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Solving large sparse systems Ax = b of linear equations is a crucial and time-consuming step, arising
in many scientific and engineering applications. Consequently, many parallel techniques for sparse matrix
solution have been studied, designed and implemented based on factorization or hybrid iterative-direct
approaches. In this context, graph partitioning and nested dissection ideas have played a crucial role.

Solving a sparse linear system by a direct method is generally a highly irregular problem that induces
some challenging algorithmic problems and requires a sophisticated implementation scheme in order to fully
exploit the capabilities of modern hierachical supercomputers. We focused first on the block partitioning
and scheduling problem for high performance sparse parallel supernodal factorization with static pivoting
for large sparse symmetric systems. Our strategy is suitable for non-symmetric sparse matrices with sym-
metric pattern, and for general distributed heterogeneous architectures the computation and communication
performance of which are predictable in advance. This has led to software developments of the PaStiX solver
(http://pastix.gforge.inria.fr/) [5].

New supercomputers incorporate many microprocessors which include themselves more and more com-
putational cores. These new architectures induce strongly hierarchical topologies. In the context of dis-
tributed NUMA architectures, we studied optimization strategies to improve the scheduling of communi-
cations, threads and I/O. We have developed dynamic scheduling designed for NUMA architectures in the
PaStiX solver. We were also interested in the dynamic adaptation of the computation grain to use effi-
ciently multi-core architectures and shared memory. Experiments on several numerical test cases have been
performed to prove the efficiency of the approach on different architectures [4].

We recently studied the replacement of this internal highly integrated scheduling strategy by two generic
runtime frameworks namely PARSEC and StarPU. Those runtimes give the opportunity to execute the
factorization tasks graph on emerging computers equipped with accelerators. A comparative study of the
performances of the supernodal solver with three different schedulers is performed on manycore architec-
tures and the improvements obtained with GPU accelerators will be presented. These results demonstrate
that these DAG runtimes provide uniform programming interfaces to obtain portable high performance on
different architectures on irregular problems as sparse direct factorizations [3, 4].

In addition to the activities on direct solvers, we also studied some robust preconditioning algorithms
for iterative methods. The goal of these studies is to overcome the huge memory consumption inherent to
the direct solvers in order to solve 3D problems of huge size (several million of unknowns). Our studies
focused on the building of generic parallel preconditioners based on ILU factorizations. The classical ILU
preconditioners use scalar algorithms that do not exploit well CPU power and are difficult to parallelize.
This preconditioning approach is to define an adaptive blockwise incomplete factorization that is much
more accurate (and numerically more robust) than the scalar incomplete factorizations commonly used to
precondition Krylov subspace iterative solvers. Such incomplete factorization can take advantage of the latest
breakthroughs in sparse direct methods and particularly should be very competitive in CPU time (effective
power used from processors and good scalability) while avoiding the memory limitation encountered by direct
methods on large 3D problems. In this approach, we focused on the critical problem to find approximate
supernodes of ILU(k) factorizations. The problem is to find a coarser block structure of the incomplete
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factors [6].
We also investigated direct-iterative hybrid solvers that attempt to fully benefit from the robustness and

effectivenes of sparse direct solvers and flexibility parallel implementation of Krylov subspace methods. We
design two hybrid methods based on a Schur complement approach. The first technique uses the HID (hier-
archical interface structure) ordering [7]. The principle is to build a decomposition of the adjacency matrix of
the system into a set of small sub-domains (the typical size of a sub-domain is around a few hundreds or thou-
sand nodes) with overlap. We build this decomposition from the nested dissection separator tree obtained
using a sparse matrix reordering. Thus, at a certain level of the separator tree, the sub-trees are considered
as the interior of the sub-domains and the union of the separators in the upper part of the elimination tree
constitutes the interface between the sub-domains. The interior of these sub-domains are treated by a direct
method. Solving the whole system is then equivalent to solve the Schur complement system on the interface
between the sub-domains which has a much smaller dimension. We propose several algorithmic variants to
iteratively solve the Schur complement system that can be adapted to the problem or target architecture
features. This has led to software developments of the HIPS solver (http://hips.gforge.inria.fr/) [8].

The second approach is based on an algebraic domain decompostion method built from a partitioning
via nested dissection of the adjacency graph associated with the sparse matrix. The internal variables are
eliminated using a sparse, possibly parallel, direct solver and the resulting Schur complement system is solved
using a preconditioned algebraic additive Schwarz [1, 2, 9] Krylov solver. This leads to software developments
of the MaPHyS solver.

The main goal of this presentation will be to give an overview of the continuum between these various
algorithmic approaches and to present the improvements of the algorithms and of the associated parallel
implementations in a manycore context. Numerical experiments on large irregular real-life problems will
illustrate this work.

References

[1] Agullo E., Giraud L., Guermouche A., and Roman J. Parallel hierarchical hybrid linear solvers for
emerging computing platforms. Compte Rendu de l’Académie des Sciences - Mécanique, 339(2-3):96–
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