will exhibit as much concurrency as possible
while incurring low fill-in. In this work, we use a tight coupling of the Nested Dis-
section and Approximate Minimum Degree (AMD) algorithms [1,28]. The parti-
tion of the original graph into supernodes is achieved by merging the partition
of separators computed by the Nested Dissection algorithm and the super-
nodes amalgamated for each subgraph ordered by Halo Approximate Minimum
Degree.

• The block symbolic factorization phase, which determines the block data structure
of the factorized matrix L associated with the partition resulting from the order-
ing phase. This structure consists of N column-blocks, each of them containing a
dense symmetric diagonal block and a set of dense rectangular off-diagonal blocks
(see Fig. 1). One can efficiently perform such a block symbolic factorization in
quasi-linear space and time [10]. From the block structure of L, we can deduce
the weighted elimination quotient graph that describes all dependencies between
blocks, as well as the supernodal elimination tree. The block algorithm that we
use is highly cache-friendly; block data structures are much more compact than
column-compressed storage [28]. The blocks of the factorized matrix are com-
puted and appended, column-block by column-block, to a growing block array,
such that the blocks of the already-computed contributing column-blocks are
merged to build the blocks of the current column-block.

• The block repartitioning and scheduling phase, which refines the previous partition
by splitting large supernodes in order to exploit concurrency within dense block
computations, and which maps the resulting blocks onto the processors of the tar-
get architecture (see Section 2.2).

According to the properties of matrix A, we classically distinguish two types of
factorization:
• If matrix A is symmetric positive definite, a Cholesky factorization (A ¼ LLT) or

Cholesky–Crout factorization (A ¼ LDLT), with or without symmetric numerical
pivoting, can be used.

• If matrix A is unsymmetric, one must use a LU factorization with unsymmetric
pivoting.

There are two main approaches for numerical factorization algorithms: the multi-
frontal approach [2,11,13,14,18,31], and the supernodal [19,30,32,33] with fan-in or
fan-out variations [5–8]. Both can be described by a computational tree whose nodes
represent computations and whose edges represent transfer of data. In the case of the
multifrontal method, at each node, some steps of Gaussian elimination are per-
formed on a dense frontal matrix and the remaining Schur complement, or contri-
bution block, is passed to the parent node for assembly. In the case of the supernodal
method, the distributed memory version uses a right-looking formulation which,
having computed the factorization of a column-block corresponding to a node of the
tree, then immediately sends the data to update the column-blocks corresponding to
ancestors in the tree. In a parallel context, we can locally aggregate contributions to
the same block before sending the contributions. This can significantly reduce the
number of messages.
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Independently of these different methods, a static or dynamic scheduling of block
computations can be used. For homogeneous parallel architectures, it is useful to
find an efficient static scheduling [15,20,29]. In this context, this scheduling can be
induced by a fine cost computation/communication model.

The PSPASES solver [22] is based on a multifrontal approach without pivoting
for symmetric positive definite systems. It uses METIS [23] for computing a fill-re-
ducing ordering which is based on a multilevel nested dissection algorithm; when
the graph is separated into p parts, one subgraph per processor, a multiple minimum
degree (MMD [26]) is then used. A ‘‘subtree to subcube’’ algorithm is applied to
build a static mapping before the numerical factorization.

In [4] the performances of MUMPS [3] and SUPERLU [25] are compared for non-
symmetric problems. MUMPS uses a multifrontal approach with dynamic pivoting
for stability while SUPERLU is based on a supernodal technique with static pivoting.
The standard ordering used by MUMPS is the AMD [1] ordering, while SUPERLU
uses the multiple minimum degree (MMD [26]) ordering. In both cases, a pivot order
is defined by the symbolic factorization stage, but numerical considerations might
prevent strict adherence to this order during numerical factorization. MUMPS can
choose pivots off of the diagonal: the modulus of the prospective pivot is compared
with the largest modulus of an entry in the column and the pivot is only accepted if
this modulus is greater than a threshold value. In the SUPERLU approach, a static
pivoting strategy is used and kept rigorously to the pivot sequence chosen in the sym-
bolic analysis.

The PARDISO solver [34] is an efficient implementation of a parallel sparse direct
factorization for unsymmetric and symmetric matrices in the context of shared mem-
ory architectures. Parallelism is exploited with a combination of left-looking and
right-looking supernodal algorithms; the parallel pivoting methods use either com-
plete pivoting or Bunch and Kaufmann supernode pivoting [9] in order to reach a
compromise between numerical stability and scalability during the factorization pro-
cess.

In this paper, we focus on the block partitioning and scheduling problem for high
performance sparse supernodal LDLT factorization without pivoting for symmetric
positive definite systems. Thus, our algorithmic framework is close to the PSPASES
one [22]. We presented in [20,21] a preliminary version of this work describing a
mapping and scheduling algorithm based on a combination of 1D and 2D block dis-
tributions. This algorithm computes an efficient static schedule of the block compu-
tations for a parallel solver based on a supernodal approach such that the parallel
solver is fully driven by this scheduling. This can be done by very precisely taking
into account the computational costs of the BLAS 3 primitives, the communication
cost and the cost of local aggregations. Our study is suitable for heterogeneous par-
allel/distributed architectures whose performances are predictable by using a cost
model for computations and communications. This paper extends this preliminary
work by presenting a complete description of our mixed 1D/2D distribution strategy,
a description and an analysis of partial aggregation technique (for memory con-
straints), and finally complete numerical experiments for case studies with more than
1:5� 106 unknowns on IBM SP2 architecture.
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The paper is organized as follows. In Section 2, we introduce the algorithmic
framework for parallel sparse symmetric factorization before to describe our block
repartitioning and scheduling algorithm. Section 3 provides many numerical exper-
iments on an IBM SP2 for a representative class of large sparse matrices from indus-
trial problems, including performance results and analysis. According to these
results, our PASTIX software appears to be a good competitor with the current ref-
erence PSPASES software [22] for symmetric matrices. Finally, we conclude with re-
marks concerning the benefits of this study, with preliminary results for the two
biggest case studies on an IBM SP3, and finally with some prospects of our future
work.

2. Description of algorithms

We first introduce the numerical factorization algorithm in Section 2.1 in or-
der to facilitate the description of our static partitioning and mapping algorithm
in Section 2.2. We conclude this part by presenting some important extensions in
Section 2.3.

2.1. Parallel factorization algorithm

Let us consider the block data structure of the factorized matrix L computed by
the block symbolic factorization. Recall that each of the N column-blocks holds one
dense diagonal block and some dense off-diagonal blocks. From this block data
structure, we can introduce the boolean function off diagðk; jÞ, 16 k < j6N , that
returns true if and only if there exists an off-diagonal block in column-block k facing
column-block j (in what follows, we will say ‘‘block j in the column-block k’’). Then
we define the two sets:

BStructðLk�Þ :¼ fi < kjoff diagði; kÞ ¼ trueg;
BStructðL�kÞ :¼ fj > kjoff diagðk; jÞ ¼ trueg:

Thus, BStructðLk�Þ is the set of column-blocks that update column-block k, and
BStructðL�kÞ is the set of column-blocks updated by column-block k. In Fig. 1 we
have BStructðL7�Þ :¼ f1; 2; 3; 4; 5; 6g and BStructðL�7Þ :¼ f15; 31g.

Let us now consider a parallel supernodal version of sparse LDLT factorization
with total local aggregation: all nonlocal block contributions are aggregated locally
in block structures. This scheme is close to the Fan-In algorithm [8] as processors
communicate using only aggregated update blocks. The proposed algorithm can
yield 1D (column-block) or 2D (block) distributions. If memory is a critical issue,
an aggregated update block can be sent with partial aggregation to free memory
space. So, a block jP k in column-block k will receive an aggregated update block
only from every processor in the set

ProcsðLjkÞ :¼ mapðj; iÞ j i 2 BStructðLk�Þ and j 2 BStructðL�iÞf g;
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where the mapð; Þ operator is the 2D block mapping function. These aggre-
gated update blocks, denoted in what follows by AUBjk, can be built from the
block symbolic factorization. These contributions are locally aggregated before
being sent.

The pseudo-code of LDLT factorization can be expressed in terms of dense block
computations or tasks; these computations are performed, as much as possible, on
compacted sets of blocks for BLAS efficiency.

Let us introduce some notations:
• P : total number of processors;
• Np : total number of local tasks for processor p;
• Kp½n� : nth local task for processor p;
• Sq : set of all AUBs to be sent to processor q;
• for the column-block k, symbol H means 8j 2 BStructðL�kÞ;
• let jP k; sequence ½j� means 8i 2 BStructðL�kÞ [ fkg with iP j .
Block computations can be classified in four types denoted by COMP1D, FACTOR,
BDIV and BMOD. The associated tasks are defined as follows (p is the local processor
number):
• COMP1D(k): factorize the column-block k and compute all the contributions for the
column-blocks in BStructðL�kÞ

Factorize Akk into LkkDkLT
kk

Solve LkkF T
H
¼ AT

Hk and DkLT
Hk ¼ F T

H

For j 2 BStructðL�kÞ Do

Compute C½j� ¼ L½j�kF T
j

If mapð½j�; jÞ ¼¼ p Then A½j�j ¼ A½j�j � C½j�
Else AUB½j�j ¼ AUB½j�j þ C½j�

• FACTOR(k): factorize the diagonal block k
Factorize Akk into LkkDkLT

kk
• BDIV(j,k): update the off-diagonal block j in column-block k

Solve LkkF T
j ¼ AT

jk and DkLT
jk ¼ F T

j
• BMOD(i,j,k): compute the contribution of the block i in column-block k for block
i in column-block j

Compute Ci ¼ LikF T
j

If mapði; jÞ ¼¼ p Then Aij ¼ Aij � Ci

Else AUBij ¼ AUBij þ Ci

Then, the pseudo-code of LDLT factorization for processor p is shown in Fig. 2.
On each processor p, Kp is the vector of tasks for local computations (lines 2

on Fig. 2), ordered by priority (see Section 2.2). Each task should have received
all its contributions and should have updated associated local data before any new
contribution is computed. When the last contribution is aggregated in the corre-
sponding AUB, this aggregated update block is said to be ‘‘completely aggregated’’
and is ready to be sent. To achieve a good efficiency, the sending of AUB have to
match the static scheduling of tasks on the destination processor (Fig. 3). That
is why we define, in the Sending_Phase (lines 5 and 14 in Fig. 2), the pro-
perty P that is true when this matching is verified (the property is introduced in
Section 2.2).
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2.2. Partitioning and mapping phase

Before running the general parallel algorithm presented above, we must perform a
step consisting of partitioning and mapping the blocks of the symbolic matrix onto
the set of processors. The partitioning and mapping phase aims at computing a static
regulation that balances workload and enforces the precedence constraints imposed
by the factorization algorithm; the block elimination tree structure must be used
there. Different levels of parallelism can be exhibited:
• The first level is induced by the sparseness of the matrix and corresponds to inde-

pendent branches in the block elimination tree.
• The second level is induced by dense computation on large full blocks. The parti-

tioning phase is assigned to split such blocks.
• The third level exploits instruction-level parallelism at the processor level by using

BLAS subroutines.
The performance of the partitioning and mapping phase can be viewed in terms of its
ability to exploit these three levels of parallelism.

The existing approaches for block partitioning and mapping give rise to several
problems, which can be divided into two categories: on the one hand, problems
due to the measure of workload, and on the other hand those due to the runtime
schedule of block computations in the solver.

Fig. 3. Outline of the sending phase.

Fig. 2. Outline of the parallel factorization algorithm.
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The measure of workload is usually very rough because only numbers of opera-
tions are taken into account. However, in order to be efficient, solver algorithms
are block-oriented to take advantage of BLAS subroutines, whose efficiencies are
very far from being linear in terms of numbers of operations. Moreover, workload
encompasses block computations but does not take into account all of the other phe-
nomena that occur in parallel factorization, such as extra workload generated by the
local aggregation of contributions and idle waits due to the latency generated by
message passing.

The obtaining of high performance at runtime requires computational efficient so-
lutions to several scheduling problems that define the orders in which one
• processes tasks that are locally ready, which is crucial for minimizing idle time

(vector Kp in line 2 of Fig. 2);
• sends and processes the receiving of blocks and of aggregate update blocks used

by BDIV or BMOD tasks, which determines what block will be ready next for local
computation (line 3, 5, 6, 8, 9, 11, 12 and 14 of Fig. 2).

We tackle all of these problems by a static regulation led by a time simulation during
the mapping phase. Thus, the partitioning and mapping step generates a fully or-
dered schedule used in the parallel factorization. This schedule aims at statically
regulating all of the issues that are classically managed at runtime. To make our
scheme very reliable, we estimate the workload and message passing latency by using
a BLAS and communication network time model, which is automatically calibrated
on the target architecture.

Unlike usual algorithms, our partitioning and distribution strategy is divided in
two distinct phases. The partition phase splits column-blocks associated with large
supernodes, builds, for each column-block, a set of candidate processors for its map-
ping, and determines if it will be mapped using a 1D or 2D distribution. Once the
partitioning step is over, the task graph is built. In this graph, each task is associated
with the set of candidate processors of its column-block. The mapping and schedul-
ing phase then optimally maps each task onto one of these processors.

The partitioning algorithm is based on a recursive top–down strategy over the
block elimination tree provided by block symbolic factorization. Pothen and Sun
presented such a strategy in [29]. It starts by splitting the root and assigning it to
a set of candidate processors Q that is the set of all processors. Given the number
of candidate processors and the size of the supernodes, it chooses the strategy (1D
or 2D) that the mapping and scheduling phase will use to distribute this supernodes.
Then each subtree is recursively assigned to a subset of Q proportionally to its work-
load (Fig. 4).

Two points are important to notice in our method:
• Since a candidate processor is only a suggestion for the mapping and scheduling

phase, we avoid any problem of rounding to integral numbers of processors by
allowing a candidate processor to be in two sets of candidate processors for
two subtrees having the same parent in the block elimination tree (for example
processor 3 in Fig. 4).

• The column-blocks corresponding to large supernodes are split using the blocking
size suitable to achieve good BLAS efficiency.
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Once the partitioning phase has built a new partition and the set of candidate
processors for each task, the election of an owner processor for each task falls to the
mapping and scheduling phase. The idea behind this phase is to simulate parallel
factorization as each mapping comes along. Thus, for each processor, we define a
timer that will hold the current elapsed computation time, and a ready task heap. At
a given time, this task heap will contain all tasks that are not yet mapped, that have
received all of their contributions, and for which the processor is a candidate. The
algorithm then starts by mapping the leaves of the elimination tree (those which have
only one candidate processor). When a task is mapped onto a processor, the mapper
• updates the timer of this processor according to our BLAS model;
• computes the time at which any contribution from this task to another is ready to

be sent;
• puts into the heaps of their candidate processors all tasks for which all of the con-

tributions have been computed.
After a task has been mapped, the next task to be mapped is selected as follows: we
take the first task of each ready task heap and choose the one that comes from the
lowest node in the elimination tree.

Now, we have to decide on which candidate processor a task is to be mapped. As
shown in Fig. 5, the communication pattern of all the contributions for a task de-
pends on the already mapped tasks and on the candidate processor for the ownership
of this task. We therefore compute for each of the candidate processors, the time at
which it will have completed the task if it is mapped onto it as a function of
• the processor timer;
• the time at which all contributions to this task have been computed (taking into

account the overhead due to aggregation of local contributions);
• the communication cost model that gives the time needed to send the contribu-

tions.
The task is mapped onto the candidate processor that will be able to compute it the
soonest.

Fig. 4. Partitioning and sets of candidate processors.

P. H�eenon et al. / Parallel Computing 28 (2002) 301–321 309



After this phase has ended, the computations of each task are ordered with respect
to the rank at which the task have been mapped. Thus, for each processor p, we ob-
tain a vector Kp of the Np local task numbers fully ordered by priority (line 2 in Fig.
2). Thus, the vector Kp stands as the task computation scheme for processor p during
the parallel computation.

On a given processor p, as defined in Section 2.1, we denote by Sq the set of all the
aggregated contributions to be sent to the processor q. In addition, we suppose that
all AUBs of Sq are ordered by the priority of their matching tasks on processor q.
Thus, we denote by Sq½i� the AUB 2 Sq with the ith rank. In this way, we define
the property P introduced in Section 2.1 by

PðSq½i�Þ is true () Sq½i� is completely aggregated;
8j < i; Sq½j� is completely aggregated:

�

This communication scheme is fully compatible with the task computation scheme
since, by construction, the sending of all the AUBs in Sq are compatible with the
order of the task computations on q.

As a conclusion about the partitioning and mapping phase, we can say that we
obtain a strategy that allows us to take into account, in the mapping of task compu-
tations, all the phenomena that occur during the parallel factorization. Thus we
achieve a block computation and communication scheme that drives the parallel sol-
ver efficiently.

Another important point is that our strategy can take into account heteroge-
nous architecture. For example, in the case of an architecture based on SMP nodes,
the time to send an AUB from a processor p1 to a processor p2 is estimated using
the intra-node communication model if p1 and p2 belong to the same SMP node,
or using the extra-node communication model if p1 and p2 belong to different
SMP nodes.

Fig. 5. Communication pattern of the contributions updating a task.
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2.3. Static regulation under memory constraint

We have explained in the previous paragraph our strategy to improve the parallel
factorization in terms of time. Another important problem that occurs in industrial
problems is the performance in terms of space complexity; in particular, the memory
overhead due to the extra-structures needed to manage distributed data and commu-
nication exchanges must be as small as possible. In the case of the LDLT supernodal
factorization with total local aggregation of contributions, this overhead cost is
mainly caused by the local aggregation of contributions. Indeed, an aggregated up-
date block AUBij on a given processor consists of an overlapping block structure of
all the contributions from this processor to the block ði; jÞ mapped on another pro-
cessor. Thus any AUB needs to be allocated in local memory, since its first contribu-
tion has been computed until it is updated by its last contribution and sent according
to the communication scheme. The total amount of simultaneously allocated mem-
ory for AUBs can be very significant with respect to the amount of memory needed
to store the distributed matrix. A solution to reduce this extra-memory requirement
is to reduce the number of simultaneously allocated AUBs by sending some of them
before they are completed. That is to say that we allow some of the AUBs to be sent
before they have been updated by their last contribution, and to be reallocated when
the next contribution following the sending of the partial AUB is computed. This
method is called partial local aggregation.

Thanks to the task computation scheme, it is very simple to deduce the data struc-
ture accesses. This way, as shown in Fig. 6, we can know the exact amount of extra-
memory used when a new allocation of an AUB is needed. Fig. 6 shows how the
memory allocations and disallocations can be predicted from the order in which
the local BMOD tasks are computed. Indeed from this order, we deduce the order
in which the AUB are updated by the BMOD tasks. When an AUB is updated by a
BMOD task for the first time it means that it has to be allocated and when it is updated
for the last time (and sended) it means that it has to be disallocated. For example, in
Fig. 6, we can see that the peak of extra-memory is reached when task 4 needs to
allocate AUB 3. As a consequence, given a memory constraint, we can know exactly
which allocation of a new AUB will violate this constraint. If we denote by AUBr

such a new AUB and by AUBs a previously allocated AUB that has been partially
updated, then an AUBs should have been sent before the allocation of the new AUBr

to enforce the memory constraint.
A good choice of the partially updated AUBs to be sent must satisfy two cri-

teria:
• the memory size of AUBs has to be greater than or equal to the memory size of

AUBr;
• the next contribution to AUBs must be computed as late as possible after the al-

location of AUBr.
It is clear that the best AUBs corresponding to these criteria is easy to find thanks to
the data allocation and disallocation scheme deduced from the task computation and
communication schemes. Thus, the method consists of finding the best AUBs ac-
cording to these criteria whenever the allocation of an AUB violates the memory
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constraint. For example, in Fig. 6, if AUBr is AUB 3 then the best choice for AUBs is
AUB 1.

In addition to the reduction of extra-memory, we are currently working on a more
general version of our strategy that is suitable for heterogeneous architectures and
more particularly those based on SMP nodes like the IBM SP3. As described at
the end of the Section 2.2, our previous model for communication is extended to take
into account the (less costly) data exchanges by shared memory, and the (more
costly) data exchanges performed by the network. Numerical experiments are in pro-
gress to validate this extension. More generally, our strategy is suitable for heteroge-
neous architectures with predictable performances.

3. Numerical experiments

In Section 3.1, we first introduce our experimental environment. Then we present
the time performances for the pre-processing steps in Section 3.2. Before the analysis
of the parallel factorization times in Section 3.4, we describe some experiments for
finding the threshold for mixed 1D/2D distributions (see Section 3.3). We next com-
pare the softwares PASTIX and PSPASES in Section 3.5. Finally, Section 3.6 gives
some results for the partial aggregation technique.

Fig. 6. Extra-memory evolution during task computings.
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3.1. Experimental environment and test cases

All of the algorithms described in this paper have been integrated in the PASTIX
software [20,21], based on libraries that make use of version 3.4 of the SCOTCH static
mapping and sparse matrix ordering software package [27], both developed at La-
BRI.

The parallel experiments were run on an 192 node IBM SP2 at CINES (Montpel-
lier, France); the processors are 120 MHz Power2SC thin nodes (480 MFlops peak
performance) having 256 MB of physical memory each. Switch interrupts are en-
abled with default delay to perform nonblocking communication efficiently. All com-
putations are performed in double precision and all time results are given in seconds.
The sequential experiments for the pre-processing steps (see Section 3.2) were run on
one node of this IBM SP2. In all the following tables, the symbol ‘‘–’’ is used when
the time measurements are not significant due to memory swapping.

Our experiments are performed on a collection of sparse matrices from the Ruth-
erford–Boeing Collection, from the PARASOL ESPRIT Project and from CEA/
CESTA (3D Cologne, Coupole). The almost part of these matrices are structural me-
chanics and CFD matrices. The values of the associated measurements in Table 1
come from scalar column symbolic factorization.

3.2. Partitioning and mapping results

Table 2 presents the sequential times to compute the three pre-processing steps
and more particularly the times spent in the partitioning and mapping step for a
number of processors varying from 2 to 64.

We notice that our partitioning and mapping algorithm is inexpensive in time; its
complexity grows as HðM logðP ÞÞ, whereM is the number of blocks and P the num-
ber of processors.

3.3. Experimental threshold for mixed 1D/2D distribution

Table 3 presents some experiments on the threshold to shift between a 2D distri-
bution and a 1D distribution during the first step of the partitioning and mapping
algorithm (cf. Section 2.2). At the moment, our threshold criterion only takes into
account the number of candidate processors for a node. We plan to improve this
threshold criterion by taking into account the computation cost of the subtree rooted
at the node in addition to this number of candidate processors. As shown in Table 3,
a good experimental approximation gives a threshold around 12 processors on the
IBM SP2 architecture. We will use this criterion to perform all the tests in Sections
3.4–3.6.

3.4. Parallel factorization results

All floating-point arithmetic is performed with BLAS routines as said previously.
Profiled executions confirm that BLAS level 3 block computations (GEMM and TRSM)
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represent more than 75% of total BLAS computations. A multivariable polynomial
regression has been used to build an analytical model of these routines. This model
and the experimental values obtained for communication startup and bandwidth are
used by the partitioning and scheduling algorithm. It is important to note that the

Table 1

Description of our test problems

Name Columns NNZA NNZL OPC NNZL=OPC Description

GRID1023 1 046 529 4 179 980 5:615708eþ 07 2:083481eþ 10 2:69e� 3 Regular 2D

mesh

CUBE39 59 319 730 778 2:210534eþ 07 2:240674eþ 10 0:99e� 3 Regular 3D

mesh

CUBE47 103 823 1 290 898 4:828456eþ 07 6:963850eþ 10 0:69e� 3 Regular 3D

mesh

BCSSTK32 44 609 985 046 5:239146eþ 06 1:162900eþ 09 4:50e� 3 Rutherford–

Boeing

BBMAT 38 744 1 274 141 1:716094eþ 07 1:250040eþ 10 1:37e� 3 Rutherford–

Boeing

TOOTH 78 136 452 591 1:031143eþ 07 6:267094eþ 09 1:64e� 3 3D element

mesh

OCEAN 143 437 409 593 2:029997eþ 07 1:301477eþ 10 1:56e� 3 3D element

mesh

M14B 214 765 1 679 018 6:236747eþ 07 6:112540eþ 10 1:02e� 3 3D element

mesh

OILPAN 73 752 1 761 718 8:912337eþ 06 2:984944eþ 09 2:98e� 3 PARASOL

QUER 59 122 1 403 689 9:118592eþ 06 3:280680eþ 09 2:78e� 3 PARASOL

INVEXTR1 30 412 906 915 7:256566eþ 06 3:766788eþ 09 1:93e� 3 PARASOL

SMDOOR 162 610 3 873 534 2:541937eþ 07 1:530774eþ 10 1:66e� 3 PARASOL

SHIP001 34 920 2 304 655 1:427916eþ 07 9:033767eþ 09 1:58e� 3 PARASOL

X104 108 384 5 029 620 2:634047eþ 07 1:712902eþ 10 1:54e� 3 PARASOL

MT1 97 578 4 827 996 3:114873eþ 07 2:109265eþ 10 1:48e� 3 PARASOL

BMW3_2 227 362 5 530 634 4:420244eþ 07 3:007981eþ 10 1:47e� 3 PARASOL

MIXTANK 29 957 982 542 9:280247eþ 06 7:316933eþ 09 1:26e� 3 PARASOL

BMWCRA_1 148 770 5 247 616 6:597301eþ 07 5:701988eþ 10 1:16e� 3 PARASOL

CRANKSG1 52 804 5 280 703 3:142730eþ 07 3:007141eþ 10 1:05e� 3 PARASOL

SHIPSEC8 114 919 3 269 240 3:572761eþ 07 3:684269eþ 10 0:97e� 3 PARASOL

CRANKSG2 63 838 7 042 510 4:190437eþ 07 4:602878eþ 10 0:91e� 3 PARASOL

SHIPSEC5 179 860 4 966 618 5:649801eþ 07 6:952086eþ 10 0:81e� 3 PARASOL

SHIP003 121 728 3 982 153 5:872912eþ 07 8:008089eþ 10 0:73e� 3 PARASOL

THREAD 29 736 2 220 156 2:404333eþ 07 3:884020eþ 10 0:62e� 3 PARASOL

COLOGB30 20 373 1 394 292 7:849464eþ 06 4:359803eþ 09 1:80e� 3 3D cologne

COLOGB75 50 208 3 473 292 2:248613eþ 07 1:532035eþ 10 1:47e� 3 3D cologne

COUP1500T 994 983 70 303 275 5:219997eþ 08 3:79847eþ 11 1:38e� 3 3D coupole

COUP2000T 1 326 483 93 734 775 6:888813eþ 08 5:00924eþ 11 1:37e� 3 3D coupole

NNZA is the number of off-diagonal terms in the triangular part of matrix A, NNZL is the number of off-

diagonal terms in the factorized matrix L and OPC is the number of operations required for the factor-

ization. Matrices are sorted in decreasing order of NNZL=OPC which is a measure of the potential data

reuse [24].
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number of operations actually performed during factorization is greater than the
OPC value because of amalgamation performed by the ordering and of block com-
putations.

Table 4 reports the performances of our parallel block factorization for our dis-
tribution strategy and shows that a good scalability is achieved for all the test prob-
lems. On both moderate and large size grid and irregular problems, the measured
performances vary between 1.08 and 3.24 Gigaflops on 16 nodes and between 2.36
and 11.62 on 64 nodes, the better scalability being achieved on the largest tests.
For large enough problems, Gigaflop rate reaches half max GEMM rate which is
rather good for a sparse factorization.

Table 2

Sequential times in seconds for the scheduling algorithm, for the Symbolic Factorization step (SF_Time)

and for the Ordering step (O_Time)

Name Number of processors SF_Time O_Time

2 4 8 16 32 64

GRID1023 1.15 1.12 1.77 2.20 3.27 10.27 3.31

CUBE39 0.28 0.38 0.47 0.80 1.63 3.11 0.58

CUBE47 0.94 1.17 1.39 2.70 4.72 8.92 1.35

BCSSTK32 0.13 0.14 0.16 0.19 0.28 0.52 0.55 6.83

BBMAT 0.49 0.58 0.69 0.87 1.06 1.69 0.69 65.75

TOOTH 1.82 1.94 2.16 2.50 3.41 7.22 0.96 38.10

OCEAN 3.89 4.11 4.24 4.86 6.43 12.55 1.29 63.76

M14B 5.89 6.73 7.52 8.42 10.06 16.32 2.43 150.81

OILPAN 0.14 0.14 0.14 0.19 0.31 0.92 0.88 3.77

QUER 0.10 0.10 0.10 0.14 0.29 0.62 0.69 2.98

INVEXTR1 0.87 0.96 1.17 1.39 1.69 2.40 0.62 47.27

SMDOOR 0.31 0.34 0.39 0.51 0.98 2.90 1.93 9.27

SHIP001 0.05 0.05 0.08 0.11 0.19 0.49 0.88 5.51

X104 0.13 0.19 0.22 0.31 0.78 2.15 1.95 10.86

MT1 0.08 0.12 0.18 0.26 0.84 1.46 1.80 12.26

BMW3_2 0.57 0.73 0.83 1.00 1.80 5.13 3.12 27.67

MIXTANK 0.57 0.85 0.97 1.16 1.70 3.72 0.61 46.61

BMWCRA_1 0.33 0.39 0.58 0.87 1.08 1.56 2.59 45.37

CRANKSG1 0.09 0.13 0.26 0.41 0.89 2.02 1.99 17.08

SHIPSEC8 0.51 0.75 1.02 1.43 2.85 7.88 1.62 8.52

CRANKSG2 0.11 0.17 0.31 0.52 0.71 1.91 2.55 20.84

SHIPSEC5 0.88 0.94 1.38 1.76 3.28 8.00 2.43 12.90

SHIP003 0.70 0.95 1.32 1.85 3.36 8.53 2.05 14.25

THREAD 0.11 0.51 0.56 0.71 2.35 6.20 0.87 11.07

COLOGB30 0.03 0.05 0.06 0.80 0.17 0.33 0.10 6.90

COLOGB75 0.08 0.11 0.14 0.20 0.29 0.88 0.24 17.57

COUP1500T 1.46 1.55 1.69 1.99 2.65 5.19 1.17 –

COUP2000T 2.10 2.13 2.27 2.70 3.57 6.77 2.05 –

For 2D and 3D grids we do not use the SCOTCH software package but the optimal nested dissection

algorithm of George and Liu [16].
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3.5. Comparisons with PSPASES

We compare factorization times performed in double precision real by our
PASTIX software and by PSPASES version 1.0.3 based on a multifrontal approach
[22]. PASTIX makes use of version 3.4 of the SCOTCH static mapping and sparse or-
dering software package developed at LaBRI. PSPASES uses METIS version 4.0 as
its default ordering library. In both cases, blocking size is set to 64 and the IBM
ESSL library is used. We describe experiments performed on a collection of sparse
matrices in the RSA format; the values of the metrics in Table 5 come from scalar
column symbolic factorization. Table 6 reports the performances of our parallel
block factorization for our distribution strategy and the ones of the PSPASES soft-
ware.

An important remark to facilitate comparisons is that PSPASES uses a Cholesky
(LLT) factorization, intrinsically more BLAS efficient and cache-friendly than
the LDLT one used by PASTIX (the SYRK routine cannot be used in LDLT factor-
ization, and moreover we have to compute diagonal matrix D with BLAS 1 rou-
tines). For instance, for a dense 1024� 1024 matrix on one Power2SC node, the
ESSL LLT factorization time is 1.07 s whereas the ESSL LDLT factorization time
is 1.27 s.

Moreover, we can notice that PSPASES is much more memory consuming than
PASTIX. This is probably inherent to the multifrontal approach used by PSPASES
with regards to the supernodal approach used by PASTIX.

Results show that PASTIX compares favorably to PSPASES and achieves better
solving times in almost all cases up to 32 processors. Performances are quite equiv-
alent on 64 processors when scalability limit is reached. Globally, these experimental
results show that the two softwares have comparable time performances.

Table 3

Influence of the threshold between 2D and 1D distributions on factorization time

Name Threshold Number of processors

8 16 32 64

CUBE47 6 39.59 27.17 17.82 14.77

8 38.61 25.08 17.05 13.53

12 24.08 17.15 12.59

16 25.14 19.54 15.21

BMWCRA_1 6 31.03 18.91 9.59 7.01

8 31.12 19.06 9.62 6.56

12 18.75 9.55 5.94

16 19.11 9.55 6.11

COLOGB75 6 10.18 5.75 4.16 3.25

8 8.99 5.84 4.09 3.34

12 5.69 3.89 3.14

16 5.85 4.02 3.13
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3.6. Influence of the partial aggregation strategy

Fig. 7 presents, for one test, the time penalty on the parallel factorization induced
by the partial aggregation method. The results are performed on different numbers of
processors and different percentages of memory reduction.

Firstly, it is important to remark that the total extra-memory due to the AUBs
dramatically increases when the number of processors grows. In this case, the ratio
in percentage, between the memory needed to store the AUBs and the memory
needed to store the distributed matrix coefficients, represents 11% on eight proces-
sors, 22% on 16 processors, 49% on 32 processors and 88% on 64 processors.

In Fig. 7, the x-axis is the percentage of memory reduction with respect to the to-
tal extra-memory due to the AUBs on a processor. The y-axis is the percentage of

Table 4

Factorization performance results (time in seconds and Gigaflops) on the IBM SP2

Name Number of processors

2 4 8 16 32 64

GRID1023 – – 14.57 (1.43) 8.61 (2.42) 5.56 (3.74) 3.83 (5.44)

CUBE39 43.58 (0.51) 24.20 (0.93) 13.20 (1.70) 8.88 (2.52) 6.32 (3.55) 5.03 (4.46)

CUBE47 – 73.31 (0.95) 38.23 (1.82) 24.08 (2.89) 17.15 (4.06) 12.59 (5.53)

BCSSTK32 4.03 (0.29) 2.46 (0.47) 1.41 (0.82) 1.08 (1.08) 0.78 (1.49) 0.71 (1.63)

BBMAT 28.17 (0.44) 14.73 (0.85) 8.55 (1.46) 5.24 (2.39) 3.39 (3.69) 2.72 (4.60)

TOOTH 20.01 (0.31) 10.70 (0.59) 6.60 (0.95) 4.01 (1.56) 2.77 (2.26) 2.49 (2.52)

OCEAN 48.37 (0.27) 18.39 (0.71) 9.78 (1.33) 6.26 (2.08) 4.12 (3.16) 4.17 (3.12)

M14B – – 46.95 (1.30) 25.84 (2.37) 14.60 (4.19) 9.21 (6.64)

OILPAN 7.28 (0.41) 3.81 (0.78) 2.23 (1.34) 1.51 (1.98) 1.03 (2.90) 0.92 (3.24)

QUER – 4.46 (0.74) 2.77 (1.18) 1.90 (1.73) 1.35 (2.43) 1.04 (3.16)

INVEXTR1 11.59 (0.32) 6.31 (0.60) 4.03 (0.93) 2.52 (1.49) 1.76 (2.14) 1.57 (2.40)

SMDOOR 29.54 (0.52) 15.52 (0.99) 9.10 (1.68) 5.25 (2.91) 4.07 (3.76) 2.91 (5.25)

SHIP001 20.98 (0.43) 10.91 (0.83) 6.13 (1.47) 3.78 (2.39) 2.34 (3.86) 1.96 (4.60)

X104 31.53 (0.54) 19.69 (0.87) 11.02 (1.55) 6.32 (2.71) 5.30 (3.23) 3.85 (4.44)

MT1 37.92 (0.56) 20.35 (1.04) 12.91 (1.63) 6.96 (3.03) 4.33 (4.87) 3.51 (6.01)

BMW3_2 – 34.02 (0.88) 20.78 (1.45) 11.52 (2.61) 7.90 (3.81) 6.67 (4.51)

MIXTANK 17.32 (0.42) 10.02 (0.73) 6.33 (1.16) 3.80 (1.93) 3.32 (2.20) 3.10 (2.36)

BMWCRA_1 – – 30.97 (1.84) 18.75 (3.04) 9.55 (5.97) 5.94 (9.60)

CRANKSG1 – 33.54 (0.90) 19.20 (1.57) 10.54 (2.85) 6.82 (4.41) 5.34 (5.63)

SHIPSEC8 – 43.40 (0.85) 27.71 (1.33) 15.40 (2.39) 11.93 (3.09) 9.23 (3.99)

CRANKSG2 – 47.99 (0.96) 25.33 (1.82) 14.39 (3.20) 8.45 (5.45) 6.04 (7.62)

SHIPSEC5 – 79.12 (0.88) 40.36 (1.72) 21.46 (3.24) 15.36 (4.53) 11.76 (5.91)

SHIP003 – – 45.83 (1.75) 26.86 (2.98) 16.69 (4.80) 12.03 (6.66)

THREAD 78.04 (0.50) 41.14 (0.94) 22.85 (1.70) 13.45 (2.89) 11.79 (3.29) 6.70 (5.80)

COLOGB30 9.88 (0.44) 5.25 (0.83) 3.23 (1.35) 2.06 (2.12) 1.69 (2.58) 1.34 (3.25)

COLOGB75 – 18.72 (0.82) 8.99 (1.70) 5.69 (2.69) 3.89 (3.94) 3.14 (4.88)

COUP1500T – – – – – 33.01 (11.51)

COUP2000T – – – – – 43.12 (11.62)
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time penalty with respect to the factorization time given in Table 4. These results
show that the memory reduction is acceptable, in terms of time penalty, up to

Table 5

Description of our test problems

Name Columns NNZA NNZLðScotchÞ OPCLðScotchÞ NNZLðMeTiSÞ OPCðMeTiSÞ

OILPAN 73752 1 761 718 8:912eþ 06 2:985eþ 09 9:065eþ 06 2:751eþ 09

QUER 59 122 1 403 689 9:119eþ 06 3:281eþ 09 9:586eþ 06 3:448eþ 09

SMDOOR 162 610 3 873 534 2:542eþ 07 1:531eþ 10 2:404eþ 07 1:237eþ 10

SHIP001 34 920 2 304 655 1:428eþ 07 9:034eþ 09 1:481eþ 07 9:462eþ 09

X104 108 384 5 029 620 2:634eþ 07 1:713eþ 10 2:728eþ 07 1:412eþ 10

MT1 97 578 4 827 996 3:115eþ 07 2:109eþ 10 3:455eþ 07 2:269eþ 10

SHIPSEC5 179 860 4 966 618 5:650eþ 07 6:952eþ 10 5:256eþ 07 5:509eþ 10

SHIP003 121 728 3 982 153 5:873eþ 07 8:008eþ 10 5:910eþ 07 7:587eþ 10

THREAD 29736 2 220 156 2:404eþ 07 3:884eþ 10 2:430eþ 07 3:583eþ 10

NNZA is the number of off-diagonal terms in the triangular part of matrix A, NNZL is the number of off-

diagonal terms in the factorized matrix L and OPC is the number of operations required for the factor-

ization.

Table 6

Factorization performance results (time in seconds and Gigaflops) on the IBM SP2

Name Number of processors

2 4 8 16 32 64

OILPAN 7.28 (0.41) 3.81 (0.78) 2.23 (1.34) 1.51 (1.98) 1.03 (2.90) 0.92 (3.24)

– – 2.79 (0.99) 1.73 (1.59) 1.25 (2.20) 0.93 (2.96)

QUER – 4.46 (0.74) 2.77 (1.18) 1.90 (1.73) 1.35 (2.43) 1.04 (3.16)

– – – 2.01 (1.72) 1.30 (2.65) 0.96 (3.59)

SMDOOR 29.54 (0.52) 15.52 (0.99) 9.10 (1.68) 5.25 (2.91) 4.07 (3.76) 2.91 (5.25)

– – – 7.32 (1.69) 3.91 (3.16) 2.58 (4.79)

SHIP001 20.98 (0.43) 10.91 (0.83) 6.13 (1.47) 3.78 (2.39) 2.34 (3.86) 1.96 (4.60)

– – 8.11 (1.17) 4.48 (2.11) 2.98 (3.17) 2.14 (4.42)

X104 31.53 (0.54) 19.69 (0.87) 11.02 (1.55) 6.32 (2.71) 5.30 (3.23) 3.85 (4.44)

– – – – 4.92 (2.87) 3.18 (4.44)

MT1 37.92 (0.56) 20.35 (1.04) 12.91 (1.63) 6.96 (3.03) 4.33 (4.87) 3.51 (6.01)

– – – – 5.70 (3.98) 3.59 (6.32)

SHIPSEC5 – 79.12 (0.88) 40.36 (1.72) 21.46 (3.24) 15.36 (4.53) 11.76 (5.91)

– – – – – 11.81 (4.66)

SHIP003 – – 45.83 (1.75) 26.86 (2.98) 16.69 (4.80) 12.03 (6.66)

– – – – – 14.08 (5.39)

THREAD 78.04 (0.50) 41.14 (0.94) 22.85 (1.70) 13.45 (2.89) 11.79 (3.29) 6.70 (5.80)

– – – – 11.24 (3.19) 6.41 (5.59)

For each matrix, the first line gives the PASTIX results and the second line the PSPASES ones.
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50% of extra-memory reduction. In that context, our extra-memory management
leads to a good memory scalability.

4. Conclusion and perspectives

An efficient mixed 1D/2D distribution scheme and the induced static scheduling of
the block computations for a parallel sparse direct solver has been presented. This
work is still in progress. Currently work on a finer criterion to switch between the
1D and 2D distributions to still improve scalability is pursued.

A modified version of our strategy to take into account architectures based on
SMP nodes is also under development. Some preliminary experimental studies on
IBM SP3 are promising. For instance, on 16 WinterHawk+nodes (64 processors
375 MHz Power3), the factorization of the COUP1500T matrix is performed in
11.8 s (32.2 gigaflops), and the COUP2000T matrix in 15.1 s (33.3 gigaflops). The
achieved performances are rather good and confirm that the proposed scheduling
strategy is suitable for heterogeneous SMP architectures.

Finally, comparisons between PASTIX and MUMPS softwares for parallel time
performances and for memory aspects will be reported in a forthcoming paper.

Fig. 7. Influence of memory reduction (with a partial aggregation strategy) on the factorization time for

BMWCRA_1 matrix.
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