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Abstract. The purpose of our work is to provide a method which ex-
ploits the parallel blockwise algorithmic approach used in the framework
of high performance sparse direct solvers in order to develop robust pre-
conditioners based on a parallel incomplete factorization. The idea is
then to define an adaptive blockwise incomplete factorization that is
much more accurate (and numerically more robust) than the scalar in-
complete factorizations commonly used to precondition iterative solvers.

1 Introduction

Solving large sparse linear systems by iterative methods [18] has often been
unsatisfactory when dealing with pratical “industrial” problems. The main dif-
ficulty encountered by such methods is their lack of robustness and, generally,
the unpredictability and unconsistency of their performance when they are used
over a wide range of different problems; some methods work quite well for certain
types of problems but can fail completely on others.

Over the past few years, direct methods have made significant progress thanks
to research studies on both the combinatorial analysis of Gaussian elimination
process and on the design of parallel block solvers optimized for high-performance
computers. It is now possible to solve real-life three-dimensional problems having
in the order of several millions equations, in a very effective way with direct
solvers. These is achievable by exploiting superscalar effects of modern processors
and taking advantage of computer architectures based on networks of SMP nodes
(IBM SP, DEC-Compaq, for example) [1, 7, 9, 10, 12]. However, direct methods
will still fail to solve very large three-dimensional problems, due to the large
amount of memory needed for these cases.

Some improvments to the classical scalar incomplete factorization have been
studied to reduce the gap between the two classes of methods. In the context
of domain decomposition, some algorithms that can be parallelized in an effi-
cient way have been investigated in [14]. In [16], the authors proposed to couple
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incomplete factorization with a selective inversion to replace the triangular so-
lutions (that are not as scalable as the factorization) by scalable matrix-vector
multiplications. The multifrontal method has also been adapted for incomplete
factorization with a threshold dropping in [11] or with a fill level dropping that
measures the importance of an entry in terme of its updates [2]. In [3], the authors
proposed a block ILU factorization technique for block tridiagonal matrices.

Our goal is to provide a method which exploits the parallel blockwise al-
gorithmic approach used in the framework of high performance sparse direct
solvers in order to develop robust parallel incomplete factorization based pre-
conditioners [18] for iterative solvers.

The originality of our work is to use a supernodal algorithm what allows us to
drop some blocks during the elimination process on the quotient graph. Unlike
multifrontal approaches for which parallel threshold-based ILU factorization has
been studied, the supernodal method permits to build at low cost a dense block
structure for an ILU(k) factorization with an important fill-in. Indeed, using
dense block formulation is crutial to achieved high performance computations.

The idea is then to define an adaptive blockwise incomplete factorization that
is much more accurate (and numerically more robust) than the scalar incomplete
factorizations commonly used to precondition iterative solvers. Such incomplete
factorizations can take advantage of the latest breakthroughts in sparse direct
methods and can therefore be very competitive in terms of CPU time due to
the effective usage of CPU power. At the same time this approach does not
suffer from the memory limitation encountered by direct methods. Therefore,
we can expect to be able to solve systems in the order of hundred millions of
unknowns on current platforms. Another goal of this paper is to analyze the
chosen parameters that can be used to define the block sparse pattern in our
incomplete factorization.

The remainder of the paper is organized as follows: the section 2 describes
the main features of our method. We provide some experiments in section 3. At
last we give some conclusions in section 4.

2 Methodology

The driving rationale for this study is that it is easier to incorporate incom-
plete factorization methods into direct solution software than it is to develop
new incomplete factorizations. As a starting point, we can take advantage of
the algorithms and the software components of PaStiX [10] which is a parallel
high performance supernodal direct solver for sparse symmetric positive definite
systems and for sparse unsymmetric systems with a symmetric pattern. These
different components are (see Fig. 1):

1. the ordering phase, which computes a symmetric permutation of the initial
matrix such that factorization process will exhibit as much concurrency as
possible while incurring low fill-in. In this work, we use a tight coupling of
the Nested Dissection and Approximate Minimum Degree algorithms [15];
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2. the block symbolic factorization phase, which determines the block data
structure of the factorized matrix associated with the partition resulting
from the ordering phase. This structure consists of several column-blocks,
each of them containing a dense diagonal block and a set of dense rectangular
off-diagonal blocks [5];

3. the block repartitioning and scheduling phase, which refines the previous par-
tition by splitting large supernodes in order to exploit concurrency within
dense block computations in addition to the parallelism provided by the
block elimination tree, both induced by the block computations in the su-
pernodal solver. In this phase, we compute a mapping of the matrix blocks
(that can be made by column block (1D) or block (2D)) and a static opti-
mized scheduling of the computational and communication tasks according
to BLAS and communication time models calibrated on the target machine.
This static scheduling will drive the parallel factorization and the backward
and forward substitutions [8, 10].
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Fig. 1. Phases for the parallel complete block factorization.

Our approach consists of computing symbolically the block structure of the

factors that would have been obtained with a complete factorization, and then

deciding to drop off some blocks of this structure according to relevant criteria.
This incomplete factorization induced by the new sparse pattern is then used in
a preconditioned GMRES or Conjugate Gradient solver [18]. Our main goal at
this point is to achieve a significant reduction of the memory needed to store
the incomplete factors while keeping enough fill-in to make the use of BLAS3
primitives cost-effective. Naturally, we must still have an ordering phase and a
mapping and scheduling phase (this phase is modified to suit the incomplete
factorization block computation) to ensure an efficient parallel implementation
of the block preconditioner computation and of the forward and backward sub-
stitutions in the iterations. Then, we have the new processing chain given at
Fig. 2.
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Fig. 2. Phases for the parallel incomplete block factorization.

The first crucial point is then to find a good initial partition that can be
used in the dropping step after the block symbolic factorization. It cannot be
the initial supernodal partition computed by the ordering phase (phase 1) be-
cause it would be too costly to consider the diagonal blocks as dense blocks
like in a complete factorization. Therefore, we resort to a refined partition of
this supernodal partition which will then define the elementary column blocks
of the factors. We obtain the refined partition by splitting the column blocks
issued from the supernodal partition according to a maximum blocksize para-
meter. This allows more options for dropping some blocks in the preconditioner.
This blocksize parameter plays a key role in finding a good trade-off as described
above. An important result from theoretical analysis is that if we consider nested
dissection ordering based on separator theorems [13], and if we introduce some
asymptotically refined partitions, one can show that the total number of blocks
computed by the block symbolic factorization and the time to compute these
blocks are quasi-linear (these quantities are linear for the supernodal partition).

The second crucial point concerns the various criteria that are used to drop
some blocks from the blockwise symbolic structure induced by the refined parti-
tion. The dropping criterion we use is based on a generalization of the level-of-
fill [18] metric that has been adapted to the elimination process on the quotient
graph induced by the refined partition.

One of the most common ways to define a preconditioning matrix M is
through Incomplete LU (ILU) factorizations. ILU factorizations are obtained
from an approximate Gaussian elimination. When Gaussian elimination is ap-
plied to a sparse matrix A, a large number of nonzero elements may appear
in locations originally occupied by zero elements. These fill-ins are often small
elements and may be dropped to obtain approximate LU factorizations.

The simplest of these procedures, ILU(0) is obtained by performing the stan-
dard LU factorization of A and dropping all fill-in elements that are generated
during the process. In other words, the L and U factors have the same pattern
as the lower and upper triangular parts of A (respectively). More accurate fac-
torizations denoted by ILU(k) and IC (k) have been defined which drop fill-ins
according to their “levels”. Level-1 fill-ins for example are generated from level-
zero fill-ins (at most). So, for example, ILU(1) consists of keeping all fill-ins that
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have level zero or one and dropping any fill-in whose level is higher. We now
provide a few details.

In level-based ILUs, originally introduced by Watts III [19], a level-of-fill is
associated with every entry in the working factors L and U . Conceptually these
factors together are the L and U parts of a certain working matrix A which
initially contains the original matrix. At the start of the procedure, every zero
entry has a level-of-fill of infinity and every nonzero entry has a level-of-fill of zero.
Whenever an entry is modified by the standard Gaussian Elimination update

aij := aij − aik ∗ akj/akk

its level-of-fill is updated by the formula

levij = min{levij , levik + levkj + 1}.

In practice, these levels are computed in a symbolic phase first and used to define
the patterns of L and U a priori. As the level-of-fill increases, the factorization
becomes more expensive but more accurate. In general, the robustness of the
iterative solver will typically improve as the level-of-fill increases. It is common
practice in standard preconditioned Krylov methods to use a very low level-of-
fill , typically no greater than 2. Now it is easy to see what will be the main
limitation of this approach: the level-of-fill is based entirely on the adjacency
graph of the original matrix, and its definition implicitly assumes some form
of diagonal dominance, in order for the dropped entries to be indeed small. It
cannot work for matrices that are highly indefinite for example. There are two
typical remedies, each with its own limitations. The first is to replace the level-
of-fill strategy by one that is based on numerical values. This yields the class
of ILUT algorithms [17, 18]. Another is to resort to a block algorithm, i.e., one
that is based on a block form of Gaussian elimination. Block ILU methods have
worked quite well for harder problems, see for example [4, 6].

In the standard block-ILU methods, the blocking of the matrix simply repre-
sents a grouping of sets of unknowns into one single unit. The simplest situation
is when A has a natural block structure inherited from the blocking of unknowns
by degrees of freedom at each mesh-point. Extending block ILU to these stan-
dard cases is fairly easy. It suffices to consider the quotient graph obtained from
the blocking.

The situation with which we must deal is more complex because the block
partitioning of rows varies with the block columns. An illustration is shown in
Figure 3. The main difference between the scalar and the block formulation of the
level-of-fill algorithm is that, in general, a block contribution may update only a
part of the block (see figure 3(a)). As a consequence, a block is split according to
its level-of-fill modification. Nevertheless, we only allow the splitting along the
row dimension in order to preserve an acceptable blocksize (see figure 3(b)).
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Fig. 3. Computation of the block level of fill-in the block elimination process.

As shown in table 1, two consecutive levels-of-fill can produce a large in-
crease of the fill ratio in the factors (NNZA is the number of non-zeros in A,
NNZL is the number of non-zeros that would have beeen obtained with a di-
rect factorization, and OPCL is the number of operations required for the direct
factorization).

Table 1. Fill rate for a 47x47x47 3D mesh (finite element, 27 connectivity)

level of fill % NNZL ×NNZA % OPCL

≤ 0 9.28 3.53 0.29
≤ 1 23.7 9.02 2.33
≤ 2 38.4 14.6 7.61
≤ 3 54.9 20.9 19.0
≤ 4 66.1 25.2 31.5
≤ 5 75.4 28.7 45.1
≤ 6 83.2 31.6 58.5
... ... ... ...

≤ 15 100 38.1 100

In order to choose intermediate ratios of fill between two levels, we have
introduced a second criterion to drop some blocks inside a level-of-fill. We allow
the possibility to choose a fill ratio according to the formula:

NNZprec = (1 − α).NNZA + α.NNZL

where α ∈ [0, 1] and NNZprec is the number of non-zeros in the factors for the
incomplete factorization. To reach the exact number of non-zeros correspond-
ing to a selected α, we consider the blocks allowed in the fill-in pattern in two
steps. If we denote by NNZk the number of non-zeros obtained by keeping
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all the blocks with levels-of-fill ≤ k, then we find the first value λ such that
NNZλ ≥ NNZprec. In a second step, until we reach NNZprec, we drop the
blocks, among those having a level-of-fill λ, which undergo the fewest updates
by previous eliminations.

3 Tests

In this section, we give an analysis of some first convergence and scalability re-
sults for practical large systems. We consider two difficult problems for direct
solvers (see table 2). The AUDI matrix (symmetric) corresponds to an auto-
motive crankshaft model and the MHD1 is a magnetohydrodynamic problem
(unsymmetric). The ratio, between the number of non-zeros in the complete fac-
tor and the number of non-zeros in the initial matrix A is about 31 for the AUDI
test case and about 67 for the MHD1 one.

Table 2. Description of our test problems.

Name Columns NNZA NNZL OPCL

AUDI 943695 39297771 1.21e+09 5.3e+12
MHD1 485597 24233141 1.62e+09 1.6e+13

Numerical experiments were run on a 28 NH2 IBM nodes (16 Power3+,
375Mhz, 1.5 Gflops, 16GB) located at CINES (Montpellier, France) with a net-
work based on a Colony switch. All computations are performed in double pre-
cision and all time results are given in seconds. We use the PaStiX software
with recent improvements such as an efficient MPI/Thread implementation to
compute the preconditioner. The stopping criterion for GMRES iterations uses
the relative residual norm and is set to 10−7.

Table 3 presents results for different values of the fill rate parameter α for
the AUDI problem. The blocksize (for the refined partition) is set to 8 and the
results are performed on 16 processors.

Table 3. AUDI problem with blocksize=8

α = 0.1 α = 0.2 α = 0.3

inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter.
24 429 0.71 39 293 1.30 55 279 1.64

×NNZA % OPCL tot.time ×NNZA % OPCL tot.time ×NNZA % OPCL tot.time
3.77 0.51 328.6 6.75 2.91 419.9 9.75 5.97 512.5

α = 0.4 α = 0.5 α = 0.6

inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter.
80 144 2.12 135 49 3.13 195 36 3.70

×NNZA % OPCL tot.time ×NNZA % OPCL tot.time ×NNZA % OPCL tot.time
12.84 8.32 385.3 15.92 15.63 288.4 18.99 24.10 328.2
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For each run we give:

– in the first line, the time to compute the incomplete factorisation (inc.fact.),
the number of iterations (nb.iter.) and the time to perform one iteration
(time/iter.);

– in the second line, the ratio between the number of non-zeros in the in-
complete factors and the number of non-zeros in the matrix A (×NNZA),
the percentage of the number of operations to compute the incomplete fac-
torization compared with the number of operations required for the direct
factorization (% OPCL), and the total time (tot.time).

The same results for a blocksize set to 16 can be found in table 4. Theses
results can be compared with the time required by the direct solver: on 16
processors, PaStiX needs about 482s to solve the problem and the solution has
an accuracy (relative residual norm) about 10−15.

Table 4. AUDI problem with blocksize=16

α = 0.1 α = 0.2 α = 0.3

inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter.
11 214 0.84 19 196 1.20 40 177 1.87

×NNZA % OPCL tot.time ×NNZA % OPCL tot.time ×NNZA % OPCL tot.time
5.29 0.97 190.8 6.50 2.16 254.2 9.57 6.82 371.0

α = 0.4 α = 0.5 α = 0.6

inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter.
62 186 2.13 77 140 2.41 130 42 3.45

×NNZA % OPCL tot.time ×NNZA % OPCL tot.time ×NNZA % OPCL tot.time
12.76 11.93 458.2 15.55 15.57 414.4 19.01 24.39 274.9

As expected, the time for the incomplete factorization and for the iterations
increases with the fill rate parameter whereas the number of iterations decreases.
We can see that the best result is obtained with α set to 0.1 and a blocksize set
to 16. Thus, we can solve the problem 2.5 faster than with our direct solver and
with only 17.2% of NNZL (about 5.3 × NNZA). We have also report results
with higher values for the blocksize (32): block computations are more efficient
but these blocksizes do not allow to drop enough entries to be competitive.

For next results the blocksize is set to 16 and α to 0.1. With such a fill
rate parameter, the number of iterations for the MHD1 problem is small (5
iterations to reduce the residual norm by 10−7). This problem is easier than
the AUDI problem, and in that case, the advantage of our approach will be less
important compared with traditional iterative solvers.

Table 5 shows that the run-time scalability is quite good for up to 64 proces-
sors for both the incomplete factorization and the iteration phase. We remind
that the number of iterations is independent of the number of processors in our
approach.
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Table 5. Scalability results with α = 0.1 and blocksize=16

Name Number of processors
1 2 4 8 16 32 64

AUDI inc.fact. 90.9 52.5 29.2 15.7 10.6 5.9 3.3
AUDI time/iter. 10.5 5.56 3.06 1.49 0.84 0.45 0.33

MHD1 inc.fact. 48.1 26.2 15.6 9.1 5.1 3.0 2.2
MHD1 time/iter. 3.82 1.97 1.06 0.61 0.40 0.32 0.25

So on 64 processors, for a relative precision set to 10−7, the total time is 74s
what is twice faster than the 152s needed by the direct solver.

4 Conclusion

In conclusion, we have shown a methodology for bridging the gap between direct
and iterative solvers by blending the best features of both types of techniques:
low memory costs from iterative solvers and effective reordering and blocking
from direct methods. The approach taken is aimed at producing robust parallel
iterative solvers that can handle very large 3-D problems which arise from real-
istic applications. The preliminary numerical examples shown indicate that the
algorithm performs quite well for such problems. Robustness relative to standard
(non-block) preconditioners is achieved by extracting more accurate factoriza-
tions via higher amounts of fill-in. The effective use of hardware is enabled by
a careful block-wise processing of the factorization, which yields fast factoriza-
tion and preconditioning operations. We plan on performing a wide range of
experiments on a variety of problems, in order to validate our approach and to
understand its limitations. We also plan on studying better criteria for dropping
certain blocks from the blockwise symbolic structure.
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8. P. Hénon. Distribution des Données et Régulation Statique des Calculs et des Com-
munications pour la Résolution de Grands Systèmes Linéaires Creux par Méthode
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10. P. Hénon, P. Ramet, and J. Roman. Efficient algorithms for direct resolution of
large sparse system on clusters of SMP nodes. In SIAM Conference on Applied
Linear Algebra, Williamsburg, Virginie, USA, July 2003.

11. G. Karypis and V. Kumar. Parallel Threshold-based ILU Factorization. Proceed-
ings of the IEEE/ACM SC97 Conference, 1997.

12. X. S. Li and J. W. Demmel. A scalable sparse direct solver using static pivoting.
In Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing, San Antonio, Texas, March 22-24, 1999.

13. R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal of Numerical Analysis, 16(2):346–358, April 1979.

14. M. Magolu monga Made and A. Van der Vorst. A generalized domain decompo-
sition paradigm for parallel incomplete LU factorization preconditionings. Future
Generation Computer Systems, Vol. 17(8):925–932, 2001.

15. F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and halo
approximate minimum degree for efficient sparse matrix ordering. Concurrency:
Practice and Experience, 12:69–84, 2000.

16. P. Raghavan, K. Teranishi, and E.G. Ng. A latency tolerant hybrid sparse solver
using incomplete Cholesky factorization. Numer. Linear Algebra, 2003.

17. Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical Linear
Algebra with Applications, 1:387–402, 1994.

18. Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM,
2003.

19. J. W. Watts III. A conjugate gradient truncated direct method for the iterative
solution of the reservoir simulation pressure equation. Society of Petroleum Engi-
neers Journal, 21:345–353, 1981.


