On the injective chromatic number of graphs

André Raspaud

LaBRI Université Bordeaux I France

CanaDAM May 28-31, 2007 Banff, Alberta Canada

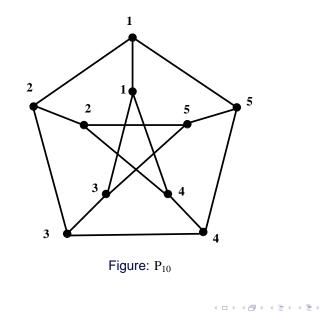
Definition (G. Hahn, J. Kratochvil, J. Širáň, D. Sotteau '02)

Le G = (V, E) be a graph,

- A vertex k-colouring is a function c : V(G) → {0,1,...,k-1}. We say that a colouring of a graph is *injective* if its restriction to the neighbourhood of any vertex is injective.
- ► The *injective chromatic number* \(\chi_i(G)\) of a graph G is the least k such that there is an injective k-colouring.

$$\Delta(\boldsymbol{G}) \leq \chi_i(\boldsymbol{G}) \leq |V(\boldsymbol{G})|$$

Example



Instance: A graph G = (V, E) and a natural number k *Question*: Is there an injective k-coloring of G?

Theorem (G. Hahn, J. Kratochvil, J. Širáň, D. Sotteau '02)

The problem ICN is NP-complete

In the special case of the hypercube, we have :

Theorem (G. Hahn, J. Kratochvil, J. Širáň, D. Sotteau '02)

Let Q_n be the hypercube of dimension n.

- 1. $\chi_i(Q_n) = n$ if and only if n is a power of 2.
- 2. $\chi_i(Q_n) \leq 2n 2$.

3.
$$\chi_i(Q_{2^m-j}) = 2^m$$
 for $0 \le j \le 3$.

4.
$$\chi_i(Q_{2n+1}) \leq 2\chi_i(Q_{n+1})$$
.

A part of these results was proved in 1997 by P. Wan (*Near Optical Conflict-Free Channel Set Assignements for an Optical Cluster-Based Hypercube Network*)

Definition

Let G = (V, E) be a graph, the square of G is $G^2 = (V, E')$ s.t. $xy \in E'$ if and only if x and y are at distance at most 2 in G.

▶ If *G* is connected and not K_2 then $\chi(G) \leq \chi_i(G)$.

•
$$\chi(\mathbf{G}) \leq \chi_i(\mathbf{G}) \leq \chi(\mathbf{G}^2)$$

•
$$\chi_i(P_{10}) = 5$$
 and $\chi(P_{10}^2) = 10$

・ ロ ト ・ 雪 ト ・ 目 ト

Conjecture (Wegner '77)

Let G be a planar graph. Then

$$\chi(G^2) \leq \left\{ egin{array}{ll} \Delta(G) + 5 & ext{if } 4 \leq \Delta(G) \leq 7; \ \lfloor 3\Delta(G)/2
floor + 1 & ext{if } \Delta(G) \geq 8. \end{array}
ight.$$

Theorem (C. Thomassen '01)

If G is planar and $\Delta(G) = 3$ then $\chi(G^2) \le 7$

Theorem (O. Borodin, H.J. Broersma, A. Glebov, J. van den Heuvel '02)

If G is planar with $\Delta \ge 47$, $\chi(G^2) \le \lceil 9\Delta(G)/5 \rceil + 1$

Theorem (M. Molloy, M.R. Salavatipour '05)

If G is planar, $\chi(G^2) \leq \lceil 5\Delta(G)/3 \rceil + 78$

The maximum average degree is a well used tool

Definition $mad(G) = max\{\frac{2|E(H)|}{|V(H)|} : H \text{ is a subgraph of } G\}.$

The degree of a vertex u will be denoted by deg(u)

Proposition

If G is a planar graph with girth at least g then $mad(G) < 2 + \frac{4}{g-2}$

Theorem (A. Doyon, G. Hahn, A.R. '05)

Let G be a graph

- 1. If $mad(G) < \frac{14}{5}$ then $\chi_i(G) \le \Delta(G) + 3$.
- 2. If mad(G) < 3 then $\chi_i(G) \le \Delta(G) + 4$.
- 3. If $mad(G) < \frac{10}{3}$ then $\chi_i(G) \le \Delta(G) + 8$.

・ ロ ト ・ 雪 ト ・ 目 ト ・

= 900

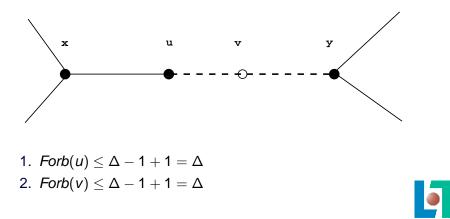
 $mad(G) < \frac{14}{5}$ then $\chi_i(G) \leq \Delta(G) + 3$

Let *H* be a minimum counterexample.

- 1. Both neighbours of a vertex of degree 2 are of degree at least 3.
- 2. If uvz is a simple path in G with deg(u) = 2, deg(v) = 3 then deg(z) > 3.
- 3. A vertex of degree 4 has at most two neighbours of degree 2.
- 4. A vertex of degree 4 cannot have two neighbours of degree 2 and two neighbours of degree 3

Both neighbours of a vertex of degree 2 are of degree at least 3.

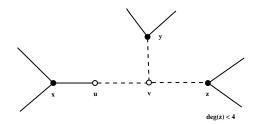
If there is two vertices u and v of degree 2 adjacent in H. We color $H \setminus v$.



< ロ > < 同 > < 回 > < 回 >

If uvz is a simple path in G with deg(u) = 2, deg(v) = 3 then deg(z) > 3

If deg(z) \leq 3 we color $H \setminus uv$.

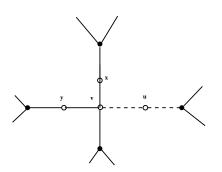


1. $Forb(u) \le \Delta - 1 + 2 = \Delta + 1$ 2. $Forb(v) \le \Delta - 1 + 2 + 1 = \Delta + 2$

< ロ > < 同 > < 回 > < 回 >

A vertex of degree 4 has at most two neighbours of degree 2

If deg(v) = 4 and v has 3 neighbors of degree 2. We color $H \setminus u$

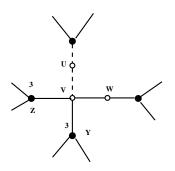


1. Forb(v)
$$\leq \Delta - 1 + 3 = \Delta + 2$$

2. Forb(u) $\leq \Delta - 1 + 3 = \Delta + 2$

A vertex of degree 4 cannot have two neighbours of degree 2 and two neighbours of degree 3

If deg(v) = 4 and v has 2 neighbors of degree 2 and 2 neighbors of degree 3. We color $H \setminus u$



1.
$$Forb(v) \le 6 < \Delta + 3$$

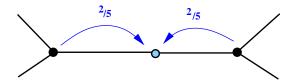
2. $Forb(u) \le \Delta - 1 + 3 = \Delta + 2$

The initial charge is defined by $w(u) = \deg(u)$ for each $u \in V(H)$.

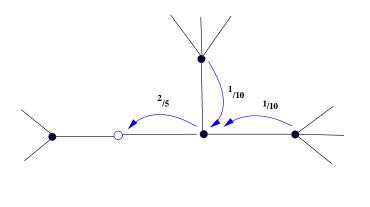
- 1. If $uv \in E(H)$ and deg(u) = 2, $deg(v) \ge 3$, v gives $\frac{2}{5}$ to u
- 2. If $uv \in E(H)$ and deg(u) = 3, $deg(v) \ge 4$, v gives $\frac{1}{10}$ to u.

After the discharging procedure let $w^*(u)$ the new charge for each $u \in V(H)$. We have $\sum_{u \in V(H)} w(u) = \sum_{u \in V(H)} w^*(u)$.

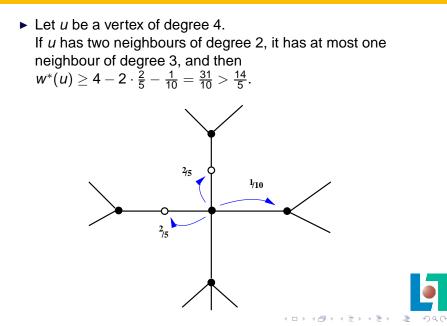
• a vertex *u* of degree 2 has $w^*(u) = 2 + 2\frac{2}{5} = \frac{14}{5}$



► a vertex u of degree 3 has at most one neighbour of degree 2 and so w*(u) ≥ 3 - ²/₅ + 2 · ¹/₁₀ = ¹⁴/₅



The new charges



The new charges

If u has fewer than two neighbours of degree 2, $W^*(u) \ge 4 - 3 \cdot \frac{1}{10} - \frac{2}{5} = \frac{33}{10} > \frac{14}{5}.$ 1/10 1/10 2/5 1/10 • If *u* is of degree at least $k \ge 5$ then $w^*(u) \geq k - k \cdot \frac{2}{5} = k \cdot \frac{3}{5} \geq 3$ • □ > • □ > • □ > • □ > • □ >

Hence
$$w^*(u) \ge \frac{14}{5}$$
 for every $u \in V(G)$
 $Mad(H) \ge \frac{2|E(H)|}{|V(H)|} = \frac{\sum_{v \in V} d(v)}{|V(H)|} = \frac{\sum_{v \in V} w^*(v)}{|V(H)|} \ge \frac{\frac{14}{5}|V(H)|}{|V(H)|} \ge \frac{14}{5}$

A contradiction.

Definition

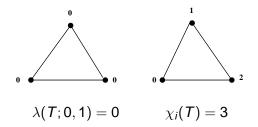
Let p,q be two nonnegative integers. An L(p,q)-coloring of a graph *G* is a function $\phi : V(G) \longrightarrow \{0, 1, ..., k\}$ for some positive integer *k* such that:

- 1. $|\phi(x) \phi(y)| \ge p$ if x and y are adjacent
- 2. $|\phi(x) \phi(y)| \ge q$ if x and y are at distance 2

 $\lambda(G; p, q)$ is the smallest k such that G has an L(p, q)-coloring with max{ $\phi(v) : v \in V(G)$ } = k

1.
$$\lambda(G; 1, 1) = \chi(G^2) - 1$$

2. $\lambda(G; 0, 1) = \chi_i(G) - 1$ if *G* is triangle free.



Applications

W.Wang and K. Lih proved

Theorem (W.Wang, K.Lih '03)

Let G be a planar graph and p and q two positive integers.

- 1. If $g(G) \ge 7$ then $\lambda(G; p, q) \le (2q 1)\Delta(G) + 4p + 4q 4$
- 2. If $g(G) \ge 6$ then $\lambda(G; p, q) \le (2q 1)\Delta(G) + 6p + 12q 9$
- 3. If $g(G) \ge 5$ then $\lambda(G; p, q) \le (2q-1)\Delta(G) + 6p + 24q 15$

・ロット 本語 マネ 日マ トーロマ

SQA

Corollary (W. Wang, K. Lih '03)

Let G be a planar graph

- 1. If $g(G) \geq 7$ then $\chi(G^2) \leq \Delta(G) + 5$
- 2. If $g(G) \ge 6$ then $\chi(G^2) \le \Delta(G) + 10$
- 3. If $g(G) \ge 5$ then $\chi(G^2) \le \Delta(G) + 16$

This gives upperbounds for $\chi_i(G)$

Proposition

If G is a planar graph with girth at least g then $mad(G) < 2 + \frac{4}{g-2}$

Corollary

Let G be a planar graph

- 1. If $g(G) \ge 7$ then $\chi_i(G) \le \Delta(G) + 3$
- 2. If $g(G) \ge 6$ then $\chi_i(G) \le \Delta(G) + 4$
- 3. If $g(G) \ge 5$ then $\chi_i(G) \le \Delta(G) + 8$

(日)

3

SQA

Theorem (B.Lužar, R.Škrekovski, M.Tancer '06)

Let G be a planar graph

- 1. If $g(G) \ge 19$ then $\chi_i(G) = \Delta(G)$, $\Delta \ge 4$
- 2. If $g(G) \ge 10$ then $\chi_i(G) \le \Delta(G) + 1$, $\Delta \ge 4$
- 3. If $g(G) \ge 5$ then $\chi_i(G) \le \Delta(G) + 4$, $\Delta \ge 139$

(日)

= 900

G is a minor of *H* if *G* can be obtained from *H* be a series of vertex deletions, edge deletions and/or edge contractions (replacing two adjacent vertices u,v by a vertex that is adjacent to all neighbours of u or v).

A graph G is K_4 -minor-free if K_4 isn't a minor of G.

Equivalent classes: partial 2-tree, series-parallel Subclasses: 2-tree, outerplanar

Theorem (K. Lih, W. Wang, X. Zhu '02)

Let G be a K_4 -minor free graph. Then

$$\chi(G^2) \leq \left\{ egin{array}{ll} \Delta(G) + 3 & ext{if } 2 \leq \Delta(G) \leq 3; \ \lfloor 3\Delta(G)/2
floor + 1 & ext{if } \Delta(G) \geq 4. \end{array}
ight.$$

Theorem (G. Hahn, A.R., W. Wang '05)

Let G be a K₄-minor free graph. Then $\chi_i(G) \leq \lceil \frac{3}{2}\Delta(G) \rceil$.

Tight Result

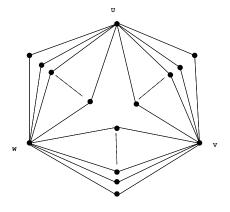


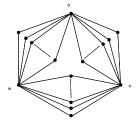
Figure: G_{2k}

k 2-paths between u and v*k* 2-paths between v and w*k* 2-paths between w and u

< ≣ >

・ロト ・日 ・ ・ ヨ ・

Tight Result



 G_{2k} is a K_4 -minor free graph with $\Delta(G_{2k}) = 2k$.

$$\chi_i(G_{2k}) \leq \lceil \frac{3}{2} \Delta(G_{2k}) \rceil = 3k.$$

Any two vertices of degree 2 are at distance 2 in G_{2k} and there are exactly 3k such vertices in G_{2k} . Thus $\chi_i(G_{2k}) \ge 3k$

$$\chi_i(\mathbf{G}_{2k}) = \lceil \frac{3}{2} \Delta(\mathbf{G}_{2k}) \rceil = 3k.$$

< ロ > < 同 > < 回 > < 回 >

Theorem (M. Montassier, A. R.'05)

Let G be a planar subcubic graph:

- 1. if girth(G) \geq 14 then $\chi(G^2) \leq$ 5
- 2. if girth(G) \geq 10 then $\chi(G^2) \leq 6$
- 3. if girth(G) \geq 8 then $\chi(G^2) \leq$ 7

It was also proved independently by Z. Dvořak, R.Škrekovski and M. Tancer '05.

Lemma (G. Hahn et al. '02)

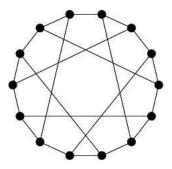
Let G be a graph of maximum degree Δ . Then $\chi_i(G) \leq \Delta^2 - \Delta + 1$.

Theorem (G. Hahn et al. '02)

Let G be a connected graph of maximum degree $\Delta \ge 3$. Then $\chi_i(G) = \Delta^2 - \Delta + 1$ if and only if there exists a projective plane P of order $\Delta - 1$ and G is isomorphic to I(P).

Proposition

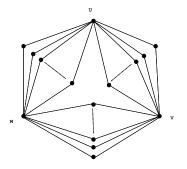
Let G be a graph of maximum degree $\Delta \leq 3$. Then $\chi_i(G) \leq 7$; and $\chi_i(G) = 7$ if and only if G is isomorphic to the Heawood graph. In particular, when $|G| \neq 14$ or G is not bipartite, it holds that $\chi_i(G) \leq 6$.



< ロ > < 同 > < 回 > < 回 >

Conjecture

Let G be a planar graph with maximum degree $\Delta(G)$. Then $\chi_i(G) \leq \lceil \frac{3}{2} \Delta(G) \rceil$.



< ロ > < 同 > < 回 > < 回 >