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Abstract

Among existing preconditioners, the level-of-fill ILU has been quite popular as a general-purpose technique. Experi-
mental observations have shown that, when coupled with block techniques, these methods can be quite effective in solving
realistic problems arising from various applications. In this work, we consider an extension of this kind of method which is
suitable for parallel environments. Our method is developed from the framework of high performance sparse direct solvers.
The main idea we propose is to define an adaptive blockwise incomplete factorization that is much more accurate (and
numerically more robust) than the scalar incomplete factorizations commonly used to precondition iterative solvers. These
requirements lead to a robust class of parallel preconditioners based on generalized versions of block ILU techniques.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Solving large sparse linear systems by iterative methods [27] has often been unsatisfactory when dealing
with practical ‘‘industrial” problems. The main difficulty encountered by such methods is their lack of robust-
ness and, generally, the unpredictability and inconsistency of their performance when they are used over a
wide range of different problems. Some methods can work quite well for certain types of problems but can
fail on others. This has delayed their acceptance as ‘‘general-purpose” solvers in a number of important
applications.

Meanwhile, significant progress has been made in developing parallel direct methods for solving sparse lin-
ear systems, due in particular to advances made in both the combinatorial analysis of Gaussian elimination
process and on the design of parallel block solvers optimized for high performance computers. For example,
it is now possible to solve real-life three-dimensional problems with several to a few tens of millions of
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unknowns, very effectively, with sparse direct solvers. This is achievable by a combination of state-of-the-art
algorithms along with careful implementations which exploit superscalar effects of the processors and other
features of modern architectures [6,12–14,16]. However, direct methods will still fail to solve very large
three-dimensional problems, due to the potentially huge memory requirements for these cases. On the other
hand, the iterative methods using a generic preconditioner like an ILU(k) factorization [27] require less mem-
ory, but they are often unsatisfactory when the simulation needs a solution with a good precision or when the
systems are ill-conditioned. The incomplete factorization technique usually relies on a scalar implementation
and thus does not benefit from the superscalar effects provided by the modern high performance architectures.
Furthermore, these methods are difficult to parallelize efficiently, more particularly for high values of level-of-
fill. Some improvements to the classical scalar incomplete factorization have been studied to reduce the gap
between the two classes of methods. In the context of domain decomposition, some algorithms that can be
parallelized in an efficient way have been investigated in [21]. In [25], the authors proposed to couple incom-
plete factorization with a selective inversion to replace the triangular solutions (that are not as scalable as the
factorization) by scalable matrix-vector multiplications. The multifrontal method has also been adapted for
incomplete factorization with a threshold dropping in [15] or with a fill level dropping that measures the
importance of an entry in terms of its updates [9]. In [10], the authors proposed a block ILU factorization
technique for block tridiagonal matrices.

The approach investigated in this paper consists in exploiting the parallel blockwise algorithmic
approach used in the framework of high performance sparse direct solvers to develop robust parallel
incomplete factorization based preconditioners [27] for iterative solvers. The idea is then to define an adap-
tive blockwise incomplete factorization that is much more efficient than the scalar incomplete factorizations
commonly used to precondition iterative solvers. Indeed, by using the same ingredients which make direct
solvers effective, these incomplete factorizations exploit the latest advances in sparse direct methods, and
can be very competitive in terms of CPU time due to the effective usage of CPU power. At the same time,
this approach can be far more economical in terms of memory usage than in terms of direct solvers. There-
fore, this should allow to solve the system of much larger dimensions than the one that is solved by the
direct solvers. This paper is organized as follows: Section 2 recalls the principal key concepts on which
direct solvers are based, Section 3 gives the principles of the block ILU factorization based on the
level-of-fill, Section 4 presents our algorithms to obtain the approximate supernode partition which aims
at creating the sparse block structure of the incomplete factors and finally, in Section 5, we present some
experiments obtained with our method.

2. Background on sparse direct solvers

This section provides a brief background on sparse Gaussian elimination techniques, including their graph
models. Details can be found in [3,4] among others. Consider the linear system
Ax ¼ b; ð1Þ

where A is a symmetric definite positive matrix of size n� n or an unsymmetric matrix with a symmetric non-
zero pattern. In this context, sparse matrix techniques often utilize the non-oriented adjacency graph
G ¼ ðV ;EÞ of the matrix A, a graph whose n vertices represent the n unknowns, and whose edges ði; jÞ repre-
sent the couplings between unknowns i and j. The Gaussian elimination (L:Lt Cholesky factorization or L:U
factorization) process introduces ‘‘fill-ins”, i.e., new edges in the graph. The quality of the direct solver de-
pends critically on the ordering of the unknowns as this has a major impact on the number of fill-ins
generated.

Sparse direct solvers often utilize what is known as the ‘‘filled graph” of A, which is the graph of the (com-
plete) Cholesky factor L, or rather of Lþ U . This is the original graph augmented with all the fill-in generated
during the elimination process. We will denote by G� ¼ ðV ;E�Þ this graph.

Two well-known and useful concepts will be needed in the later sections. The first is that of fill-paths. This is
a path between two nodes i and j (with i 6¼ j) in the original graph G ¼ ðV ;EÞ, whose intermediate nodes are
all numbered lower than both i and j. A theorem by Rose and Tarjan [19] states that there is a fill-path
between i and j if and only if ði; jÞ is in E�, i.e., there will be a fill-in in position ði; jÞ.
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The second important concept is that of elimination tree [17], which is useful among other things, for sched-
uling the tasks of the solver in a parallel environment [1,13]. The elimination tree captures the dependency
between columns in the factorization. It is defined from the filled graph using the parent relationship:
parentðjÞ ¼ minfi ji > j and ði; jÞ 2 E�g:

Two broad classes of reorderings for sparse Gaussian elimination have been widely utilized. The first, which
tends to be excellent at reducing fill-in, is the minimal degree ordering. This method, which has many variants,
is a local heuristics based on a greedy algorithm [5]. The class of nested dissection algorithms [4], considered in
this paper, is common in the ‘‘static” variants of Gaussian elimination which preorder the matrix and define
the tasks to be executed in parallel at the outset. The nested dissection ordering [4] recursively utilizes a se-
quence of separators. A separator C is a set of nodes which splits the graph into two subgraphs G1 and G2

such that there is no edge linking a vertex of G1 to a vertex of G2. This is then done recursively on the sub-
graphs G1 and G2. The left side of Fig. 1 shows an example of a physical domain (e.g., a finite element mesh)
partitioned recursively in this manner into a total of 8 subgraphs. The labeling used by nested dissection can be
defined recursively as follows: label the nodes of the separator last after (recursively) labeling the nodes of the
children. This naturally defines a tree structure as shown on the right side of Fig. 1. The remaining subgraphs
are then ordered by a minimal degree algorithm under constraint [24].

An ideal separator is such that G1 and G2 are of about the same size while the set C is small. A number of
efficient graph partitioners have been developed in recent years which attempt to reach a compromise between
these two requirements, see, e.g., [2,22,23] among others.

After a good ordering is found, a typical solver performs a symbolic factorization which essentially deter-
mines the pattern of the factors. This phase can be elegantly expressed in terms of the elimination tree. We will
denote by ½i� the sparse pattern of a column i which is the list of rows indices in the increasing order corre-
sponding to non-zeros terms.

Algorithm 1. Sequential symbolic factorization algorithm

1 Build [i] for each column i in the original graph
2 for i ¼ 1; . . . ; n� 1 do

3 [parent(i)] = merge ([i], [parent(i)])
4 end

where mergeð½i�; ½j�) is a function which merges the patterns of columns i and j in the lower triangular factor.
In a parallel implementation, this is better done with the help of a post-order traversal of the tree: the pattern
of a given node only depends on the patterns of the children and can be obtained once these are computed.
The symbolic factorization is a fairly inexpensive process since it utilizes two nested loops instead of the three
loops normally required by Gaussian elimination. Note that all computations are symbolic, the main kernel
being the merge of two column patterns.
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Fig. 1. The nested dissection of a physical mesh and corresponding tree.
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Most sparse direct solvers take advantage of dense computations by exhibiting a dense block structure in the

matrix L. This dense block structure is directly linked to the ordering techniques based on the nested dissection
algorithm (ex: METIS [2] or SCOTCH [22]). Indeed, the columns of L can be grouped in sets such that all col-
umns of a same set have a similar non-zero pattern. These sets of columns, called supernodes, are then used to
prune the block structure of L. The supernodes obtained with such orderings mostly correspond to the sep-
arators found in the nested dissection process of the adjacency graph G of matrix A.

An important result used in direct factorization is that the partition P of the unknowns induced by the
supernodes can be found without knowing the non-zero pattern of L [20]. The partition P of the unknowns
is then used to compute the block structure of the factorized matrix L during the so-called block symbolic fac-

torization. The block symbolic factorization exploits the fact that when P is the partition of separators
obtained by nested dissection, then we have
Fig. 2.
blocks
QðG;PÞ� ¼ QðG�;PÞ;

where QðG;PÞ is the quotient graph of G with regards to partition P. Then, we can deduce the block elimi-

nation tree which is the elimination tree associated with QðG;PÞ� and which is well suited for parallelism [13].
Fig. 2 shows the block structure obtained for a 7 � 7 grid ordered by nested dissection. This structure consists
of N column-blocks, each of them containing a dense symmetric diagonal block and a set of dense rectangular
off-diagonal blocks. In this block data structure, an off-diagonal block is represented by a pair of integers
ða; bÞ corresponding to the first and the last rows of this block in the column-block. We will denote by ½i�
the block sparse pattern of a supernode i which is the list in the increasing order of such intervals.

As a result, the block symbolic factorization will now need to merge two sets of intervals.
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Algorithm 2. Block symbolic factorization

1 Build ½i� for each supernode i in the original graph
2 for i ¼ 1; . . . ;N � 1 do
3 [parent(i)] = Bmerge (½i�, [parent(i)])
4 end

where Bmerge will merge two sorted lists of intervals and where parent( ) defines the father relationship in the
block elimination tree. It was shown by Charrier and Roman [11] that the cost of computing the block sym-
bolic factorization when a nested dissection algorithm is used is OðNÞ for most graphs. In other words, the
total number of blocks to be handled is OðNÞ which means that a total of OðNÞ pointers and operations
are required to perform the block symbolic factorization.

A sparse block factorization algorithm can be obtained by restricting the standard dense block algorithm to
the sparsity pattern which has been computed by the symbolic factorization phase.

Algorithm 3. Sparse block Cholesky factorization

1 for k ¼ 1; . . . ;N do

2 Factor Ak;k into Ak;k ¼ LkDkLT
k

3 for j 2 ½k� do

4 Compute AT
jk ¼ D�1

k L�1
k AT

jk

5 end

6 for j 2 ½k� do

7 for i 2 ½k�; i > j do

8 Aij :¼ Aij � AikDkAT
jk

9 end

10 end

11 end

These algorithms are parallelized and implemented in our supernodal direct solver PASTIX [13,14]. The fol-
lowing presents an approach that uses some of the key concepts of this direct solver to develop a parallel
incomplete block factorization. Since PASTIX deals with matrices that have a symmetric pattern, the algo-
rithms presented in the remaining part of this article are based on the assumption that the adjacency graph
is symmetric. The algorithms and adaptations that are discussed in Sections 3 and 4 have been implemented
in PASTIX; the experiments in Section 5 show the results obtained with this implementation.
3. Methodology

Preconditioned Krylov subspace methods utilize an accelerator and a preconditioner [7]. The goal of the
ILU-based preconditioners is to find approximate LU factorizations of the coefficient matrix which are then
used to facilitate the iterative process.

Incomplete LU (ILU) or incomplete Cholesky (IC) factorization is based on the premise that most of the
fill-in entries generated during a sparse direct factorization will tend to be small. Therefore, a fairly accurate
factorization of A can be obtained by dropping most of the entries during the factorization. There are essen-
tially two classical ways of developing incomplete LU factorizations.

The first (historically) consists of dropping terms according to a recursive definition of a level: a fill-in,
which is itself generated from another fill-in, will tend to be smaller and smaller as this chain of creation con-
tinues. The notion of level-of-fill, first suggested by engineers is described next as it is the stepping stone into
the approach described in this paper.

The second is based on the use of thresholds during the factorization. Thus, ILUT [26] is commonly imple-
mented as an upward-looking row-oriented algorithm which computes the ILU factorization row by row. It
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utilizes two parameters, the first s being used as tolerance for dropping small terms relative to the norm of the
row under consideration, and the second p determines the maximum number of non-zero elements to keep in
each row.

3.1. ILU(k) preconditioners

The incomplete LU factorization ILU(k) implements dropping with the help of a level-of-fill associated with
each fill-in introduced during the factorization. Initially, each non-zero element has a level-of-fill of zero, while
each zero element has (nominally) an infinite level-of-fill. Thereafter, the level-of-fill of lij is defined from the
formula:
levfðlijÞ ¼ minflevfðlijÞ; levfðlkiÞ þ levfðljkÞ þ 1g: ð2Þ

This definition and its justification were originally given by Watts for problems arising in petroleum engineer-
ing [28]. Later, Forsyth and Tang provided a graph-based definition, which was then reinterpreted by Hysom
and Pothen [18] within the framework of the fill-path theorem [19]. The interpretation of the level-of-fill is that
it is equal to lenði; jÞ � 1, where len is the length of the shortest fill-path between i and|. It can be easily seen
that the path-lengths follow the simpler update rule: lenði; jÞ ¼ minflenði; jÞ; lenði; kÞ þ lenðk; jÞg. During
Gaussian elimination, we eliminate nodes k, labeled before a certain pair of nodes ði; jÞ. Then, it can be proved
that the shortest fill-path from i to j is the shortest of all shortest fill-paths from i to some k plus the shortest
fill-path from k to j. This is illustrated in Fig. 3.

The incomplete symbolic ILU(k) factorization has a theoretical complexity similar to the numerical factor-
ization, but based on the graph interpretation of the level-of-fill, an efficient algorithm that leads to a practical
implementation, which can be easily parallelized, have been proposed in [18]. Thus, the symbolic factorization
for ILU(k) method, though more costly than in the case of exact factorizations, is not a limitation in our
approach.

3.2. Block-ILU(k)

The idea of level-of-fill has been generalized to blocks in the case of block matrices with dense blocks of
equal dimensions, see, e.g., [8]. Such matrices arise from discretized problems when there are m degrees of free-
dom per mesh-point, such as fluid velocities and pressure. This is common in particular in Computational
Fluid Dynamics.

It is clear that for such matrices, it is preferable to work with the quotient graph, since this reduces the
dimension of the problem. It is clear that the factorization ILU(k) obtained using the quotient graph and
the original is then identical. In other words, we consider the partition P0 constructed by grouping set of
unknowns that have the same row and column pattern in A; these set of unknowns are the cliques of G. In
this case, if we denote by Gk the adjacency graph of the elimination graph for the ILU(k) factorization, then
we have
QðGk;P0Þ ¼ QðG;P0Þk:
k

ji

len(i,k) len(k,j)

len(i,j)

Fig. 3. Fill-paths from i to j.
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For coarser partition than P0, these properties are not true anymore in the general case. Therefore, the ILU(k)
symbolic factorization can be performed with a significant lower complexity than the numerical factorization
algorithm. In addition, by using the algorithm presented in [18] that is easily parallelizable, the symbolic bloc
incomplete factorization is not a bottleneck in our approach.

For direct factorization, the supernode partition usually produces blocks that have a sufficient size to
obtain a good superscalar effect using the BLAS-3 subroutines. The exact supernodes that are exhibited from
the incomplete factor non-zero pattern are usually very small. Consequently, a blockwise implementation of
the ILU(k) preconditioner based on the exact supernode partition would not be very efficient and can even be
worse than a classical columnwise implementation due to the overcost of calling the BLAS subroutines. A
remedy to this problem is to merge supernodes that have nearly the same structure. This process induces some
extra fill-in compared to the exact ILU(k) factors but the increase of the number of operations is largely com-
pensated by the gain in time achieved thanks to BLAS subroutines. The convergence of our Block-ILU(k) pre-
conditioner is at least the one obtained by scalar ILU(k). Furthermore, it can also improve the convergence of
the solver since the extra-fill admitted in the factors mostly correspond to numerically non-null entries that
may improve the accuracy of the preconditioner.

The principle of our heuristics to compute the new supernode partition is to iteratively merge supernodes
for which non-zero patterns are the most similar until we reach a desired extra fill-in tolerance. To summarize,
our incomplete block factorization consists in the following steps:

(1) find the partition P0 induced by the supernodes of A;
(2) compute the block symbolic incomplete factorization QðG;P0Þk;
(3) find the exact supernode partition in QðG;P0Þk;
(4) given an extra fill-in tolerance a, construct an approximated supernode partition Pa to improve the

block structure of the incomplete factors (detailed in next section);
(5) apply a block incomplete factorization using the parallelization techniques developed for our direct

solver PASTIX.

The incomplete factorization can then be used to precondition a Krylov method to solve the system. The
next section will focus on step 4; it gives the details of an amalgamation algorithm that is used to find an
approximate supernode partition.
4. Amalgamation algorithm

A blockwise implementation of the ILU(k) factorization is directly obtained using the direct blockwise
Algorithm 3. In fact, the exact supernodes that can be exhibited from the symbolic ILU(k) factor are
usually too small to allow a good BLAS efficiency in the numerical factorization and in the triangular
solves. To address this problem, we propose an amalgamation algorithm which aims at grouping some
exact supernodes that have almost similar non-zero pattern to get bigger supernodes. By construction,
the exact supernode partition found in an ILU(k) factor is always a sub-partition of the direct supernode

partition (i.e., corresponding to the direct factorization) since Gk can be obtained by removing some edges
from G�.

As mentioned before, the amalgamation problem consists in merging as many supernodes as possible while
adding the fewer extra non-zeros in the sparse block pattern of the incomplete factors.

We propose a heuristics based on a greedy strategy. Here are some extra notations used in Algorithm 4:

� ½k�, parent(k) and Bmerge are defined in the same way as in Section 2;
� nnzA is the number of non-zeros in A;
� merge_cost (k) is the cost of merging the supernode k with its father in terms of extra-fill;
� sonðkÞ is the set of supernode indices corresponding to the sons of supernode k in the block elimination

tree;
� by convention, if k is the root of the block elimination tree, then parent(k) = k and merge_cost(k) =1.



Algorithm 4. Amalgamation algorithm
1 nnz ¼ 0
2 Compute QðG;P0Þk and find S the set of all exact supernodes in Gk

3 While nnz < a � nnzA and S 6¼ ; do

4 Choose k=merge costðkÞ ¼ mini2Sfmerge costðiÞg
5 ½k� :¼ Bmergeð½k�; ½parentðkÞ�Þ
6 S ¼ S � fparentðkÞg
7 sonðkÞ :¼ sonðkÞ

S
sonðparentðkÞÞ

8 parent(k) :¼ parent(parent(k))
9 nnz :¼ nnzþmerge costðkÞ
10 Recompute merge costðkÞ
11 for i 2 sonðkÞ do

12 Recompute merge costðiÞ
13 end
14 end

Given the set of all exact supernodes, it consists in iteratively merging the couple of supernodes
ði; parentðiÞÞ which creates as few as possible additional fill-in the factor (see Fig. 4) while the extra fill toler-
ance a is respected. Each time a couple of supernodes is merged into a single one, the total amount of extra-fill
is increased: the same operation is repeated until the amount of additional fill entries reaches the tolerance a
(given as a percentage of the number of non-zero elements found by the ILU(k) symbolic factorization). We
denote by merge costðiÞ the number of extra fill created when the supernodes ði; parentðiÞÞ are merged into a
single one. Thus, the algorithm consists in choosing at each step the supernode k such that merge costðkÞ is
minimum (line 4) and to merge its father with it (line 5). The supernode k is then replaced by the new merged
supernode and the supernode parentðkÞ is deleted from S (lines 5 and 6). The increasing of the global number
of extra non-zeros is given by merge costðkÞ (line 9). Since the sparse block structure of k has changed, its
merge cost has to be recomputed (line 10) and the merge cost of its sons too (lines 11–13).

4.1. Complexity of the amalgamation algorithm

We denote by Pe the exact supernode partition of Gk (line 2), N e the cardinal of Pe and d the maximum
degree of a vertex in QðGk;PeÞ. The amalgamation algorithm requires the set S to be sorted with respect to the
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parent(i)

i

parent(i)

Additional fill induced by merging i and parent(i)

i

Fig. 4. Additional fill created when merging the supernodes i and parent(i).



P. Hénon et al. / Parallel Computing 34 (2008) 345–362 353
merge cost metric and we have to keep S sorted each time a merge operation is done. One can use a heap to
implement the set S; therefore, the cost to add or update an element in S will be at most in OðlogðN eÞÞ and the
cost to get the lowest element is constant.

Computing merge costð Þ or Bmerge( ) requires to merge two sorted lists of at most d intervals (a block is
represented by an integer interval) and then this operation is bound by OðdÞ. In line 2, all the exact supernodes
have to be sorted by the increasing order of merge cost in S. This operation is thus in OðNe � ðlogðNeÞ þ dÞÞ.

Inside the while loop, each time a supernode is merged with its father there is a Bmerge operation (com-
plexity in OðdÞ) and if we make the assumption that the cardinal of sonðkÞ is bounded by a constant (for a
separator tree obtained by nested dissection, the constant will be 2 in most of the cases), then the cost of
recomputing the merge cost of the supernode and its sons is also in OðdÞ and the cost to update the heap
S is in OðlogðN eÞÞ. The global cost of an iteration of the while loop is then in Oðd þ logðN eÞÞ. Since in
the worst case (where all the exact supernodes would be merged in a single one, leading to a dense matrix)
only Ne � 1 iterations can be done, a complexity bound of the amalgamation algorithm is in
OðNe � ðlogðN eÞ þ dÞÞ.

4.2. A variant of the amalgamation algorithm

The amalgamation Algorithm 4 aims at minimizing the number of supernodes according to an extra fill
tolerance a. The assumption made here is that the triangular solution and the incomplete block factorization
will be all the more efficient that the supernode partition is coarser. A variant to the amalgamation objective is
to merge some supernodes to minimize as far as possible the CPU time to apply the triangular solve or the
incomplete factorization. Usually in an iterative method, the total time spent in the iterations is more impor-
tant than the time to compute the preconditioner. So we will focus on reducing the time of the triangular
solves. To estimate the time spent in the triangular solve, we use a time model of the BLAS-2 routines used
in the blockwise triangular solve algorithm. The time model of a BLAS routine consists in a polynomial that
interpolates the curve of the CPU times spent in the routine in function of the block dimensions. These poly-
nomials are obtained once for all on a given architecture (such models are already used in PASTIX to balance
the workload and schedule the computation tasks before the parallel factorization). For example, the time to
compute a dense matrix-vector product M :v (GEMV BLAS subroutine) mostly depends on the dimensions
ðx; yÞ of M. Since the complexity of this operation is in Oðx:yÞ, we use a polynomial model
a � x � y þ b � xþ c � y þ d. Thanks to experimental measures, a multi-variable regression is used to set the coef-
ficients of the polynomial. Fig. 5 illustrates the model obtained on the IBM Power5 architecture and the exper-
imental measures.

Thanks to this polynomial BLAS time model, we can estimate the CPU time W i that corresponds to the
time spent in the supernode i in the triangular solve. What we seek, in this variant, is to merge the couple
of supernodes ðk; parentðkÞÞ such that the gain of CPU time per additional non-zero allowed in the sparse block
structure is the best. So, we evaluate the gain of merging k with parentðkÞ by the function:
merge gainðkÞ ¼ W k þ W parentðkÞ � W Bmergeð½k�;½parentðkÞ�Þ

merge costðkÞ :
Thus, if merge gainðkÞ > 0, it means that merging k and parent(k) will lower the CPU time in the triangular
solves; the higher this value is the better the trade-off (CPU time)/(extra non-zeros stored) is. On the contrary,
if merge gainðkÞ < 0, then it indicates that one should not merge k and its father because the number of addi-
tional floating operations induced by the extra non-zeros in the block structure is too important to be balanced
by the superscalar effects in the BLAS routines.

Algorithm 5 gives the amalgamation algorithm that aims at reducing the CPU time of the triangular solve
for a given additional fill tolerance. The difference with Algorithm 4 is that the couple of supernodes to be
merged is chosen as the one that has the higher merge gain (line 4). Another difference is that any couple
of supernodes that would increase the CPU time if they were merged are removed from the possible choices
(lines 2, 12 and 15) to decrease the number of operations. This means we make the approximation that a
supernode will never get a positive gain even if its father becomes bigger thanks to amalgamation. In practice,
this approximation is verified most of the time accordingly to the BLAS model we obtained.
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Algorithm 5. Amalgamation algorithm variant

1 nnz ¼ 0
2 Compute QðG;P0Þk and find S the set of all exact supernodes in Gk that have a merge gain > 0
3 while nnz < a � nnzA and S 6¼ ; do

4 Choose k=merge gainðkÞ ¼ maxi2Sfmerge gainðiÞg
5 ½k� :¼ Bmergeð½k�; ½parentðkÞ�Þ
6 S ¼ S � fparentðkÞg
7 sonðkÞ :¼ sonðkÞ

S
sonðparentðkÞÞ

8 parent(k) :¼ parent(parent(k))
9 Compute merge_cost(k)
10 nnz :¼ nnz+merge_cost(k)
11 Recompute merge_gain(k)
12 if merge gainðkÞ 6 0 then S ¼ S � fkg
13 for i 2 sonðkÞ do

14 Recompute merge gainðiÞ
15 if merge gainðiÞ 6 0 then S ¼ S � fig
16 end

17 end

In the case of Algorithm 4, if we set a ¼ 1, then it would merge all the supernodes and the sparse matrix L
(resp. U) would be considered as a dense matrix. An interesting property of Algorithm 5 is that if we set
a ¼ 1, then it stops as soon as it cannot find any amalgamation of supernodes such that the global CPU time
decreases (test S ¼ ; in line 3) or as soon as it reaches the extra fill tolerance given by a. Thus, it provides a
convenient way to use the amalgamation algorithm without having to choose an arbitrary a (that corresponds
to a ¼ 1) parameter.

Algorithm 5 requires to keep S sorted by increasing merge_gain; though the merge_gain is more costly than
the merge_cost, it also has a complexity in OðdÞ; therefore, Algorithm 5 has the same asymptotical complexity
than Algorithm 4.
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5. Experimental results

We consider three test cases (see Table 1) for the numerical validation of our block preconditioner. nnzA is
the number of off-diagonal terms in the triangular part of the original matrix, nnzL is the number of off-diag-
onal terms in the complete factor and OPC is the number of operations required for the complete factoriza-
tion. We consider the ordering provided by the SCOTCH software [22] used in our parallel direct solver PASTIX
[13]. AUDI and INLINE test cases (structural mechanic problems from PARASOL collection) are both sym-
metric problems whereas MHD1 (Magneto-Hydro-Dynamic 3D problem) is an unsymmetric problem.

Numerical experiments were performed on an IBM Power5 SMP node (16 processors per node) at the com-
puting center of Bordeaux 1 University, France. We used a GMRES version without ‘‘restart”. The stopping
iteration criterion used in GMRES is the right-hand side relative residual norm and is set to 10�7.

As some matrices are symmetric definite positive, one could use a preconditioned conjugate gradient
method; but at this time we only have implemented the GMRES method to treat unsymmetric matrices as
well. The choice of the iterative accelerator is not in the scope of this study.

5.1. Study of the amalgamation algorithm behaviour

Tables 2–4 are related to the influence of the amalgamation parameter a (one for each test case). We con-
sider the amalgamation Algorithm 4 of Section 4 for different values of the extra fill tolerance
ð0% 6 a 6 120%Þ. The particular value 1 corresponds to the amalgamation Algorithm 5 when we set
a ¼ 1 (referred as ‘‘auto” in the following figures).

For the three problems the tables report:

� the level-of-fill (k),
� the percentage of amalgamation ratio (a),
� the number of supernodes,
� the number of blocks,
� the number of non-zeros in the incomplete factors divided by the number of non-zeros in the initial matrix

(Fill-in),
� the time of amalgamation in seconds (Amalg.),
� the time of sequential incomplete factorization in seconds (Inc. Fact.),
� the time of triangular solve (forward and backward) in seconds (Triang. Solve),
� the number of iterations,
� the total time in seconds.

The best total time is written in bold face for each value of the level-of-fill. ‘‘–” indicates that GMRES did
not converge in less than 200 iterations and ‘‘+” indicates that there is not enough memory to allocate the
block data structure of the incomplete factors.

We can see in Tables 2–4 that our amalgamation algorithm allows to significantly reduce the number of
supernodes and the number of blocks in the dense block pattern of the matrix.

As a consequence, the superscalar effects are greatly improved as the amalgamation parameter grows: this is
particularly true for the incomplete factorization which exploits BLAS-3 subroutines (matrix by matrix oper-
ations). The superscalar effects are less important on the triangular solve that requires much less floating point
operations and use only BLAS-2 subroutines (matrix by vector operations). We can also verify that the time to
Table 1
Description of our test problems

Name Columns nnzA nnzL OPC

AUDI 943,695 39,297,771 1.214519e+09 5.376212e+12
INLINE 503,712 18,660,027 1.762790e+08 1.358921e+11
MHD1 485,597 24,233,141 1.629822e+09 1.671053e+13



Table 2
Effect of amalgamation ratio a for AUDI problem

k a # Supernodes # Blocks Fill-in Amalg. Inc. Fact. Triang. Solve Iterations Total

1 1 53,287 1,461,344 4.93 15.23 53.7 2.91 118 397

1 0 299,919 11,868,384 2.89 4.13 285 12.3 147 2093
1 10 177,565 6,227,707 3.18 6.06 149 7.06 139 1130
1 20 131,929 4,391,998 3.47 6.97 107 5.41 134 831
1 40 82,438 2,543,946 4.05 8.05 71.9 3.80 126 550
1 60 56,510 1,676,279 4.64 8.72 58.7 3.08 120 428
1 80 41,350 1,204,084 5.23 9.18 53.1 2.73 116 369
1 100 31,596 911,653 5.82 9.43 51.7 2.52 112 333
1 120 24,922 718,089 6.42 9.67 52.0 2.47 110 323

3 1 38,139 1,767,148 9.47 25.18 167 4.12 69 451

3 0 291,143 26,811,673 6.44 7.50 1740 24.7 85 2101
3 10 130,503 11,221,779 7.09 10.80 728 11.7 79 1652
3 20 84,577 6,142,749 7.73 12.13 414 7.64 76 994
3 40 41,286 2,234,392 9.03 13.61 195 4.47 70 507
3 60 23,918 1,077,860 10.32 14.25 144 3.69 66 387
3 80 15,901 645,155 11.62 14.53 136 3.57 63 360

3 100 11,523 450,356 12.92 14.72 143 3.72 61 369
3 120 8695 335,906 14.24 14.82 156 3.89 59 385

5 1 35,905 2,247,942 11.93 29.56 304 5.15 56 592

5 0 274,852 34,966,449 8.65 9.60 + + + +
5 10 100,372 12,849,540 9.52 13.55 1380 13.6 65 2264
5 20 62,317 6,416,944 10.39 14.89 710 8.34 61 1218
5 40 28,548 1,908,658 12.12 16.20 293 4.84 54 554
5 60 16,299 831,195 13.86 16.76 225 4.29 50 439
5 80 10,744 494,044 15.62 17.06 222 4.39 48 432

5 100 7559 330,553 17.39 17.16 240 4.63 47 457
5 120 5583 234,931 19.18 17.27 269 4.98 46 498

356 P. Hénon et al. / Parallel Computing 34 (2008) 345–362
compute the amalgamation is negligible in comparison to the numerical incomplete factorization time. As
expected, the number of iterations decreases with the amalgamation fill parameter: this indicates that some
of the extra-fill terms allowed by the amalgamation corresponds to numerical non-zeros in the factors; this
is to say that they correspond to terms that have a fill greater than the level-of-fill k parameter selected.

Additional graphical representations are provided at Figs. 6–9 for the AUDI problem. We give accordingly
to the fill-in ratio:

� the number of iterations,
� the time of sequential incomplete factorization in seconds,
� the time of sequential triangular solve in seconds,
� the total sequential time in seconds,

for both scalar (with level-of-fill k ¼ 1; 2; . . . ; 7) and block implementations (with level-of-fill k ¼ 1; 2; 3). For
the block implementation, at each level-of-fill value, the amalgamation ratio varies between 10% and 120%
and for the scalar implementation the level-of-fill k varies between 1 and 7. We also add on these graphics
the values obtained by our automatic criteria (large dots) based on Algorithm 5 ða ¼ 1Þ.

The scalar implementation has better total time, for each level-of-fill value, when the amalgamation ratio a
is set to 0% or 10%, but is not competitive for higher values. This is also verified for the incomplete factoriza-
tion time. We can see the real improvement provided by the amalgamation: for instance, when k ¼ 5, by allow-
ing some extra fill-in, the time can be divided by almost 4.

A great difference is observed in the incomplete factorization between the scalar implementation and the
blockwise implementation. The BLAS-3 subroutines offer a great improvement over the scalar implementation



Table 3
Effect of amalgamation ratio a for INLINE problem

k a # Supernodes # Blocks Fill-in Amalg. Inc. Fact. Triang. Solve Iterations Total

1 1 20,197 317,596 4.03 6.28 11.2 0.95 – –

1 0 151,981 4,286,156 2.39 1.82 75.9 4.38 – –
1 10 85,642 1,999,163 2.63 2.66 34.3 2.42 – –
1 20 60,585 1,288,038 2.87 3.09 23.3 1.79 – –
1 40 34,349 639,754 3.35 3.56 14.7 1.21 – –
1 60 21,701 371,140 3.85 3.85 11.9 0.98 – –
1 80 14,894 239,567 4.34 4.00 11.3 0.89 – –
1 100 10,924 168,783 4.85 4.10 11.6 0.87 – –
1 120 8436 126,540 5.36 4.15 12.5 0.87 – –

3 1 16,175 288,642 5.74 8.02 18.0 1.09 159 191

3 0 139,072 7,349,868 4.31 2.64 274 6.93 – –
3 10 51,923 1,861,082 4.74 4.04 66.7 2.41 – –
3 20 28,211 727,479 5.18 4.52 30.1 1.44 179 287
3 40 11,702 194,858 6.05 4.93 17.3 1.03 151 172

3 60 7092 104,856 6.95 5.05 18.1 1.02 154 175
3 80 4950 69,801 7.88 5.09 21.0 1.08 160 193
3 100 3700 49,851 8.82 5.12 24.9 1.15 150 197
3 120 2905 37,821 9.79 5.14 29.4 1.23 137 197

5 1 15,648 312,182 6.37 8.21 22.5 1.17 145 192

5 0 1,25,576 8,062,805 5.17 3.05 407 7.50 185 1794
5 10 34,220 1,327,668 5.69 4.57 65.5 1.99 161 385
5 20 17,070 396,987 6.21 4.99 26.8 1.23 163 227
5 40 7816 120,491 7.27 5.23 20.5 1.07 163 194
5 60 4956 70,480 8.39 5.30 23.7 1.13 148 190

5 80 3489 46,752 9.52 5.35 28.5 1.21 143 201
5 100 2640 33,830 10.73 5.35 34.3 1.33 123 197
5 120 2108 25,907 11.92 5.38 40.5 1.47 111 203
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especially for the higher level-of-fill values that provide the bigger dense blocks and the number of floating
point operations in the factorization. For the triangular solves, the results are less favorable since an amalgam-
ation ratio greater than 40% is needed to improve the time of the scalar implementation. This is certainly due
to the fact that the size of the blocks must be sufficient for BLAS-2 efficiency.

Our automatic criteria (based on time optimization) for amalgamation are a good compromise between
minimizing the fill-in and optimizing the total time. For a given value of k, the variation between the time
achieved by this automatic method and the best observed time for 0% 6 a 6 120% is always lower than
25%. We will use these automatic criteria for the next experiments concerning the parallel implementation.

Another interesting remark is that for small values of a (640%), the number of iterations for the blockwise
implementation follows the curve of the scalar implementation. But, for higher values, one should prefer to
increase the level-of-fill value to improve the convergence with a same fill-in ratio.

5.2. Parallel experiments

Table 5 shows the results for the three problems both in sequential and in parallel for different levels-of-fill.
The amalgamation parameter is now set to1: this means that the amalgamation is performed while the time
of the solve decreases accordingly to the BLAS time model.

As we can see, the results are quite good since the speed-up is about 10 in most cases on 16 processors, more
particularly for higher values of level-of-fill. It achieves a rather good scalability for both incomplete factor-
ization and solve steps. This is particularly good considering the small amount of floating point operations
required in the triangular solves.We show the results only until 16 processors because these test cases do



Table 4
Effect of amalgamation ratio a for MHD problem

k a # Supernodes # Blocks Fill-in Amalg. Inc. Fact. Triang. Solve Iterations Total

1 1 40,215 528,640 4.04 4.36 12.3 1.05 153 172

1 0 132,615 1,585,901 1.77 1.51 16.0 2.04 172 366
1 10 103,119 1,199,872 1.96 1.83 14.3 1.67 164 288
1 20 91,975 1,086,335 2.16 1.92 13.7 1.55 164 267
1 40 71,767 903,500 2.57 2.15 12.7 1.36 162 233
1 60 56,402 753,112 2.98 2.33 12.1 1.22 158 204
1 80 43,912 651,356 3.41 2.48 12.2 1.12 156 186
1 100 33,590 561,447 3.81 2.62 12.4 1.05 153 173
1 120 26,375 479,080 4.19 2.76 12.8 0.97 149 157

3 1 50,361 803,279 6.34 6.32 37.4 1.44 88 164

3 0 132,485 3,202,800 3.69 2.20 85.6 3.52 100 437
3 10 93,524 2,296,760 4.10 2.67 66.7 2.66 98 327
3 20 76,199 1,862,555 4.51 2.93 57.8 2.30 97 280
3 40 53,717 1,390,499 5.34 3.26 50.1 1.91 94 229
3 60 38,617 1,091,834 6.15 3.53 46.5 1.67 92 200
3 80 27,862 853,927 6.96 3.75 44.6 1.49 89 177
3 100 20,806 658,369 7.74 3.92 43.8 1.35 86 159
3 120 16,239 521,220 8.57 4.05 44.2 1.27 83 149

5 1 47,646 932,096 8.66 7.84 73.6 1.71 67 188

5 0 131,806 4,633,544 5.42 2.76 217 4.81 79 596
5 10 83467 3,215,398 6.03 3.42 164 3.56 78 441
5 20 64,718 2,692,706 6.65 3.69 145 3.12 77 385
5 40 41,257 1,811,205 7.82 4.13 115 2.38 73 288
5 60 27,553 1,181,086 8.97 4.45 94.3 1.91 69 226
5 80 19,373 833,068 10.15 4.68 85.5 1.65 66 194
5 100 14,174 608,861 11.35 4.84 80.4 1.53 64 178
5 120 10,875 455,535 12.51 4.96 79.6 1.48 61 169

Fig. 6. Number of iterations for AUDI problem.
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Fig. 7. Time of sequential incomplete factorization for AUDI problem.

Fig. 8. Time of sequential triangular solve for AUDI problem.
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not provide enough computations in our iterative solver to be parallelized efficiently on 32 processors (almost
no gain in time).

For a comparison, we present in Table 6 the fill-in and the time needed to solve the three problems with our
direct solver PASTIX on 16 processors. Let us remind that the precision of the solution with a direct method is
about 10�15 whereas the precision is only set to 10�7 for our incomplete factorization.

As expected, our preconditioned iterative solver allows to significantly reduce the memory needs particu-
larly for the MHD and AUDI test cases (compare with Tables 2–4). The MHD and AUDI test cases corre-
spond to 3D problem discretizations (fill-in ratio of the factors is important in this case); as expected, the total
time to solve the system is much higher in the direct solver than in the iterative solver. On the contrary, for the
INLINE problem that corresponds to a 2D problem, the total memory needed for the direct solver amounts to
about 2 or 3 times more than that needed for our iterative solver but the direct solver is about 4 or 5 times
faster (with a significantly better precision).



Fig. 9. Total sequential time for AUDI problem.

Table 5
Performances on 1, 4, 8 and 16 processors PWR5 for three test cases

k 1 Processor 4 Processors

Inc. Fact. Triang. Solve Total Inc. Fact. Triang. Solve Total

AUDI

1 53.7 2.91 397 14.2 0.84 113
3 167 4.12 451 43.1 1.21 126
5 304 5.15 592 78.2 1.55 165

8 Processor 16 Processors

1 7.56 0.51 68.4 6.34 0.39 52.2
3 22.4 0.74 73.8 12.3 0.52 48.4
5 40.8 0.91 91.7 22.1 0.76 64.9

INLINE

1 Processor 4 Processors

1 11.2 0.95 – 3.18 0.29 –
3 18.0 1.09 191 4.83 0.34 59.2
5 22.5 1.17 192 6.18 0.37 61.6

8 Processor 16 Processors

1 1.63 0.15 – 1.44 0.11 –
3 2.45 0.18 32.3 1.52 0.11 20.1
5 3.14 0.21 33.7 1.82 0.12 19.5

MHD

1 Processor 4 Processors

1 12.3 1.05 172 3.25 0.29 48.2
3 37.4 1.44 164 9.83 0.41 46.5
5 73.6 1.71 188 19.6 0.50 53.3

8 Processor 16 Processors

1 1.94 0.18 29.6 2.08 0.17 27.9
3 5.25 0.27 28.9 4.17 0.25 26.1
5 10.2 0.32 31.8 6.56 0.29 26.2
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Table 6
Direct factorization on 16 processors

Name Columns nnzA Fill-in Num. Fact. Triang. Solve

AUDI 943,695 39,297,771 30.1 91.4 1.21
INLINE 503,712 18,660,027 9.03 4.02 1.19
MHD 485,597 24,233,141 45.7 139 0.56
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6. Conclusions

The main aims of this work have been reached. The blockwise adaptation of the ILU(k) factorization pre-
sented in this work allows to significantly reduce the time to solve linear systems compared to the classical
columnwise algorithm. It also benefits from the parallelization techniques developed for direct solvers (in
our case PASTIX). We think that this approach, could be adapted to other direct solvers (in particular, other
supernodal solvers) and thus provides a generic way to build efficient and parallel iterative solvers.
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[6] P.R. Amestoy, I.S. Duff, S. Pralet, C. Vömel, Adapting a parallel sparse direct solver to architectures with clusters of SMPs, Parallel

Computing 29 (11-12) (2003) 1645–1668.
[7] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, PA, 2003.
[8] A. Chapman, Y. Saad, Deflated and augmented Krylov subspace techniques, Numerical Linear Algebra with Applications 4 (1997)

43–66.
[9] Y. Campbell, T.A. Davis, Incomplete LU factorization: a multifrontal approach. <http://www.cise.ufl.edu/d~avis/techreports.html>.

[10] T.F. Chang, P.S. Vassilevski, A framework for block ILU factorizations using block-size reduction, Mathematics of Computation 64
(1995).

[11] P. Charrier, J. Roman, Algorithmique et calculs de complexité pour un solveur de type dissections emboı̂ tées, Numerische
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