
Sparse Supernodal Solver Using Block Low-Rank
Compression

Grégoire Pichon∗‡§, Eric Darve†, Mathieu Faverge¶∗‡, Pierre Ramet§∗‡, Jean Roman∗¶‡
∗Inria Bordeaux - Sud-Ouest, Talence, France

†Mechanical Engineering Department, Stanford University, United States
‡CNRS (Labri UMR 5800), Talence, France
§University of Bordeaux, Talence, France

¶Bordeaux INP, Talence, France

Abstract—This paper presents two approaches using a Block
Low-Rank (BLR) compression technique to reduce the memory
footprint and/or the time-to-solution of the sparse supernodal
solver PASTIX. This flat, non-hierarchical, compression method
allows to take advantage of the low-rank property of the blocks
appearing during the factorization of sparse linear systems, which
come from the discretization of partial differential equations. The
first approach, called Minimal Memory, illustrates the maximum
memory gain that can be obtained with the BLR compression
method, while the second approach, called Just-In-Time, mainly
focuses on reducing the computational complexity and thus
the time-to-solution. Singular Value Decomposition (SVD) and
Rank-Revealing QR (RRQR), as compression kernels, are both
compared in terms of factorization time, memory consumption,
as well as numerical properties. Experiments on a single node
with 24 threads and 128 GB of memory are presented on a set
of matrices from real-life problems. We demonstrate a memory
footprint reduction of up to 4.4 times using the Minimal Memory
strategy and a computational time speedup of up to 3.3 times
with the Just-In-Time strategy.

Keywords-Sparse linear solver, block low-rank compression,
PASTIX direct solver, multi-threaded architectures.

INTRODUCTION

Many scientific applications such as electromagnetism, geo-

physics or computational fluid dynamics use numerical models

that require to solve linear systems of the form Ax = b,
where the matrix A is sparse and large. In order to solve

these problems, a classic approach is to use a sparse direct

solver which factorizes the matrix into a product of triangular

matrices before solving triangular systems.

Yet, there are still limitations to solve larger and larger

systems in a black-box approach without any knowledge of

the geometry of the underlying partial differential equation.

Memory requirements and time-to-solution limit the use of

direct methods for very large matrices. On the other hand, for

iterative solvers, general black-box preconditioners that can

ensure fast convergence for a wide range of problems are still

missing.

In the context of sparse direct solvers, some recent works

have investigated the low-rank representations of dense blocks

appearing during the sparse matrices factorization, by com-

pressing blocks through many possible compression formats

such as Block Low-Rank (BLR), H, H2, HSS, HODLR. . .

These different approaches allow a reduction of the memory

requirement and/or the time to solution. Depending on the

compression strategy, solvers require knowledge of the under-

lying geometry to tackle the problem or can do it in a purely

algebraic fashion.

Hackbusch [1] introduced the H-LU factorization for dense

matrices, which compresses the matrix into a hierarchical

matrix before applying low-rank operations instead of classic

dense operations. In the same paper, an extension of the

dense version was designed for sparse matrices using nested

dissection ordering. In [2], H-LU factorization is used in an

algebraic context. Performance, as well as a comparison of

H-LU with some sparse direct solvers is presented in [3].

Kriemann [4] implemented this algorithm using Direct Acyclic

Graphs.

The Hierarchically Off-Diagonal Low-Rank (HODLR)

compression technique was used in a multifrontal sparse direct

solver in [5] to accelerate the elimination of large fronts. It was

fully extended for a sparse purpose in [6] and uses Boundary

Distance Low-Rank (BDLR) to allow both time and memory

savings. A supernodal solver using a compression technique

close to HODLR was presented in [7]. The proposed approach

allows memory savings and can be faster than standard pre-

conditioned techniques. However, it is slower than the direct

approach in the benchmarks and requires an estimation of the

rank to use randomized techniques and accelerate the solver.

There have been different works around the use of Hi-

erarchically Semi-Separable (HSS) matrices in sparse direct

solvers. In [8], Xia et al. presented a solver for 2D geomet-

ric problems, where all operations are realized algebraically.

In [9], a geometric solver was developed, but contribution

blocks are not compressed, making memory savings impos-

sible. [10] proposed an algebraic code that uses randomized

sampling to manage low-rank blocks and to allow memory

savings.

H2 arithmetic have been used in several sparse solvers.

In [11], a fast sparse H2 solver, called LoRaSp, based on

extended sparsification was introduced. In [12], a variant of

LoRaSp, aimed at improving the quality of the solver when

used as a preconditioner, was presented, as well as a nu-

merical analysis of the convergence with H2 preconditioning.

In particular, this variant was shown to lead to a bounded

number of iterations irrespective of problem size and condition

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.86

1138

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.86

1138

number (under certain assumptions). In [13] a fast sparse

solver was introduced based on interpolative decomposition

and skeletonization. It was optimized for meshes that are

perturbations of a structured grid. In [14], an H2 sparse

algorithm was described. It is similar in many respects to

[11], and extends the work of [13]. All these solvers have

a guaranteed linear complexity, for a given error tolerance,

and assuming a bounded rank for all well-separated pairs

of clusters (the admissibility criterion in Hackbusch et al.’s

terminology).

Block Low-Rank compression have been investigated for

dense matrices [15], and for sparse linear systems considering

a multifrontal method [16]. Considering that these approaches

are close to the current study, a detailed comparison will be

described in Section V. The main difference of our approach

with [16] is the supernodal context that leads to different low-

rank operations, and possibly increase the memory savings.

The first objective of this work is to combine a generic

sparse direct solver with recent work on matrix compression

to come up with a way to solve larger problems, overcoming

the memory limitations and accelerating the time-to-solution.

The second objective is to keep the black-box algebraic

approach of sparse direct solvers, by relying on methods that

are independent of the underlying problem geometry. In this

paper, we consider the multi-threaded sparse direct solver

PASTIX [17] and we introduce a BLR compression strategy

to reduce its memory and computational cost. We developed

two strategies: Minimal Memory, which focuses on reducing

the memory consumption, and Just-In-Time which focuses on

reducing the time-to-solution (factorization and solve steps).

During the factorization, the first strategy compresses the

sparse matrix from the beginning and exploits complicated

low-rank numerical operations to keep the memory cost of

the factorized matrix as low as possible. The second one

compresses the information as late as possible to avoid the

cost of low-rank update operations. The resulting solver can be

used either as a direct solver for low accuracy solutions or as a

high-accuracy preconditioner for iterative methods, requiring

only a few iterations to reach the machine precision.

The main contribution of this work is the introduction of

low-rank compression in a supernodal solver with a purely

algebraic method. Indeed, contrary to [7] which uses rank

estimations (i.e. a non-algebraic criteria), our solver is able to

find by itself suitable ranks to maintain a prescribed accuracy.

In Section I, we go over basic aspects of sparse supernodal

direct solvers. The two strategies, introduced in PASTIX, are

then presented in Section II, before detailing low-rank kernels

in Section III. In Section IV, we perform experiments compar-

ing the two BLR strategies with the original approach — that

uses only dense blocks — in terms of memory consumption,

time-to-solution and numerical behavior. Section V surveys in

more details related works on BLR for dense and/or sparse

direct solvers, highlighting the differences with our approach,

before discussing how to extend this work to a hierarchical

format (H, HSS, HODLR. . .).

I. BACKGROUND

The common approach used by direct solvers is composed

of four main steps: 1) ordering of the unknowns, 2) com-

putation of a symbolic block structure, 3) numerical block

factorization, and 4) triangular systems solves. In the rest of

the paper, we focus on problems leading to sparse systems

with a symmetric pattern.

The purpose of the first step is to minimize the fill-in —

zeros becoming non-zeros — that occurs during the numerical

factorization to reduce the number of operations as well as the

memory requirements to solve the problem. In order to both

reduce fill-in and exhibit parallelism, the nested dissection [18]

algorithm is widely used through libraries such as METIS [19]

or SCOTCH [20]. Each set of vertices corresponding to a

separator constructed during the nested dissection is called a

supernode.

From the resulting supernodal partition, the second step

predicts the symbolic block structure of the final factorized

matrix (L) and the block elimination tree. This block structure

is composed of one block of columns (column block) for each

supernode of the partition, with a dense diagonal block and

several dense off-diagonal blocks, as presented in Figure 1 for

a 3D Laplacian.

Fig. 1. Symbolic factorization of a 10×10×10 Laplacian partitioned using
SCOTCH.

The goal is to exhibit large block structures to leverage

efficient Level 3 BLAS kernels during the numerical factoriza-

tion. However, one may notice (cf. Figure 1) that the symbolic

structure obtained with a general partitioning tool might be

composed of many small off-diagonal blocks contributing to

larger blocks. These off-diagonal blocks might be grouped

together by adding zeros to the structure if the BLAS efficiency

gain is worthwhile and if the memory overhead induced

by the fill-in is limited. Alternatively, it is also possible to

reorder supernode unknowns to group off-diagonal blocks

together without additional fill-in. A traveler salesman strategy

is implemented in PASTIX [21] and divides by more than two

the number of off-diagonal blocks. Other approaches like [10],

[16] perform a k-way ordering of supernodes, starting from

a reconnected graph of a separator, to order consecutively

vertices belonging to a same local part of the separator’s

11391139

graph. Such re-ordering technique also allows to reduce ranks

of the low-rank blocks as shown in [16]. To introduce more

parallelism and data locality, the final structure can then be

split in tiles as it is now commonly done in dense linear

algebra libraries. These first two steps of direct solvers are

preprocessing stages independent from numerical values. Note

that these steps can be computed once to solve multiple

problems similar in structure but with different numerical

values.

Finally, the last two steps, numerical factorization and

triangular systems solves, perform the numerical operations.

We consider here only the first one for the PASTIX solver.

similar. During the numerical factorization, the elimination of

each supernode (column block) is similar to standard dense

algorithms: 1) factorize the dense diagonal block, 2) solve the

off-diagonal blocks belonging to this supernode, and 3) apply

the updates on the trailing submatrix (cf. Section II).

II. BLOCK LOW-RANK SOLVER

In this section, we describe the main contribution of this

paper which is a BLR solver developed within the PASTIX

library. First we introduce the notations used in this article, and

the basics used to integrate low-rank blocks in the solver. Then,

using the newly introduced structure, we describe two different

strategies leading to a sparse direct solver that optimizes the

memory consumption or the time-to-solution.

A. Notations

...

...

Ak ,(1 :b k)

A(1:bk) , k

A(0), k

A(j) ,k

A(i) ,kA(i) ,k

A(j) ,(j)A(j) ,(j)

A(i) ,(j)

A(j) ,(i)

Ak ,(j) Ak ,(i)
...

...

Fig. 2. Symbolic block structure and notations used for the algorithms for
one column block k, and its associated blocks.

Let us consider the symbolic block structure of a factorized

matrix L, obtained throught the symbolic block factorization.

Initially, we allocate this structure initialized with the entries

of A and perform an in-place factorization. We denote initial

blocks A and when a block corresponds to its final state, it

becomes L (or U). The matrix is composed of Ncblk column

blocks, where each column block is associated to a supernode,

or to a subset of unknowns in a supernode when the later is

split to create parallelism. Each column block k is composed

of bk + 1 blocks, as presented in Figure 2 where:

• A(0),k(= Ak,(0)) is the dense diagonal block;

• A(j),k is the jth off-diagonal block in the column block

with 1 ≤ j ≤ bk, (j) being a multi-index describing the

row interval of each block, and respectively, Ak,(j) is the

jth off-diagonal block in the row block;

• A(1:bk),k represents all the off-diagonal blocks of the

column block k, and Ak,(1:bk) all the off-diagonal blocks

of the symmetric row block;

• A(i),(j) is the rectangular dense block corresponding to

the rows of the multi-index (i) and to the columns of the

multi-index (j).

In addition, we denote Â the compressed representation of a

matrix A.

B. Sparse direct solver using BLR compression

Full Rank

Low Rank

Fig. 3. Block Low-Rank compression.

The BLR compression scheme is a flat, non-hierarchical

format, unlike others mentioned in the introduction. If we

consider the example of a dense matrix, the BLR format

clusters the matrix into a set of smaller blocks, as presented

in Figure 3. Diagonal blocks are kept dense and off-diagonal

blocks, which represent long distance interactions in the

graph, are low-rank. Thus, these off-diagonal blocks can be

represented through a low-rank form uvt, obtained with a

compression technique such as Singular Value Decomposition

(SVD) or Rank-Revealing QR (RRQR) factorization. Com-

pression techniques are detailed in Section III.

We propose in this paper to apply this scheme to the sym-

bolic block structure of sparse direct solvers. First, diagonal

blocks of the largest supernodes in the block elimination

tree can be considered as large dense matrices which are

compressible with the BLR approach. In fact, as we have

seen previously, it is common to split these supernodes into

a set of smaller column blocks in order to increase the level

of parallelism. Thus, the block structure resulting from this

operation gives the cluster of the BLR compression format.

Second, interaction blocks from two large supernodes are

by definition long distance interactions, and thus can be

represented by a low-rank form. It is then natural to store

them as low-rank blocks as long as they are large enough.

To summarize, if we take the final symbolic block structure

(after splitting) used by the PASTIX solver, all diagonal blocks

are considered dense, and all off-diagonal blocks might be

stored using a low-rank structure. In practice, we limit this

compression to blocks of a minimal size, and all blocks with

high ranks are kept dense.

From the original block structure, adapting the solver to

block low-rank compression mainly relies on the replacement

11401140

of the dense operations with the equivalent low-rank oper-

ations. Still, different variants of the final algorithm can be

obtained by changing when and how the low-rank compression

is applied. We introduce two scenarios: Minimal Memory,

which compresses the blocks before any other operations, and

Just-In-Time which compresses the blocks after they received

all their contributions.

Algorithm 1 Right looking block sequential LU factorization

with Minimal Memory scenario.

� /* Initialize A (L structure) compressed */

1: For k = 1 to Ncblk Do
2: Â(1:bk),k = Compress(A(1:bk),k)

3: Âk,(1:bk) = Compress(Ak,(1:bk))

4: End For
5: For k = 1 to N Do
6: Factorize A(0),k = L(0),kUk,(0)

7: Solve L̂(1:bk),k Uk,(0) = Â(1:bk),k

8: Solve L(0),k Ûk,(1:bk) = Âk,(1:bk)

9: For j = 1 to bk Do
10: For i = 1 to bk Do

� /* LR to LR updates (extend-add) */

11: Â(i),(j) = Â(i),(j) − L̂(i),kÛk,(j) � LR2LR
12: End For
13: End For
14: End For

1) Minimal Memory: This scenario, described by Algo-

rithm 1, starts by compressing the original matrix A. Thus, all

low-rank blocks that are large enough are compressed directly

from the original sparse form to the low-rank representation

(lines 1 − 4). Note that for a matter of conciseness, loops of

compression and solve over all off-diagonal blocks are merged

into a single operation. In this scenario, compression kernels

and later operations could have been performed on a sparse

format, such as CSC for instance, until we get some fill-in.

However, for the sake of simplicity we use a low-rank form

throughout the entire algorithm to rely on blocks and not just

on sets of values. Then, each classic dense operation on a low-

rank block is replaced by a similar kernel operating on low-

rank forms, even for the usual matrix-matrix multiplication

(GEMM) kernel that is replaced by the equivalent LR2LR
kernel operating on three low-rank matrices (cf. Section III).

2) Just-In-Time: This second scenario, described by Algo-

rithm 2, delays the compression of each supernode after all

contributions have been accumulated. The algorithm is thus

really close to the previous one with the only difference being

in the update kernel, LR2GE, at line 9, which accumulates

contributions on a dense block, and not on a low-rank form.

This operation, as we described in Section III, is much

simpler than the LR2LR kernel, and is faster than a classic

GEMM. However, by compressing the initial matrix A, and

maintaining the low-rank structure throughout the factorization

with the LR2LR kernel, Minimal Memory can reduce more

drastically the memory footprint of the solver. Indeed, the

Algorithm 2 Right looking block sequential LU factorization

with Just-In-Time scenario.
1: For k = 1 to Ncblk Do
2: Factorize A(0),k = L(0),kUk,(0)

� /* Compress L and U off-diagonal blocks */

3: Â(1:bk),k = Compress(A(1:bk),k)

4: Âk,(1:bk) = Compress(Ak,(1:bk))

5: Solve L̂(1:bk),k Uk,(0) = Â(1:bk),k

6: Solve L(0),k Ûk,(1:bk) = Âk,(1:bk)

7: For j = 1 to bk Do
8: For i = 1 to bk Do

� /* LR to dense updates */

9: A(i),(j) = A(i),(j) − L̂(i),kÛk,(j) � LR2GE
10: End For
11: End For
12: End For

full-rank structure of the factorized matrix is never allocated,

as opposed to Just-In-Time that requires it to accumulate the

contributions. The final matrix is compressed with similar sizes

in both scenarios.

III. LOW-RANK KERNELS

We introduce in this section the low-rank kernels used to

replace the dense operations, and we present a complexity

study of these kernels. Two families of operations are studied

to reveal the rank of a matrix: Singular Value Decomposition

(SVD) which leads to smaller ranks, and Rank-Revealing QR

(RRQR) which has shorter time to solution.

A. Compression

The goal of low-rank compression is to represent a general

dense matrix A of size mA-by-nA by its compressed version

Â = uAv
t
A, where uA, and vA, are respectively matrices of

size mA-by-rA, and nA-by-rA, with rA being the rank of the

block supposed small with respect to mA and nA. In order to

keep a given numerical accuracy we have to choose rA such

that ||A− Â|| ≤ τ ||A||, where τ is the prescribed tolerance.

1) SVD: A is decomposed as UσV t. The low-rank form

of A is thus made out of the first rA singular values and their

associated singular vectors such that: σrA+1 ≤ τ , uA = UrA ,

and vtA = σ1:rAV
t
rA with UrA being the first rA columns of

U , and respectively for V . This process requires Θ(m2
AnA +

n2
AmA + n3

A) operations.

2) RRQR: A is decomposed as PQR, where P is a

permutation matrix, and QR the QR decomposition of

P−1A. The rank-rA form of A is then formed by uA = QrA ,

the first rA columns of Q, and vtA = RrA , the first rA rows

of R. The main advantage of this process is that it can stop

the factorization as soon as the norm of the trailing submatrix

Ã(rA+1:mA,rA+1:nA) = A−PQrARrA is lower than τ . Thus,

the complexity is lowered to Θ(nAr
2
A) operations.

SVD compression is much more expensive than RRQR.

However, for a given tolerance, SVD returns lower ranks.

11411141

Put another way, for a given rank, SVD will have a better

numerical accuracy. Thus, there is a trade-off between time-to-

solution (RRQR) versus memory consumption and numerical

accuracy (SVD).

Note that for the Minimal Memory scenario, the first com-

pression (of sparse blocks) may be realized using Lanczos’s

methods, to take advantage of sparsity. However, both SVD

and RRQR algorithms take inherently advantage of these

zeros. In addition, most of the low-rank compressions are

applied to blocks stored as dense blocks and it represents the

main part of the computations.

B. Solve

The solve operation for a generic lower triangular matrix L
is applied to blocks in low-rank forms in our two scenarios:

Lx̂ = b̂⇔ Luxv
t
x = ubv

t
b. Then, with vtx = vtb, the operation

is equivalent to apply a dense solve only to ut
b, and the

complexity is only Θ(m2
Lrx), instead of Θ(m2

LnL) for the

full-rank (dense) representation.

C. Update

Let us consider the generic update operation, C = C−ABt.

Note that the PASTIX solver stores L, and U t if required.

Then, the same update is performed for Cholesky and LU

factorizations. We break the operation in two steps: the product

of two low-rank blocks, and the addition of a low-rank block

and either a dense block (LR2GE), or a low-rank block

(LR2LR).

1) Low-rank matrices product: This operation can sim-

ply be expressed as two dense matrix products: ÂB̂t =
(uA(v

t
AvB))u

t
B = uA((v

t
AvB)u

t
B) where uA is kept un-

changed if rA ≤ rB (ut
B is kept otherwise) to lower the

complexity.

However, it has been shown in [15] that the rank rAB of the

product of two low-rank matrices of ranks rA and rB is usually

smaller than min(rA, rB). As uA and uB are both orthogonal,

the matrix T = (vtAvB) has the same rank as ÂB̂t. Thus, the

complexity can be further reduced by transforming the matrix

product to the following series of operations:

T = vtAvB (1)

T̂ = ̂vtAvB = uT v
t
T (2)

uAB = uAuT (3)

vtAB = vtT v
t
B . (4)

2) Low-rank matrices addition: Let us consider the next

generic operation C ′ = C − uABv
t
AB , with mAB ≤ mC and

nAB ≤ nC as it generally happens in the supernodal method.

This is illustrated for example by the update block A(i),(j) in

Figure 2.

If C is not compressed as in the LR2GE kernel, C ′ will be

dense too, and the addition of the two matrices is nothing else

than a GEMM kernel. The complexity of this operation grows

as Θ(mAB nAB rAB).

uC uABmC

rC rAB

0

0

Fig. 4. Accumulation of two low-rank matrices when sizes do not match.

If C is compressed as in the LR2LR kernel, C ′ will be

compressed too, and

Ĉ ′ = uCv
t
C − uABv

t
AB (5)

uC′vtC′ = [uC , uAB]([vC ,−vAB])
t (6)

where [,] is the concatenation operator. This is the commonly

named extend-add operation. Without further optimization,

this operation costs only two copies. In the case of supernodal

method, adequate padding is also required to align the vectors

coming from AB, and C matrices as it is presented in Figure 4

for the u vectors. The operation on v is similar.

One can notice that, kept as this, the rank of the updated

C is now rC + rAB . When accumulating multiple updates,

the rank grows quickly and the storage exceeds the full-rank

version. In order to maintain a small rank for C, recompression

techniques are used. As for the compression kernel, both SVD

and RRQR algorithms can be used.

a) Recompression using SVD: it first requires to com-

pute a QR decomposition for both composed matrices:

[uC , uAB] = Q1R1 and [vC ,−vAB] = Q2R2. (7)

Then, the temporary matrix T = R1R
t
2 is compressed using

the SVD algorithm described previously. This gives the final

Ĉ ′ with:

uC′ = (Q1uT) and vC′ = (Q2vT). (8)

The complexity of this operation is decomposed as follows:

Θ((mC + nC)(rC + rAB)
2) for the QR decomposition of

equation (7), Θ((rC + rAB)
3) for the SVD decomposition,

and finally Θ((mC + nC)(rC + rAB)rC′) for the application

of both Q1 and Q2.

b) Recompression using RRQR: this solution takes ad-

vantage of the orthogonality of both uC and uAB to first

orthogonalize uAB with respect to uC :

u∗AB = uAB − uC(u
t
C uAB). (9)

We obtain an orthonormal basis [uC , u
∗
AB] such that:

[uC , uAB] = [uC , u
∗
AB]×

(
I ut

CuAB

0 I

)
. (10)

We follow by applying the RRQR algorithm to:(
I ut

CuAB

0 I

)
× (

[vC ,−vAB]
)t

= PQR. (11)

11421142

As for the compression, we keep the k = rC′ first columns

of Q, and rows of R to form the final C ′:

uC′ = ([uC , u
∗
AB]PQk) and vtC′ = Rk. (12)

Note that uC′ is kept orthogonal for future updates.

When the RRQR algorithm is used, the complexity of the

recompression is then composed of: Θ(rC rAB mAB) to form

the intermediate product ut
C uAB , Θ(mC rC rAB) to form the

orthonormal basis, Θ(nAB rAB rC) to generate the temporary

matrix used in (11), Θ((rC+rAB)nC rC′) to apply the RRQR

algorithm, and finally again Θ((rC+rAB)nC rC′) to compute

the final uC′ .

D. Summary

Table I presents the computational complexity for the two

low-rank strategies with respect to the original version of the

solver. To get the main factor of the complexity, we make the

assumption that mC ≥ mA ≥ mB , rA ≥ rB , mC ≥ nC ,

and rC ≤ rC′ . One can note that the Just-In-Time strategy

performs the calculation of the low-rank contribution before

assembling the matrix explicitly to apply a dense modification.

The main factor of the complexity does not depend on nA

but on the ranks rA and rB : there are fewer operations to be

performed. On the other hand, the Minimal Memory strategy

requires to use either SVD or RRQR recompression, for which

the complexity depends on mC and nC , the dimensions of

the block C. It explains why this strategy is slower than the

original solver.

When considering dense matrices, a low-rank matrix is

usually modified by a contribution of the same size: the

low-rank extend-add process may be efficient and lead to

performance gain [15]. It is also the case for the CUFS

strategy in BLR-MUMPS, which compresses a dense front

before applying operations between low-rank blocks of the

same size.

In our case, a block C receives many small contributions,

see Figure 1, as stated by the separator theorem [22] describing

how the size of supernodes is evolving during the nested

dissection process. According to our experiments, it is still

interesting to have low-rank blocks at the end of the factor-

ization, meaning that ranks remain lower than min(mC , nC)/4
(otherwise compression will not help), even if blocks received

a large number of contributions. Thus, rC′ is often close or

equal to rC and lower than rC + rAB : the rank is often

invariant applying a small contribution. So it is less expensive

to use RRQR recompression (and operations are more suitable

for performances). In terms of complexity, the recompression

depends on the size of the target block C and not on the size

of the contribution blocks A and B. As huge low-rank blocks

are recompressed many times, it makes the Minimal Memory
scenario slower than the full-rank version.

Finally, the main advantage of the Minimal Memory sce-

nario is that it can drastically reduce the memory footprint

of the solver, since it compresses the matrix before the

factorization. Thus, the structure of the full-rank factorized

matrix is never allocated, and the low-rank structure needs to

be maintained throughout the factorization process to lower

the memory peak.

In order to overcome the issue of expensive low-rank

additions, an idea would be to consider randomized techniques

to allow an extend-add process depending on the size of

contributing blocks and not on the size of the target block.

IV. EXPERIMENTS

Experiments were conducted on the Plafrim1 supercom-

puter, and more precisely on the miriel cluster. Each node

is equipped with two INTEL Xeon E5-2680 v3 12-cores

running at 2.50 GHz and 128 GB of memory. The INTEL

MKL 2016 is used for BLAS and SVD kernels. The RRQR

kernel is coming from the BLR-MUMPS solver [16], and

is an extension of the block rank-revealing QR factorization

subroutines from LAPACK 3.6.0 (xGEQP3).

The PASTIX version used for our experiments is available

on the public git repository2 as the tag papers/pdsec17.

The multi-threaded version used is the static scheduling ver-

sion presented in [23].

For the initial ordering step, we used SCOTCH [20] 5.1.11
with the configurable strategy string from PASTIX to set the

minimal size of non separated sub-graphs, cmin, to 15. We

also set the frat parameter to 0.08, meaning that columns

aggregation is allowed by SCOTCH as long as the fill-in

introduced does not exceed 8% of the original matrix.

In experiments, blocks that are larger than 256 are split in

blocks of size at least 128 to create more parallelism while

keeping sizes large enough. The same 128 criteria is used

to defined the minimal width of the column blocks that are

compressible. An additional limit on the minimal height to

compress an off-diagonal block is set to 20.

Experiments were computed on a set of 3D matrices ex-

tracted from The SuiteSparse Matrix Collection [24]:

• Atmosmodj: atmospheric model (1 270 432 dofs)

• Audi: structural problem (943 695 dofs)

• Hook: model of a steel hook (1 498 023 dofs)

• Serena: gas reservoir simulation (1 391 349 dofs)

• Geo1438: geomechanical model of earth (1 437 960 dofs)

We also used 3D Laplacian generators (7 points stencils), and

defined lap120 as a Laplacian of size 1203.

Note that when precision results are presented, we used the

backward error on b: ||Ax−b||2
||b||2 .

A. SVD versus RRQR

The first experiment studies the behavior of the two com-

pression methods coupled both with Minimal Memory and

Just-In-Time scenario on the matrix Atmosmodj. Table II

presents the sequential timings of each operation of the nu-

merical factorization with a tolerance of 10−8, as well as the

memory used to store the final coefficient of the factorized

matrix.

We can first notice that SVD compression kernels are

much more time consuming than the RRQR kernels in both

1https://www.plafrim.fr
2https://gitlab.inria.fr/solverstack/pastix

11431143

TABLE I
SUMMARY OF THE OPERATION COMPLEXITIES WHEN COMPUTING C = C −ABt

GEMM (Dense)
LR2GE (Just-In-Time) LR2LR (Minimal Memory)

SVD RRQR SVD RRQR

LR matrices product −
(1): Θ(nA rA rB) (1): Θ(nA rA rB)

(2): Θ(r2A rB) (2): Θ(rA rB rAB) (2): Θ(r2A rB) (2): Θ(rA rB rAB)

(3), (4): Θ(mA rA rAB) (3), (4): Θ(mA rA rAB)

LR matrices addition − −
(7): Θ(mC(rC + rAB)2) (9): Θ(mC rC rAB)

(SVD): Θ((rC + rAB)3) (11): Θ(nC(rC + rAB)rC′)

(8): Θ(mC(rC + rAB)rC′) (12): Θ(mC(rC + rAB)rC′)

Dense update Θ(mA mB nA) Θ(mA mB rAB) − −
Main factor Θ(mA mB nA) Θ(mA mB rAB) Θ(mA mB rAB) Θ(mC(rC + rAB)2) Θ(mC(rC + rAB)rC′)

TABLE II
COSTS DISTRIBUTION ON THE ATMOSMODJ MATRIX WITH τ = 10−8

Full-rank
Just-In-Time Minimal Memory

RRQR SVD RRQR SVD

Factorization time (s)

Compression - 49.53 418.5 15.20 180.9
Block factorization 0.9635 1.000 1.003 1.074 1.104
Panel solve 15.80 6.970 6.526 11.16 6.946
LR product - 64.10 91.15 193.1 94.36
LR addition - - - 774.6 6523
Dense udpate 418.7 47.94 47.03 - -

Total 436 169 564 995 6806
Solve time (s) 2.43 1.54 1.8 2.22 1.29

Factors final size (GB) 15.9 7.4 6.86 11.4 6.76

scenarios following the complexity study from Section III.

Indeed, RRQR compression kernels stop the computations as

soon as the rank is found which reduces by a large factor

the complexity, and this reduction is reflected in the time-to-

solution. However, the SVD allows, for a given tolerance, to

get a better memory reduction in both scenarios.

Comparing the Minimal Memory and the Just-In-Time sce-

nario, the compression time is minimized in the Minimal
Memory scenario because the compression occurs on the initial

blocks which hold more zeros and are lower ranks than once

they have been updated. The time of the update addition,

extend-add operation, becomes dominant in the Minimal Mem-
ory scenario, and even explodes when SVD is used. This is

expected as the complexity depends on the largest blocks in

the addition even for small contributions (see Section III).

In both scenarios, SVD kernels are able to keep the useful

information and compress the final coefficients with similar

rates, while the RRQR kernels are not as efficient to capture

the information and to compress the blocks efficiently with

the Minimal Memory scenario.

The diagonal blocks factorization time is invariant in the

five strategies: the block sizes and kernels are identical. Panel

solve, update product, and solve times are reduced in all low-

rank configurations compared to the dense factorization and

the timings follow the factors final size, since this size reflects

the final ranks of the blocks.

To conclude, the Minimal Memory scenario is not able to

compete with the original direct factorization due to the costly

update addition. However, it reduced the memory peak of the

solver to the factors final size. The Minimal Memory/RRQR

offers a 25% memory reduction with a time to solution

doubled in sequential. The Just-In-Time scenario competes

with the original direct factorization, and divide by two the

time-to-solution with RRQR kernels.

B. Performance

Figure 5 presents the overall performance achieved by the

two low-rank scenarios with respect to the original version of

the solver (where lower is better) on the previously introduced

set of 6 matrices. All versions are multi-threaded implemen-

tations and use all the 24 cores of one node. The scheduling

used is the PASTIX static scheduler developed for the original

version, that is the only one available in the new development

branch for now. This might have a negative impact on the

low-rank implementations by creating a load imbalance. We

study only the RRQR kernels as the SVD kernels have shown

to be much slower. Three tolerance thresholds are studied for

their impact on the time-to-solution and the accuracy of the

first residual of the solver. The backward errors printed on top

of each bar correspond to the use of one refinement step.

Figure 5(a) shows that the Just-In-Time/RRQR scenario is

able to reduce the time-to-solution in almost all cases of

tolerance, and for all matrices which have a large spectrum

of numerical properties. These results show that applications

which require low accuracy, as seismic for instance, can benefit

up to a 3.3 speedup. Figure 5(b) shows that it is more difficult

for the Minimal Memory/RRQR scenario to be competitive.

The performance is always degraded with respect to the

original PASTIX performance, with an average loss around

a factor of 1.8, and the tolerance has a much lower impact

than for the previous case.

For both scenarios, the backward error of the first solution

is close to the entry tolerance. It is a little less accurate in the

Minimal Memory scenario, because approximations are made

earlier in the computations, and information is lost from the

11441144

(a) Just-In-Time scenario using RRQR.

(b) Minimal Memory scenario using RRQR.

Fig. 5. Performance of both strategies with 3 tolerance thresholds, backward
error of the solution is printed on top of each bar.

beginning. However, these results show that we are able to

catch algebraically the information and forward it throughout

the update process.

C. Memory consumption

Fig. 6. Memory peak for the Minimal Memory scenario with 3 tolerance
thresholds and both SVD and RRQR kernels.

The Minimal Memory scenario is slower than the original

solver, but it is a strategy that efficiently reduces the memory

peak of the solver. Figure 6 presents the gain on the memory

used to store the factors at the end of the factorization of the

set of 6 matrices with respect to the block dense storage of

PASTIX. In this figure, we also compare the memory gain of

the SVD and RRQR kernels. We observe that in all cases, SVD

provides a better compression rate by finding smaller ranks for

a given matrix and a given tolerance. The quality of the first

residual is also slightly better with the SVD kernels despite

the smaller ranks. The second observation is that the smaller

the tolerance (10−12), the larger the ranks and the memory

consumption. However, the solver always presents a memory

gain which can be more than 50% with larger tolerance (10−4).

Fig. 7. Memory scalability with 3 tolerance thresholds for the Minimal
Memory/RRQR scenario when increasing the size of 3D Laplacians.

Figure 7 presents the evolution of the size of the factors

as well as the full consumption of the solver (factors and

management structures) on 3D Laplacians with an increasing

size. The memory limit of the system is 128GB. The original

version is limited on this system to a 3D Laplacian of 4 million

unknowns, and the size of the factors quickly increase for

larger sizes. With the Minimal Memory/RRQR scenario, we

have now been able to run a 3D problem up to 12 million

unknowns when relaxing the tolerance to 10−4.

The memory of the Just-In-Time scenario has not been

studied, as long as in our supernodal approach, each supernode

is fully allocated in a full-rank fashion in order to accumulate

the updates before being compressed. Thus, the memory peak

corresponds to the totality of the factorized matrix structure

without compression and is identical to the original version.

To reduce this memory peak, a solution would be to modify

the scheduler to a Left-Looking approach that would delay

the allocation and the compression of the original blocks.

However, it would need to be carefully implemented to keep

a certain amount of parallelism in order to save both time

and memory. A possible solution are the scheduling strategies

presented in [25] to keep the memory consumption of the

solver under a given limit.

11451145

D. Convergence and numerical stability

Fig. 8. Convergence speed for the Minimal Memory/RRQR scenario with 2
tolerance thresholds.

Figure 8 presents the convergence of the iterative solver

— GMRES for general matrices and Conjugate Gradient

(CG) for SPD matrices — preconditioned with the low-rank

factorization at tolerances of 10−4 and 10−8. The iterative

solver is stopped after reaching 20 iterations or a backward

error lower than 10−12.

With a tolerance of 10−8, only a few iterations are required

to converge to the solution. Note that on the Audi and Geo1438
matrices, which are difficult to compress, a few more iterations

are required to converge. With a larger tolerance 10−4, it is

difficult to recover all the information lost during the com-

pression, but this is enough to quickly get solutions at 10−6

or 10−8. Note that the iterative refinement process benefits

from the compression, as the solve step, and is accelerated.

V. DISCUSSION

In this section, we discuss the positioning of our solver

with the closest related works and we give some limitations

to extend this work to a hierarchical format.

Contrary to the approach studied in [1], we perform a

symbolic block factorization. In their approach, as in our

proposition, there is no fill-in between distinct branches of

the elimination tree. However, contributions of a supernode

to its ancestors are considered as full, in the sense that

all structural zeros are included to generate the low-rank

representation. Thus, they do not have extend-add (LR2LR)

operation between low-rank blocks of different sizes, but the

memory consumption is higher because some structural zeros

are not managed.

A dense BLR solver was designed by Livermore Software

Technology Corporation [15]. In this work, the full matrix

is compressed at the beginning and operations between low-

rank blocks are performed. This approach is similar to our

Minimal Memory scenario in the context of dense matrices.

Due to this restriction, the extend-add process concerns low-

rank matrices of the same size, without zeros padding. Thus,

the LR2LR operation is less costly than the full-rank update

in their context.

A BLR multifrontal sparse direct solver was designed for

the MUMPS solver. The strategy is described in [16] and a

theoretical study of the complexity of the solver is presented

in [26]. In this work, contribution blocks are not compressed.

When a front is eliminated, different strategies are proposed

to enhance the time-to-solution. Our scenario Just-In-Time
is close to their FCSU (Factor, Compress, Solve, Update)

strategy. The LUAR (Low-Rank Update Accumulation with

Recompression) groups together multiple low-rank products to

exploit the memory locality during the product recompression

process. This could be similarly used in the Just-In-Time, but

would implies larger ranks in the extend-add operations of

the Minimal Memory. The CUFS (Compress, Update, Factor,

Solve) is the strategy closest to our Minimal Memory scenario.

However, only a dense front is fully compressed before being

eliminated: contributing blocks are not compressed and low-

rank operations occur within a dense matrix, similarly to the

previous work from LSTC. If the time-to-solution is better

with BLR-MUMPS, there is more room for memory savings

in our approach.

With the aim of extending our solver to hierarchical com-

pression schemes, such as H, HSS, or HODLR, we consider

graphs issued from finite element meshes coming from real-

life simulations of 3D physical problems. From a theoretical

point of view, the majority of these graphs have a bounded

degree and thus good separators respecting the separator

theorems [22] can be built. For a n-vertices mesh, the time

complexity of a direct solver is in Θ(n2), and we expect to

build a low-rank solver requiring Θ(n
4
3) operations. For the

memory requirements, the direct approach leads to an overall

storage in Θ(n
4
3), while we target a Θ(n log(n)) complexity.

Let us consider the last separator of size Θ(n
2
3) for a 3D

mesh, and one of the largest low-rank block of this separator.

They are asymptotically the same size. Previous studies have

shown that such a block may have a rank in order of Θ(n
1
3).

For the Minimal Memory scenario, we have seen that

the time-to-solution is longer than the full-rank version. As

low-rank blocks become larger in the hierarchy, it will be

even worse than the solution we developed. For the Just-
In-Time scenario, maintaining such a block in a dense form

before compressing block requires Θ(n
4
3) memory and does

not satisfy the memory complexity we target. It also means

that a compromise between Minimal Memory and Just-In-
Time strategies using a Left-Looking approach might not be

a relevant solution.

Currently, no sparse solver is able to perform efficiently the

extend-add operations using compression techniques such as

SVD or RRQR, and it is still an open problem.

CONCLUSION

We presented a new Block Low-Rank sparse solver that

combines an existing sparse direct solver PASTIX and low-

rank compression kernels. This solver reduces the memory

consumption and/or the time-to-solution depending on the

11461146

scenario. Two scenarios were developed. Minimal Memory
saves memory up to a factor of 2.6 using RRQR kernels,

with a time overhead that is limited to 2.4 despite the higher

complexity. Large problems that could not fit into memory

when the original solver was used can now be solved thanks to

the lower memory requirements, especially when low accuracy

solutions and/or large number of right hand sides are involved.

Just-In-Time reduces both the time-to-solution by a factor

up to 3.3, and the memory requirements of the final factorized

matrix with similar factors to Minimal Memory. However, with

the actual scheduling strategy, this gain is not reflected on the

memory peak.

Two compression kernels, SVD and RRQR, were studied

and compared. We have shown that, for a given tolerance,

both approaches provide correct solutions with the expected

accuracy, and that RRQR, despite larger ranks, provides faster

kernels. In addition, we demonstrated that the solver can be

used either as a low-tolerance direct solver or as a good

preconditioner for iterative methods, that will require only

a few iterations before reaching the machine precision. A

comparison with other preconditionners (AMG, ILU(k)) will

be performed in future work to measure the impact of using

a low-rank factorization as preconditionner.

In the future, new kernel families, such as RRQR with

randomization techniques, will be studied in terms of accuracy

and stability in the context of a supernodal solver. To further

improve the performance of Minimal Memory and close up

the gap with the original solver, aggregation techniques on

small contributions will also be studied. This will lead to the

extension of this work to hierarchical compression in large

supernodes that could further reduce the memory footprint,

and the solver complexity.

Regarding Just-In-Time, future work is focused on studying

smart scheduling strategies that combines Right-Looking and

Left-Looking approaches in order to find a good compromise

between memory and parallelism for the targeted architecture.

This will follow up recent work on applying parallel runtime

systems [23] to the PASTIX solver.

ACKNOWLEDGMENTS

This material is based upon work supported by the DGA

under a DGA/Inria grant. Experiments presented in this paper

were carried out using the PLAFRIM experimental platform.

REFERENCES

[1] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis.
Springer Series in Computational Mathematics, 2015, vol. 49.

[2] L. Grasedyck, R. Kriemann, and S. Le Borne, “Parallel black boxH-LU
preconditioning for elliptic boundary value problems,” Computing and
Visualization in Science, vol. 11, no. 4-6, pp. 273–291, 2008.

[3] L. Grasedyck, W. Hackbusch, and R. Kriemann, “Performance of H-LU
preconditioning for sparse matrices,” Computational methods in applied
mathematics, vol. 8, no. 4, pp. 336–349, 2008.

[4] R. Kriemann, “H-LU factorization on many-core systems,” Computing
and Visualization in Science, vol. 16, no. 3, pp. 105–117, 2013.

[5] A. Aminfar, S. Ambikasaran, and E. Darve, “A fast block low-rank
dense solver with applications to finite-element matrices,” Journal of
Computational Physics, vol. 304, pp. 170–188, 2016.

[6] A. Aminfar and E. Darve, “A fast, memory efficient and robust sparse
preconditioner based on a multifrontal approach with applications to
finite-element matrices,” International Journal for Numerical Methods
in Engineering, 2016.

[7] J. N. Chadwick and D. S. Bindel, “An Efficient Solver for Sparse Linear
Systems Based on Rank-Structured Cholesky Factorization,” CoRR, vol.
abs/1507.05593, 2015.

[8] J. Xia, S. Chandrasekaran, M. Gu, and X. Li, “Superfast Multifrontal
Method For Large Structured Linear Systems of Equations,” Siam
Journal on Matrix Analysis and Applications, vol. 31, p. 1382–1411,
2009.

[9] S. Wang, X. S. Li, F.-H. Rouet, J. Xia, and M. V. De Hoop, “A Par-
allel Geometric Multifrontal Solver Using Hierarchically Semiseparable
Structure,” ACM Trans. Math. Softw., vol. 42, no. 3, pp. 21:1–21:21,
May 2016.

[10] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, “An
Efficient Multicore Implementation of a Novel HSS-Structured Multi-
frontal Solver Using Randomized Sampling,” SIAM Journal on Scientific
Computing, vol. 38, no. 5, pp. S358–S384, 2016.

[11] H. Pouransari, P. Coulier, and E. Darve, “Fast hierarchical solvers for
sparse matrices using extended sparsification and low-rank approxima-
tion,” arXiv preprint arXiv:1510.07363v3, 2015.

[12] K. Yang, H. Pouransari, and E. Darve, “Sparse hierarchical solvers with
guaranteed convergence,” arXiv preprint arXiv:1611.03189, 2016.

[13] K. L. Ho and L. Ying, “Hierarchical interpolative factorization for
elliptic operators: differential equations,” Communications on Pure and
Applied Mathematics, 2015.

[14] D. A. Sushnikova and I. V. Oseledets, ““Compress and eliminate”
solver for symmetric positive definite sparse matrices,” arXiv preprint
arXiv:1603.09133v3, 2016.

[15] J. Anton, C. Ashcraft, and C. Weisbecker, “A Block Low-Rank Multi-
threaded Factorization for Dense BEM Operators,” in SIAM Conference
on Parallel Processing for Scientific Computing (SIAM PP 2016), Paris,
France, Apr. 2016.

[16] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and
C. Weisbecker, “Improving Multifrontal Methods by Means of Block
Low-Rank Representations,” SIAM Journal on Scientific Computing,
vol. 37, no. 3, pp. A1451–A1474, 2015.

[17] P. Hénon, P. Ramet, and J. Roman, “PaStiX: A High-Performance
Parallel Direct Solver for Sparse Symmetric Definite Systems,” Parallel
Computing, vol. 28, no. 2, pp. 301–321, Jan. 2002.

[18] A. George, “Nested dissection of a regular finite element mesh,” SIAM
Journal on Numerical Analysis, vol. 10, no. 2, pp. 345–363, 1973.

[19] G. Karypis and V. Kumar, “METIS: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1995.

[20] F. Pellegrini, “Scotch and libScotch 5.1 User’s Guide,” Aug. 2008, user’s
manual, 127 pages.

[21] G. Pichon, M. Faverge, P. Ramet, and J. Roman, “Reordering strategy for
blocking optimization in sparse linear solvers,” Inria, Research Report,
to appear in SIAM Journal on Matrix Analysis and Applications RR-
8860, Feb. 2016.

[22] R. J. Lipton and R. E. Tarjan, “A separator theorem for planar graphs,”
SIAM Journal on Applied Mathematics, vol. 36, pp. 177–189, 1979.

[23] X. Lacoste, “Scheduling and memory optimizations for sparse direct
solver on multi-core/multi-gpu cluster systems,” Ph.D. dissertation,
Bordeaux University, Talence, France, Feb. 2015.

[24] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[25] E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, J. L’Excellent, and
F. Rouet, “Robust Memory-Aware Mappings for Parallel Multifrontal
Factorizations,” SIAM Journal on Scientific Computing, vol. 38, no. 3,
2016.

[26] P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, “On the Complex-
ity of the Block Low-Rank Multifrontal Factorization,” IRIT, Research
Report RT–2016–03–FR, May 2016.

11471147

