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Circuit, Cycle

I A circuit is a connected 2-regular subgraph and a cycle is a
union of edge-disjoint circuits. A cycle cover of a graph G
is a family of cycles of G such that each edge of G is
contained in at least one cycle of the family.

I The length of a cycle cover C, denoted by l(C), is the sum
of the lengths (number of edges) of all the cycles in C.
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Shortest Cycle Cover Problem (SCCP)

I Given a graph G and an integer k , does G have a cycle
cover of total length at most k?

I Thomassen (’92) proved that the SCCP is a NP-complete
problem



Shortest Cycle Cover Problem (SCCP)

I Given a graph G and an integer k , does G have a cycle
cover of total length at most k?

I Thomassen (’92) proved that the SCCP is a NP-complete
problem



Jaeger’s Conjecture

Conjecture

Every bridgeless graph G = (V , E) has a cycle cover C such that:

l(C) ≤
7
5
|E |.
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Cycle Double Cover

A cycle double cover CDC of a graph G = (V , E) is a family of
cycles of G such that every edge appears in exactly two cycles
of this family.
The following double cover conjecture was proposed by several
authors.

Conjecture (Szekeres ’73, Seymour ’79)

Every bridgeless graph has a cycle double cover.



Cycle Double Cover

Jamshi and Tarsi proved (’92):

Theorem

If the Conjecture concerning the existence of a cycle cover C of
length at most 7

5 |E | is true then the Cycle double cover
conjecture is true.

First bound : Itai, Rodeh ’78:

Theorem

Every bridgeless graph G = (V , E) has a cycle cover C such
that:

l(C) ≤ |E | + 2|V |log|V |.



Flows

Definition

Let M be an abelian group, ~G be an oriented graph,
φ : E(~G) → M is a flow or an M-flow if :
∑

e∈∆+(v) φ(e) =
∑

e∈∆−(v) φ(e) for every vertex v ∈ V (~G).
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If M = ZZk
2 the condition is

∑
e∈∆(v) φ(e) = 0



Flows

Definition

I The support σ(φ) of a flow φ in a digraph G = (V , E) is the
set of arcs e such that φ(e) 6= 0 .

I If σ(φ) = E , φ is a M-nowhere zero flow (M-NZF).
I A ZZ-flow is a k-flow if φ(E) ⊂ [−(k − 1), 0[∪]0, k − 1]

I B ⊆ M, −B = B
φ is a B-flow,
if φ : E → M is a flow s.t. φ(E) ⊆ B

If M = ZZ2, σ(φ) is a cycle.
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Tutte’s Theorem

Theorem (Tutte ’50)

Let G be a digraph. For every k ≥ 2, the following conditions
are equivalent:

1. There exists a ZZk -NZF in G.

2. For any Abelian group M of order k, there exits a M-NZF in
G.

3. There exists a k-NZF in G.



Tutte’s Conjectures

Conjecture (Tutte ’54)

Every bridgeless graph without 3-cuts has a 3-NZF.

Theorem (Jaeger’79)

Every bridgeless graph without 3-cuts has a 4-NZF.

Conjecture (Tutte ’54)

Every bridgeless graph has a 5-NZF.

Theorem

Every bridgeless graph has:

1. a 8-NZF (Jaeger ’79)

2. a 6-NZF (Seymour ’81)
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The five cycle double cover conjecture

Conjecture (Peissmann ’81, Celmins ’84 )

I For every graph with no cut-edge, there is a list of five
cycles so that every edge is contained in exactly two.

I Every graph with no cut-edge has a B-flow for the set
B ⊆ Z

5
2 consisting of those vectors with exactly two 1’s.



The orientable five cycle double cover conjecture

Conjecture (Jaeger ’88)

I For every oriented graph with no cut-edge, there is a list of
five 2-flows φ1, φ2, . . . , φ5 with

∑5
i=1 φi = 0 such that every

edge is in the support of exactly two of these flows.
I Every graph with no cut-edge has a B-flow for the set

B ⊆ Z
5 consisting of those vectors with exactly three 0’s,

one 1, and one −1.



Fulkerson’s conjecture

Conjecture (Fulkerson,’71)

I For every cubic graph with no cut-edge, there is a list of 6
perfect matchings so that every edge is contained in
exactly two.

I Every graph with no cut-edge has a B-flow for the set
B ⊆ Z

6
2 consisting of those vectors with exactly four 1’s.

Conjecture (Berge,’79)

The edges of any cubic graph with no cut-edge can be covered
by 5 perfect matchings.



Petersen flow

C1 C2 C3 C4 C5 C6
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
7 0 0 1 0 0 1
8 0 1 0 0 1 0
9 0 0 0 1 0 1

10 0 1 1 0 0 0
11 0 0 0 1 1 0
12 1 1 1 1 1 0
13 1 1 0 1 1 1
14 1 0 0 1 0 1
15 1 1 1 0 0 0
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Conjecture (Jaeger)

Every bridgeless graph has a Petersen flow.



4-NZF and Cycle cover

Theorem (Bermond, Jackson, Jaeger)

If G = (V , E) has a 4-NZF then it has a cycle cover C such that:

l(C) ≤
4
3
|E |

Proof: 4-NZF⇐⇒ ZZ2 × ZZ2-NZF.
Φ, φ1, φ2 s.t. Φ(e) = (φ1(e), φ2(e)), φi is a ZZ2-flow,
E = σ(φ1) ∪ σ(φ2).
C1 = σ(φ1), C2 = σ(φ2), C3 = C1 4 C2
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4-NZF and Cycle cover

C1 C2 C3

0 1 1
1 0 1
1 1 0

|C1| + |C2| + |C3| = 2|E |
∃ k ∈ {1, 2, 3} s.t. |Ck | ≥

2
3 |E |

{Ci , Cj} (i 6= j) is a cycle cover
Let C = {Ci , Cj}, i 6= j 6= k :

l(C) ≤ 2|E | −
2
3
|E |

l(C) ≤
4
3
|E |
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Results

c(G) the size od a smallest cycle cover of a bridgeless graph G.

Authors Results

Itai, Rodeh (’78) c(G) ≤ |E | + 2|V |log|V |.
Bermond, Jackson, Jaeger (’83) c(G) ≤ 5

3 |E |.
Alon, Tarsi (’85) c(G) ≤ 5

3 |E |.
Jamshy, R. , Tarsi If G has a 5-NZF
(’87) c3(G) ≤ 8

5 |E |.
Jackson (’90) If G is 2k-edge-connected

(k ≥ 2), then c(G) ≤ 2k+2
2k+1 |E |.



Results

Authors Results

R. (’91) If G has a 4-NZF
G 6= K4, then
c2(G) ≤ |E | + |V | − 3.

Fan, R. (’92) If Fulkerson conjecture is true
c3(G) ≤ 22

15 |E |.
R. (’92) If Petersen conjecture is true

c4(G) ≤ 7
5 |E |.

Fan (’93) If 3-flow conjecture of Tutte is true
c3(G) ≤ 7

5 |E |.
Fan (’98) c(G) ≤ |E | + |V | − 1.
Shu, Zhang (’04) G with odd edge-connectivity r > 3

c3(G) ≤ r+1
r |E |.



Circular flow

Let G = (V , E) be a directed graph. p ≥ 2q integers. A flow
f : E −→ {−(p − 1), . . . , p − 1} is a (p, q)-flow if for every edge
e ∈ E q ≤ |f (e)| ≤ p − q.

A (k , 1)-flow is a k-NZF



Circular flow

Conjecture (R., Zhu ’05)

If G = (V , E) has a (p, q)-flow then it has a cycle cover C with

l(C) ≤
2(p − q)

p
|E |
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Circular coloring

Let G = (V , E) be a graph. p ≥ 2q integers. G = (V , E) is
(p, q)-colorable if there exists a mapping
f : V −→ {0, . . . , p − 1} s.t. for every edge xy ∈ E (Vince ’88):

p ≤ |f (x) − f (y)| ≤ p − q

χc(G) = inf{
p
q

: there is a (p, q) -coloring of G}

0

1

23

4

(5, 2)-coloring of C5
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Circular clique

K p
q

be the graph with vertex set {0, . . . , p − 1} (p ≥ 2q) in which

ij is an edge if and only if q ≤ |j − i | ≤ p − q.

0

1

2

3

4

5

6

7

Circular clique K 8
3



Bicircular flow

I A CDC C = {C0, . . . , Cp−1} is said to be (p, q)-colorable if
the intersection graph GC is (p, q)-colorable.

I V (GC) = {0, . . . , p − 1} and ij ∈ E(C) iff Ci ∩ Cj 6= ∅.
I Dp,q is the subset of ZZp

2 consisting of elements
(z0, . . . , zp−1) with exactly two elements zi ,zj equal to one
and all the other equal to 0, with p ≤ |j − i | ≤ p − q.

Proposition

G has a Dp,q-flow iff G has a (p, q)-colorable CDC



Bicircular flow

Theorem (R., Zhu ’05)

If G has a Dp,q-flow then it has a cycle cover C with

l(C) ≤
2(p − q)

p
|E |



Proof

I G has a Dp,q-flow ⇐⇒ GC the intersection graph of the
corresponding CDC is a sub-graph of K p

q

I ei ,j = {e ∈ E : e ∈ Ci ∩ Cj}.
I e ∈ ei ,j ⇐⇒ e is of type ij
I there is a bijection between the ei ,j ’s and the edges of K p

q
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Proof (8, 3)-flow

I C012 = {C3, C4, C5, C6, C7} is a cycle cover of the graph
I The edges of types ei ,j i ∈ {0, 1, 2}, j ∈ {3, 4, 5, 6, 7} are

covered once by this cycle cover C012.
I The edges of the remaining types e3,7,e3,6,e4,7 are covered

twice.
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4

5

6

7



Proof (8, 3)-flow

I l(C012) = |E | + |e3,7| + |e3,6| + |e4,7|

I l(C012) = |E | + |RO| (R0 the edges of the remaining types)
I K p

q
is vertex transitive. C012 is denoted by C0.

I Ci , i ∈ {0, . . . 7} are 8 cycle covers (p)
I l(Ci) = |E | + |Ri |
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Proof (8, 3)-flow

I Each Ri contains 3 types of edges ( (p−2q+1)(p−2q)
2 )

I

∑7
0 l(Ci) = 8|E |+

∑7
0 |Ri |

I

∑p−1
0 l(Ci) = p|E |+

∑p−1
0 |Ri |

I each edges of types belonging to the reamining edges are
counted twice (p − 2q times)

I

∑7
0 l(Ci) = 8|E |+ 2|E |

I

∑p−1
0 l(Ci) = p|E |+ (p − 2q)|E |
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Proof (8, 3)-flow

I There is i ∈ {0, . . . , 7} (i ∈ {0, . . . , p − 1}) such that

l(Ci) ≤
5
4
|E |

I

l(Ci) ≤
2(p − q)

p
|E |
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Planar graphs

Corollary

If a planar graph G has a (p, q)-flow then it has a cycle cover C
with

l(C) ≤
2(p − q)

p
|E |
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Bicircular flows

Theorem (Jaeger ’81)

If G has a (2k + 1, k)-flow then it has a D2k+1,k -flow

Corollary

If G has a (2k + 1, k)-flow then it has a cycle cover C with

l(C) ≤
2k + 2
2k + 1

|E |
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